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Abstract 

Triple negative breast cancer (TNBC) is a subtype of breast cancer, with estrogen receptor, human epidermal growth 
factor receptor 2 and progesterone receptor negative. TNBC is characterized by high heterogeneity, high rates of 
metastasis, poor prognosis, and lack of therapeutic targets. Now the treatment of TNBC is still based on surgery and 
chemotherapy, which is effective only in initial stage but almost useless in advanced stage. And due to the lack of hor-
mone target, hormonal therapies have little beneficial effects. In recent years, signaling pathways and receptor-spe-
cific targets have been reported to be effective in TNBC patients under specific clinical conditions. Now targeted ther-
apies have been approved for many other cancers and even other subtypes of breast cancer, but treatment options 
for TNBC are still limited. Most of TNBC patients showed no response, which may be related to the heterogeneity of 
TNBC, therefore more effective treatments and predictive biomarkers are needed. In the present review, we summa-
rize potential treatment opinions for TNBC based on the dysregulated receptors and signaling pathways, which play a 
significant role in multiple stages of TNBC development. We also focus on the application of immunotherapy in TNBC, 
and summarize the preclinical and clinical trials of therapy for patients with TNBC. We hope to accelerate the research 
and development of new drugs for TNBC by understanding the relevant mechanisms, and to improve survival.
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Introduction
Breast cancer is the most commonly diagnosed cancer 
in 2020 (11.7% of total cases) and the leading cause of 
cancer death among women [1]. Triple negative breast 
cancer (TNBC))is a subtype of breast cancer, which rep-
resents 24% of all types of breast cancers [2]. In 2000, the 
first-generation cDNA microarrays defined basal-like 
breast cancer as a subtype of breast cancer, which shows 
low expression level of estrogen receptor (ER) and asso-
ciated genes, no expression of human epidermal growth 
factor receptor 2 (HER2) and strong expression of breast 
basal cell keratins 5/6 and 17 [3]. Then, in 2005, James 

D et al. defined a group of basal-like breast cancer with 
ER negative, HER2 negative and progesterone receptor 
(PR) negative as TNBC by immunohistochemical pro-
filing [4]. In 2011, Lehmann et  al. identified six TNBC 
subtypes, including 2 basal-like (BL1 and BL2), an immu-
nomodulatory (IM), a mesenchymal (M), a mesenchymal 
stem-like (MSL), and a luminal androgen receptor (LAR) 
subtype [5].Compared with non-TNBC, TNBC occurs at 
younger age and shows higher histologic grade and more 
frequent lymph nodal metastases, meaning aggressive 
pathology [6]. And due to the lack of receptors, almost 
all TNBC is insensitive to hormone treatment or anti-
HER2 treatment [7]. At present, chemotherapy (anthra-
cyclines and taxanes) is still the dominant treatment for 
patients with TNBC [5]. Although patients with TNBC 
have a high rate of clinical response to chemotherapy, 
they show poor prognosis and high risk of recurrence 
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[8]. And once diagnosed as metastatic TNBC, adjuvant 
therapy is often ineffective and the median survival time 
after metastasis is only 13.3 months [8, 9]. Thus, in addi-
tion to the development of new applications of existing 
drugs, there is an urgent need for new drugs and thera-
pies to improve the therapeutic effect of TNBC. With 
the development of precision therapy, many studies have 
demonstrated that the targeted therapy has promising 
value in TNBC. Many abnormal pathways in TNBC have 
been reported, like Phosphatidylinositol-3-kinase (PI3K)/
AKT/ mammalian target of rapamycin (mTOR), the Ras/
mitogen-activated protein kinase (MAPK) pathway, the 
epithelial-mesenchymal transition (EMT) and associated 
pathways, and so on. Besides, many mutations have been 
found in TNBC, like germline BRCA1 or BRCA2 muta-
tions. These findings bring new hope for the treatment 
of TNBC. Besides, target therapy is found to improve the 
resistance to treatment which often occurs in advanced 
patients. In the present review, we summarize potential 
treatment opinions for TNBC based on the dysregulated 
receptors and signaling pathways, as well as the applica-
tion of immunotherapy in TNBC, and list related preclin-
ical and clinical trials to provide new ideas and directions 
for TNBC treatment. We list clinical trials of TNBC with 
and without results in Supplementary Table 1. And par-
tial of clinical trials with results for patients with TNBC 
are shown in Table 1.

Receptor tyrosine kinases and associated pathways
Receptor tyrosine kinases (RTKs) family
RTKs family is a kind of transmembrane enzyme-linked 
receptor on cell surface, composing of an extracellular 
ligand-binding region, a single transmembrane helix, 
a protein tyrosine kinase domain and juxta membrane 
regulatory regions [20]. There are 58 different kinds 
of receptors, such as epidermal growth factor recep-
tor (EGFR), vascular endothelial growth factor receptor 
(VEGFR), insulin-like growth factor receptor (IGFR), 
fibroblast growth factor receptor (FGFR) and AXL [21]. 
RTKs binding to ligands to induce the dimerization of the 
receptors, which then activates the downstream PI3K/
AKT/mTOR pathway, RTK/Ras/MAPK pathway and 
janus kinase/signal transducer and activator of transcrip-
tion protein family pathway [20, 22]. The conduction 
processes are showed in Fig.  1. Mutations or disorders 
of different RTK can drive cancer progression, therefore, 
it is theoretical plausible to target these RTKs for cancer 
treatment [23–25]. Now more and more tyrosine kinase 
inhibitors (TKIs) and anti-TKI antibodies have received 
approvement from U.S. Food and Drug Administration 
(FDA) for applications in cancer treatment [20, 22].

TKI is an important targeted drug in tumor therapy 
and have demonstrated excellent antitumor effects in 

some cancer. In TNBC patients, the effect of TKIs alone 
is unclear in the treatment, but it seems unlikely that 
treatment with tyrosine kinase inhibitors to patients 
with unselected TNBC would be effective as it is a mon-
otherapy. It needs to be used in combination with other 
drugs to achieve the desired effect [26]. Lapatinib is the 
only anti-EGFR agent approved by the FDA for clini-
cal use, and it is recommended to use in combination 
with chemotherapy or hormone therapy. It was shown 
to be effective even in trastuzumab-resistant tumors. 
However, until now the results were frustrating, and 
no other EGFR inhibitor has made it to clinical use 
in TNBC [27]. As a common targeted drug, TKIs are 
less likely to cause toxic effects of traditional chemo-
therapy such as cumulative bone marrow toxicity, yet it 
does have a different toxicity profile, as it mainly causes 
skin and gastrointestinal toxicities, including diarrhea 
and rashes [28].The biggest challenge for the appli-
cation of TKIs in clinical practice is drug tolerance, 
which has been found to be correlated with the over-
expressed ALX in resistant tumors [29, 30]. Over 50% 
of patients with TNBC show overexpression in EGFR 
overall, indicating that anti-EGFR therapy is promis-
ing for TNBC patients with positive EGFR mutations 
[31]. But early phase clinical trials failed to consistently 
justify significant effectiveness of anti-EGFR antibody 
in TNBC patients [26]. Actually, the same result was 
showed when it combined with routine chemotherapy 
drug. A meta-analysis shows that cetuximab, the first 
FDA-approved EGFR-targeted antibody, combined 
with chemotherapy used in TNBC excelled signifi-
cant superiority in progression free survival (PFS) over 
chemotherapy alone [32]. A phase II study compares 
the pathologic complete response rate, safety and toxic-
ity of cetuximab combined with ixabepilone in TNBC 
patients (NCT01097642). A triple-combination therapy 
of ipatasertib, atezolizumab and paclitaxel as treatment 
for patients with locally advanced or metastatic TNBC 
is now undergoing phase III trial (NCT04177108). As 
previously mentioned, the phenomenon of drug resist-
ance is possibly caused by the involvement of AXL in 
apoptotic cells clearance. Meanwhile AXL is highly 
expressed in TNBC, and such high expression is sig-
nificantly associated with lymphovascular invasion, 
suggesting the potential of targeted-AXL drugs in com-
bination with other targeted agents [33]. Bemcentinib 
(BGB324) is the first AXL inhibitor applicated in clini-
cal practice [34]. Currently, a phase II trial of bemcen-
tinib combined with pembrolizumab is conducted to 
examinate the anti-tumor activity and assess the safety 
of in TNBC patients (NCT03184558). In the future, the 
researchers should explore the anti-AXL drug in com-
bination with TKIs in TNBC treatment. In conclusion, 
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it is regrettable that there are no drugs targeting RTKs 
family approved into clinical application for patients 
with TNBC.

PI3K/AKT/mTOR signaling pathways
The PI3K/AKT/mTOR pathway is important in chemore-
sistance and survival of TNBC, involving in cell metab-
olism, proliferation, migration and survival [35]. PI3K 
is firstly activated by RTKs, and then phosphorylates 
4,5-phosphoinositide (PIP2) into 3,4,5-phosphoinositide 
(PIP3), which binds to AKT, and followed by phospho-
rylation of threonine and serine to completely activate 
AKT [36–38]. In addition, there are other regulatory 

factors in this cellular pathway. Phosphatase and tension 
homolog (PTEN), a negative regulatory phosphatase of 
PI3K signaling, can suppress tumor by converting PIP3 
to PIP2 [39]. Through tuberous sclerosis complex 1/2, 
AKT activates the downstream mTOR, which exists in 
mTOR complex (mTORC) 1 and mTORC2 respectively 
[35, 40, 41]. MTORC 1 is linked to lipid synthesis and 
decomposition, and also regulates growth-stimulatory 
effects of mTOR [42]. By contrast, mTORC2 can further 
activate AKT, be involved in cell migration and regulate 
actin cytoskeleton [43, 44]. Many studies reported that 
abnormality of the PI3K/PTEN/AKT pathway is pre-
sented in more than 25% of TNBC patients, including 

Table 1 Partial clinical trials of targeted agents involving patients with TNBC

Clinicaltrials.gov, accessed on November 1, 2021

Pathway NCT Phase Results Treatment Reference

Group 1 Group 2 Group 1 Group 2

Combination 
(Chemotherapy)

NCT02547987 II pCR: 45.7% (95%CI 
36.9–54.7%)

Docetaxel + Carbo-
platin

[10]

Combination (CDK 
inhibitor + Paclitaxel)

NCT02779855 I/II RR: 55% Talimogene Laher-
parepvec + Neoadju-
vant Chemotherapy 
(doxorubicin/cyclo-
phosphamide)

[11]

Selective Inhibitor of 
Nuclear Export

NCT02402764 II mPFS: 0.92 months 
(95%CI: 0.62–3.58)
mOS: 5.98 months 
(95%CI:1.68–10.39)

Selinexor [12]

Combination (CSF-1 
inhibitor Chemo-
therapy)

NCT02435680 II PFS: 5.6 months 
(95% CI:4.5–8.7)

PFS: 5.5 months 
(95% CI: 3.5–7.5)

MCS110 + Chemo-
therapy (carbopl-
atin + gemcitabine)

Chemotherapy 
(carboplatin + gem-
citabine)

Chemotherapy NCT02413320 II pCR: 54.2% pCR: 53.8% Carboplatin + Pacli-
taxel + Doxoru-
bicin + Cyclophos-
phamide

Carboplatin + Doc-
etaxel

[13]

Combination (AKT 
inhibitor + Paclitaxel)

NCT02301988 II pCR: 17.1% (95% CI, 
9.82%-27.25%)

pCR: 13.3% (95% CI, 
6.58%-22.86%)

Ipatasertib + Pacli-
taxel

Placebo + Paclitaxel [14]

Combination (AKT 
inhibitor + Paclitaxel)

NCT02423603 II mPFS: 5.9 months mPFS: 4.2 months Paclitaxel + AZD5363 Paclitaxel + Placebo [15]

Combination (AKT 
inhibitor + Paclitaxel)

NCT03337724 III mPFS: 9.3 months 
(95% CI, 8.0–11.0)

mPFS: 9.3 months 
(95% CI, 7.2–12.2)

Ipatasertib + Pacli-
taxel

Placebo + Paclitaxel [16]

ADC NCT03106077 II Stable Disease: 50% Mirvetuximab 
Soravtansine

ADC NCT02984683 II TEAEs: 100% TEAEs: 100% SAR566658 (90 mg/
m^2)

SAR566658 (120 mg/
m^2)

ADC NCT02078752 I ORR:8.3 (95% CI 
0.2–38.5)

PF-06647263 [17]

ADC NCT01997333 II PFS: 2.9 months 
(95% CI: 2.8–3.5)

PFS: 2.8 months 
(95% CI: 1.6–3.2)

CDX-011 Capecitabine

ADC NCT01631552 I/II mPFS:5.5 months 
(95% CI, 4.1- 6.3)

SG [18]

ADC NCT02574455 III mPFS: 5.6 months 
(95% CI, 4.3–6.3)

mPFS: 1.7 months 
(95% CI, 1.5–2.6)

SG Chemotherapy 
(eribulin/capecit-
abine/gemcitabine/
vinorelbine)

[19]



Page 4 of 18Yang et al. Molecular Biomedicine             (2022) 3:8 

PIK3CA-activating mutations, PTEN loss, AKT1 activat-
ing mutations and mTOR activation [45–48]. Hyperac-
tivation of AKT and mTOR may lead to an unfavorable 
prognosis of TNBC patients, suggesting that targeting 
some factors in this pathway is a promising strategy for 
TNBC treatment [49–51].

Everolimus is a mTORC1 inhibitor, which was 
approved by the FDA for postmenopausal patients with 
hormone receptor (HR) + /HER2- advanced breast 
cancer [52]. The efficacy of everolimus has been con-
firmed by many studies [53–55]. In a randomized trial, 
researchers exanimated the safety of the everolimus 
in patients with hormone-receptor–positive advanced 
breast cancer. The most common grade 3 or 4 adverse 
events (AEs) were stomatitis, anemia, dyspnea, hyper-
glycemia, fatigue, and pneumonitis [52]. Further find-
ing is that the clinical benefit of mTOR inhibitor alone 
is far from satisfactory, and obviously the combination 

therapy renders more clinical benefit [56]. Everoli-
mus-carboplatin was reported to be efficacious in 
metastatic TNBC [57]. Compared with neoadjuvant 
alone, the combination of everolimus plus cisplatin 
after neoadjuvant shows lower residual cancer bur-
den [58]. PI3K inhibition would diminish nucleotide 
pools required for DNA synthesis and S-phase pro-
gression, resulting in sensitization to PARP inhibitors 
in BRCA-proficient TNBC [59]. Based on this, a new, 
non-chemotherapy treatment option for TNBC with 
wild-type BRCA might originate from the combination 
of a PI3K inhibitor and PARP inhibitor. The evaluation 
over efficacy of gedatolisib, a PI3K and mTOR inhibi-
tor, in combination with talazoparib (PARP inhibi-
tor) in TNBC or BRCA1/2 positive breast cancer with 
HER2 negative was conducted in a phase II clinical 
trial. (NCT03911973). And the AEs of gedatolisib have 
been concerned in other solid tumors. In a multi-arm 

Fig. 1 Receptor tyrosine kinases and associated pathways in TNBC. RTKs bind to extracellular ligands, then activated RTKs then activates 
downstream PI3K/AKT/ mTOR and Ras/MAPK pathway signaling pathways. After Ras family (N-Ras, M-Ras, H-Ras and K-Ras) is activated, downstream 
Raf, MEK and ERK in turn transfers the signals released from Ras to the nucleus, and finally drives tumor cell proliferation and survival. PI3K is firstly 
activated by RTKs, and then phosphorylates PIP2 into PIP3, which binds to AKT, and followed by phosphorylation of threonine. And AKT and mTOR 
are completely activated in turn. PTEN is a negative regulatory phosphatase of PI3K signaling, which can suppress tumor by converting PIP3 to PIP2
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clinical trial of gedatolisib and irinotecan in advanced 
sloid cancers, the most common gedatolisib-related 
AEs were nausea (61.4%), diarrhea (52.3%), vomiting 
(40.9%), mucosal inflammation/stomatitis (34.1%), 
decreased appetite (31.8%) and fatigue (29.5%), mostly 
of grade 1 or 2 [60]. However, there are no studies spe-
cifically focusing on AEs of PI3K/AKT/mTOR signal-
ing pathways in patients with TNBC. To sum up, more 
trials are needed to explore the combinations of PI3K/
AKT/mTOR signaling pathways in the future, in addi-
tion, how to exert the role of negative regulatory fac-
tors in the pathway to achieve anti-tumor effects is 
also a potential research direction.

The Ras/ MAPK pathway
Ras family, small GTPases, consisting of N-Ras, M-Ras, 
H-Ras and K-Ras, can be firstly activated by external 
stimuli like ligand activation of RTK [61]. Then down-
stream Raf, MAPK kinase 1 (MEK) and extracellular 
signal-regulated kinases (ERK) in turn transfers the 
signals released from Ras to the nucleus, and finally 
drives cell proliferation and survival [62]. Negative 
regulation of the pathway is accomplished through 
the action of DUSP family phosphatases on ERK, the 
hydrolysis of Ras-associated GTP by NF1, and the neg-
ative feedback actions of ERK on both MEK and Raf 
signaling complexes, among others. The copy num-
ber alterations of RAS/MAPK signaling pathways in 
TNBC was found to be greater than other subtypes 
of breast cancer, suggesting the connection the path-
way activation and  TNBC5. Excessive positive regula-
tion and lack of negative regulation can both lead to 
abnormal copy number of the pathway [63]. Inhibitors 
of MEK is a significant node in the Ras/MAPK path-
way, which can inhibit specifically inhibit prolifera-
tion of TNBC cell lines [61]. Selumetinib (AZD6244; 
ARRY-142886), a MEK inhibitor, has shown the ability 
to inhibit the process of EMT and restrain lung metas-
tasis in animal models of TNBC [64]. A clinical trial 
in advanced cancer patients with the CI-1040 (an oral 
MEK inhibitor) shows the usual toxicities of CI-1040 
were mild or moderate, like diarrhea, nausea, asthenia, 
and vomiting [65].Compared with solo therapy, combi-
nation therapy with MEK inhibitors seems to be more 
promising. The combination of CH5126766(RAF/MEK 
inhibitor) and eribulin was tested to potently inhibit 
cell growth in TNBC and to suppress the expres-
sion of programmed cell death-ligand 1 (PD-L1) [66]. 
A phase I/II study of AZD2014 (vistusertib, mTOR 
inhibitors) administered with selumetinib is carrying 
out a dose-escalation experiment in TNBC patients 
(NCT02583542).

Cyclin‑dependent kinases (CDKs) 4/6
The mitotic cell cycle is an important process of cell 
proliferation, depending heavily on continuous activa-
tion of several CDKs complexes, while dysregulation of 
cellular proliferation is considered to be omnipresent in 
all cancers [67]. Cyclin D, a member of the cyclin family, 
forms a complex with CDK4/6 kinases to participate in 
cell cycle progression from the first growth (G1) to the 
DNA synthesis (S) phase [68]. Cyclin D-CDK4/6 com-
plex gets activated when it gets into the nucleus, and then 
phosphorylates retinoblastoma protein (Rb). Phospho-
rylated Rb can inhibit transcription factors like E2F, and 
initiates the cell into S phase and drives DNA replication 
[69]. The initial phosphorylation of Rb depends on cyclin 
D-CDK4/6 complex and the hyperphosphorylation of Rb 
often leads to the loss of its tumor suppressive function. 
Therefore, CDK4/6 inhibitors can inhibit Rb phosphoryl-
ation to prevent the proliferation of tumor cells. The pro-
cess of CDK 4/6 signaling pathways mediated cell cycle 
progression in TNBC is showed in Fig.  2. In addition, 
CDK5 is an atypical member of the cyclin-dependent 
kinase family, and its aberrant expression is also related 
to cell proliferation, DNA damage response, apoptosis, 
migration and angiogenesis in cancer. Some studies indi-
cated that new post-translational modifications (PTMs) 
of CDK5 act as molecular switches to control the kinase 
activity of CDK5 in the cell [11].

Till now, FDA have approved three CDK inhibitors 
for patients with ER + /HER2 + breast cancer, including 
palbociclib, ribociclib and abemaciclib [70–72]. Regret-
fully, no CDK4/6 inhibitor is approved for TNBC and 
its efficacy in TNBC needs further examination. Genetic 
analysis of TNBC shows that 20% of TNBC patients have 
Rb1 loss, 9% of them show cyclin E1 amplification. Lower 
RB1 expression is considered to be related to the insen-
sitivity to the CDK4/6 inhibitors [45]. Besides, preclini-
cal trials have proven that TNBC was extremely sensitive 
to CDK4/6 inhibitors in  vitro and vivo, especially for 
luminal androgen receptor (LAR) subtype [73, 74], sug-
gesting that there may be yet-undiscovered mechanisms. 
There are many ongoing studies on CDK4/6 inhibi-
tors in TNBC. Now, a phase II clinical trial is evaluting 
the efficacy and safety of aemaciclib for patients with 
Rb + TNBC. (NCT03130439). Besides, CDKs link cell 
proliferation with other signaling pathways, making the 
combination therapy also worth exploring. For example, 
CDK4/6 can regulate T cells to enhance immune function 
and inhibit the cytotoxicity of chemotherapy [67]. What’s 
more, a phase I trial confirmed that palbociclib combined 
with paclitaxel is safe and free of additive toxicity for 
patients with Rb + breast cancer (NCT01320592). And 
the most common palbociclib-related AE in this trial was 
neutropenia, which was also the most common grade 3/4 
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event, and other AEs may have relations with Paclitaxel 
therapy [11].Trilaciclib, a CDK 4/6 inhibitor, is in a clini-
cal trial to exam its safety and efficacy when administered 
prior to chemotherapy in patients receiving first- or sec-
ond-line treatment for locally advanced unresectable or 
metastatic TNBC (NCT04799249). And the expression 
of Rb was found to be highly related to androgen receptor 
(AR) expression in TNBC patients [75]. Targeting AR in 
TNBC has shown promising result and the combination 
of CDK 4/6 inhibitors and AR antagonists is also benefi-
cial [75].

Notching signaling
The highly conserved Notch signaling is involved in 
angiogenesis, tumor growth, invasion and metastasis, 
even leading to the poor prognosis, resistance to treat-
ments, and relapse of TNBC [76, 77]. Notch receptors 
on the surface of one cell bind to ligands of a neighbor-
ing cell, thus activate Notching pathways. As a single 
transmembrane protein, Notch ligand is composed of 
two parts: a typical extracellular DSL domain mediat-
ing receptor binding and multiple EGF-like repeats. Till 
now, 5 Notch ligands, Delta-like (Dll) 1, 3, 4, and Jag-
ged (JAG)1, 2, respectively and 4 Notch transmembrane 

receptors, Notch 1–4, have been found [78]. The Notch 
ligand–receptor complex is hydrolyzed by the ADAM17/
TACE metalloprotease and γ-secretase in turn, releasing 
the intracellular domain of Notch into the nucleus. Then 
the downstream gene transcription is activated, including 
cell-cycle regulators, transcription factors, and regulators 
of angiogenesis and apoptosis [78–80]. In addition, many 
other signaling pathway may affect the Notch signaling 
pathway, for instance, VEGFR3、ER and HEY pathways 
[81]. Studies have found that Notch signaling path-
way is overactivated in TNBC [76, 82]. Thus, targeting 
Notch signaling may be a promising treatment strategy. 
Although no FDA-approved therapy has existed for the 
Notch signaling pathway so far, there are still many stud-
ies exploring how to suppress Notch signaling at different 
levels of the cascade, among which the most promis-
ing is aspartyl protease inhibitors or γ-secretase inhibi-
tors (GSIs), and several GSIs are already in clinical trials. 
For instance, as a powerful and selective small molecule 
GSIs, RO4929097 was found to be well-tolerated when 
given in intermittent or daily dosing [83]. The phase II 
clinical trial about RO4929097 in treating patients with 
advanced, metastatic, or recurrent TNBC has ended 
(NCT01151449). However, the GSIs are prone to AEs 

Fig. 2 Cyclin-Dependent Kinases 4/6 signaling pathways mediated cell cycle progression in TNBC. CDK 4/6—cyclin D complex gets into the 
nucleus, and then phosphorylates Rb. Phosphorylated Rb inhibits E2F, and initiates the cell into S phase and drives DNA replication. CDK4/6 
inhibitors can inhibit Rb phosphorylation to prevent the proliferation of tumor cells
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like diarrhea, affecting the digestive, circulation, hema-
tological and other systems due to poor bioavailability 
and off-target side effects [84]. Dose-limiting intestinal 
toxicity is another disadvantage, which is also the main 
restriction of its clinical application [85]. To reduce the 
drug tocicity, intermittent administration has been pro-
posed, but whether this affects the drug effect remains to 
be unclear [86]. In addition, great tolerance was observed 
in a clinical trial of an oral selective RO4929097 in com-
bination with neoadjuvant chemotherapy in TNBC 
(NCT01238133), indicating that GSIs are effective in 
combination therapies [83]. CB-103 is a novel synthetic 
modulator of the Notch pathway, which seems to be 
more suitable for clinical application as it has no serious 
side effects or cytotoxicity compared with RO4929097. 
It is currently in clinical development. A phase I/II, dose 
escalation study investigates the safety, tolerability and 
preliminary efficacy of CB-103 in adult patients with 

advanced or metastatic solid tumors and hematological 
malignancies in “Recruiting” stage (NCT03422679).

Poly‑(ADP)‑Ribose polymerase (PARPi)
Breaks in DNA double-strand is a common DNA damage 
associated with tumorigenesis and BRCA 1 and BRCA 2 
can repair the breaks in normal cell [87, 88]. More than 
15% patients with TNBC have BRCA 1 or 2 mutations, 
and patients with TNBC and BRCA2 mutation have 
similarities in clinical and pathological feature [89, 90]. 
There is evidence that PARP, a DNA repair enzyme, can 
promote the repair of single strand DNA breaks, which 
is a crucial way to repair when BRCA mutations occur. 
The disruption of PARP can lead to delayed repair and 
increased sensitivity to agents that induce base alkylation 
or DNA strand breaks [91]. This process is showed in 
Fig. 3. PARP inhibitors (PARPis) can suppress DNA repair 
through either poly-ADP ribosylation or the homologous 

Fig. 3 Partial Signaling pathways and potential targets for the treatment of TNBC. PARP is a DNA repair enzyme, which can promote the repair of 
single strand DNA breaks. PARP inhibitors can suppress DNA repair resulting in cytotoxicity. Notch receptors (Notch 1–4) on the surface of one cell 
bind to ligands ( Dll 1, 3, 4, and JAG 1, 2), thus activate Notching pathways. The Notch ligand–receptor complex is hydrolyzed by the ADAM17/TACE 
metalloprotease and γ-secretase in turn, releasing the intracellular domain of Notch into the nucleus. AR bind to endogenous androgens, and then 
form a homodimer. Before homodimer, AR is bound to HSP. Subsequently, the homodimer moves into to the nucleus and activates target gene 
transcription, regulating cell proliferation. ADCs consist of a highly efficient cytotoxic payload, an antibody and a linker connecting the former two 
components. ADC binds to target antigens on tumor cell surface and then enter the target cell via receptor-mediated endocytosis. After entering 
the cell, ADCs are degraded by lysosomes, in which the linker cleaves, leading to the release of payloads into cytoplasm. When the Wnt signaling 
is on, Wnt/β-catenin signaling pathway is activated from the combination of lipid-modified Wnts and the receptor complex which is composed 
of Fzds and LRP5/6. Dvl inhibit the destruction complex, inhibiting the β-catenin proteasomal degradation. therefore, the β-catenin enter into 
the nucleus. After entering into the nucleus, β-catenin binds to T cell factor and LEF families and regulates Wnt target gene expression. When Wnt 
ligands are absent in the cytoplasm, β-catenin is sequestered by the destruction complex (APC, GSK-3β and CK1α), and then phosphorylated by 
CK1α and GSK-3β in turn. TGF-β is excreted by cells and then successively binds to TβRII and TβRI on the surface of cell. During this process, two TβRI 
and two TβRII molecules form a heterotetrametric complex, further causing the phosphorylation and activation of TβRI. After that, the activated 
complex phosphorylates Smad2 and Smad3 in sequence, which bind to SMAD4 to form SMAD trimer complex. Finally, the complex translocates 
into nuclei and promotes target gene transcription
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recombination pathway, resulting in cytotoxicity, which 
makes great progress in TNBC patients with BRCA 1/2 
mutations [92]. There are so far four common PARPis 
that have been developed, including olaparib, rucaparib, 
niraparib, and talazoparib, respectively [93]. In 2018, 
FDA approved olaparib and talazoparib for breast cancer 
with BRCA 1/2 mutations and HER2 negative [94]. The 
benefit of single agent olaparib in metastatic breast can-
cer patients with BRCA 1/2 mutations has been tested in 
a phase III study (NCT02000622). In this trial, patients 
receiving olaparib monotherapy showed a 2.8-months-
longer median PFS (mPFS) and a 42%-lower-risk of dis-
ease progression or death than receiving chemotherapy 
[95]. In the EMBRACA phase III trial that evaluated 
breast cancer patients with HER2 negative and germline 
BRCA1/2 mutations (NCT01945775), patients with tala-
zoparib showed statistically overall improvements and 
significant delay in time to definitive clinically meaning-
ful deterioration compared with those received chemo-
therapy (PFS: 8.6 vs. 5.6  months; hazard ratio = 0.54) 
[96]. The remaining two PARPis, rucaparib and niraparib, 
are still in clinical trials. However, acquired resistance to 
PARPis in TNBC patients is an evitable problem and lim-
its its use in clinical application [93]. To solve this, fur-
ther molecular and clinical studies should be conducted 
to reveal the mechanisms of PARPi-resistance. Several 
researchers have proposed combination therapy with 
PARPis to overcome the resistance, which shows prom-
ising clinical prospects. For example, PARPis show bet-
ter therapeutic effects when used in combination with 
platinum [97]. A phase II/III trial evaluates the safety and 
efficacy of the combination of platinum and olaparib in 
patients with TNBC (NCT03150576). A phase I/II study 
tests the safety and efficacy in TNBC patients with nira-
parib and pembrolizumab (NCT02657889) [98]. At pre-
sent, except for the researches on combination therapy, 
researchers also have also focused on the clinical benefit 
of PARPis in TNBC patients without BRCA 1/2 muta-
tions. In addition, PARPi resistance is still the main prob-
lem limiting the clinic application of PARPis. Further 
molecular and clinical studies should be conducted to 
reveal the mechanisms of PARPi-resistance.

Epithelial‑to‑mesenchymal transition 
and associated pathways
Wnt/β‑Catenin signaling pathway
As the canonical Wnt signaling, Wnt/β-catenin signaling 
pathway is a highly conserved signaling pathway, asso-
ciated with the progression of various tumors [99]. The 
upregulation of the Wnt/β-catenin signaling pathway in 
patients with TNBC is found to have connections with 
the process of tumor proliferation, metastasis and the 
resistance to anticancer agents [100]. When Wnt ligands 

are absent in the cytoplasm, β-catenin is sequestered by 
the destruction complex (composing of adenomatous 
polyposis coli (APC), Axin, glycogen synthase kinase 3β 
(GSK-3β) and casein kinase 1α (CK1α)), and then phos-
phorylated by CK1α and GSK-3β in turn [101–104]. 
Cullin1 and F-box protein β-TrCP can promote the ubiq-
uitination of the destruction complex, leading to the deg-
radation of β-catenin and the transcriptional repression 
of Wnt target genes [104].

When the destruction complex is inhibited by Dishev-
elled (Dvl), the β-catenin proteasomal degradation is dis-
rupted, therefore, the β-catenin enter into the nucleus 
[105]. After entering into the nucleus, β-catenin binds 
to T cell factor and LEF families and regulates Wnt tar-
get gene expression [106].When the Wnt signaling is 
on, Wnt/β-catenin signaling pathway is activated from 
the combination of lipid-modified Wnts and the recep-
tor complex which is composed of Frizzleds (Fzds) and 
low-density lipoprotein receptor-related protein 5/6 
(LRP5/6). This process is showed in Fig.  3. So far, Fzd7 
and LRP6 have been found to be upregulated in TNBC, 
thus, preventing Wnts from binding to the receptors can 
be beneficial to targeted therapy for TNBC [107–109]. 
For example, endogenous inhibitors like Wnt inhibi-
tory factor 1 (WIF-1) can interact with Wnts to directly 
inhibit the pathway [110]. To our delight, deregulation 
of Wnt/β-catenin signaling is found to be crucial in the 
development of the resistance to anti-cancer agents [99]. 
A series of agents for Wnt signaling pathway in TNBC 
have been developed through the past couple of decades, 
such as inhibition of Fzds or Dvl, inhibition or degrada-
tion of β-catenin and so on. Besides, it has been proved 
that targeting Wnt pathways can improve the resistance 
to carboplatin, thereby the combination of Wnt inhibi-
tors and carboplatin can be an option in treatment of 
TNBC [111]. However, there are no available Wnt-tar-
geted inhibitors applicated in clinical practice so far.

TGF‑β /Smad signaling pathway
TGF-β signaling pathway plays a biphasic part in tumor 
progression, where TGF-β serves as a tumor suppres-
sor at the early stage and a tumor promoter at advanced 
stages [112]. There are three TGF-β subtypes TGF-β1, 
TGF-β2, and TGF-β3. As a secreted polypeptide, TGF-β 
is excreted by cells and then successively binds to TGF-β 
receptors on the surface of cells [113], including TGF-β 
receptor type II (TβRII) and I (TβRI). During this pro-
cess, two TβRI and two TβRII molecules form a heterote-
trametric complex, further causing the phosphorylation 
and activation of TβRI [114]. After that, the activated 
complex phosphorylates Smad2 and Smad3 in sequence, 
which bind to SMAD4 to form SMAD trimer com-
plex. Finally, the complex translocates into nuclei and 
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promotes target gene transcription [115, 116]. When this 
pathway is overactivated, for instance, the overexpression 
of Smad-2 or Smad-3, the EMT can be induced inap-
propriately, mediating cancer metastasis [117, 118]. This 
process is illustrated in Fig. 3. Compared with non-TNBC 
cells, the level of TGF-β1 mRNA, cell invasiveness and 
protein expression were evaluated to be higher in TNBC 
cells, which may have connections with the invasion 
and migration of TNBC [119]. Consequently, the motil-
ity and tumorigenicity of TNBC cells can be suppressed 
by the inhibition of TGF-β/Smad signaling pathway. In 
an in-vitro cell model, zerumbone is found to induce 
the phosphorylation of Smad3, thereby suppressing 
the tumorigenicity of TNBC cells [119]. Another drug, 
LY2109761, a dual TGF-β receptor I/II inhibitor, sup-
presses the TNBC cell migration and prevents the occur-
rence of metastasis [119, 120]. Moreover, metformin is 
confirmed to block endogenous activation of Smad2 and 
Smad3 to inhibit the TGF-β/Smad signaling pathway. 
Either metformin alone or combining with LY2197299 
(galunisertib), a selective TGF-β receptor I-kinase inhibi-
tor, can attenuate TGF-β-induced proliferation [121, 
122]. This discovery may provide a new option for TNBC 
patients clinically. Additionally, studies on TNBC cells 
suggest cancer stem-like cells (CSC) promote the pro-
cess of chemotherapy-resistance and recurrence [123], 
and targeting TGF-β signaling pathways can decrease 
the CSCs population in TNBC patients receiving chemo-
therapy [114]. For instance, LY2197299 has been demon-
strated to inhibit the development of CSCs, suggesting 
the combination of chemotherapy and TGF-β -targeted 
agents as a potentially therapeutic option in TNBC [123]. 
Besides, a phase I trial is studying the best dose and side 
effects of M7824, an anti-PD-L1/TGF-β antibody, when 
given together with eribulin mesylatein in patients with 
metastatic TNBC (NCT03579472). For future investi-
gations, whether TGF-β inhibitors in conjunction with 
conventional treatment can improve the curative effect 
remains to be determined. Whether assessing CSC pop-
ulation is needed to guide treatment also needs further 
discussion.

Androgen receptors
It has been indicated that AR is expressed in about 35% 
of TNBC and plays an important role as a potential ther-
apeutic target [124]. According to gene expression pro-
files, TNBC with AR signaling is called a LAR subtype 
[5]. AR is a member of the steroid hormone receptor fam-
ily, which is usually bound to heat shock proteins before 
homodimer. Therefore, AR can bind to the ligand such 
as endogenous androgens, and then form a homodimer. 
Subsequently, the homodimer moves into to the nucleus 
and activates target gene transcription, regulating cell 

proliferation [125, 126]. This process is showed in Fig. 3. 
Base on the above characteristics, anti-androgens, selec-
tive androgen receptor modulators and 7-hydroxytestos-
terone are effective for patients with AR positive breast 
cancer, including AR positive TNBC. Bicalutamide is the 
first AR antagonist which was clinically evaluated in 2013. 
The phase II study exploring bicalutamide has proved 
that antiandrogen therapy is effective in treating patients 
with AR positive breast cancer [127]. Further, the antitu-
mor activity and safety of enzalutamide in patients with 
AR positive TNBC has been assessed in another phase 
II trial (NCT01889238). The results showed that the 
clinical benefit rate at 16 weeks was 25%, and the median 
overall survival was 12.7  months, meaning considerable 
beneficial therapeutic efficiency. And the only treatment-
related grade 3 or higher AE was fatigue with an inci-
dence > 2% [128]. Except for the above two kinds of AR 
antagonist, a past study found that LAR cell lines were 
especially sensitive to NVP-BEZ235, a dual PI3K/mTOR 
inhibitor, which can be explained by PIK3CA-activating 
mutations in all LAR cell lines [5]. For TNBC patients 
with AR positive, they benefit not only from monother-
apy but also combination therapy. A study shows that 
compared with AR negative TNBC, activated PIK3CA 
mutations are abundant in TNBC with AR positive, and 
the combination of PI3K inhibitors and AR antagonist 
can significantly inhibit the growth and viability of LAR 
cell line models [129]. Moreover, it is proven that the 
combination of bicalutamide with the EGFR inhibitors 
more effectively decreases the expression of AR com-
pared with each agent given alone, and suppress cell pro-
liferation of tumor [129]. Therefore, recent topic has been 
focused on the combination therapy of AR pathway inhi-
bition in TNBC. It’s probably also worth noting that how 
to define AR positive. Now patients selected for clinical 
trials are mainly LAR subtype defined by gene expression 
profiling. So, can we precisely guide therapy based on AR 
expression levels?We need more evidence to explore.

Antibody–drug conjugates (ADC)
ADCs` are immunoconjugate agents with specificity 
and the high potency, which can deliver chemotherapy 
drugs to cancer cells precisely. ADCs consist of three 
components, a highly efficient cytotoxic payload, an 
antibody and a linker connecting the former two com-
ponents [130]. In the process of transport, ADC binds 
to target antigens on tumor cell surface and then enter 
the target cell via receptor-mediated endocytosis. After 
entering the cell, ADCs are degraded by lysosomes, 
in which the linker cleaves, leading to the release of 
payloads into cytoplasm. This process is illustrated in 
Fig.  3. Regarding the efficacy in the treatment of solid 
tumors, ADCs have shown great clinical prospect, they 
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are rarely used in TNBC patients because of lack of 
effective and appropriate targets [131]. Till now, there 
have been three ADCs approved by FDA for breast 
cancer, two of which, ado-trastuzumab emtansine 
and fam-trastuzumab deruxtecan, target HER2 [132]. 
Another one, sacituzumab govitecan (SG), is approved 
for patients with metastatic TNBC who have received 
at least 2 kinds of therapy before. SG, composed of an 
anti–Trop-2 antibody and active metabolite of irinote-
can, targets the antigen trophoblast cell-surface anti-
gen 2 (Trop-2), which is a glycoprotein expressed by 
many solid cancers [133]. Preclinical trials show that 
Trop-2 expresses in all breast cancer subtypes, particu-
larly in TNBC [134]. Furthermore, in a clinical trial in 
patients with metastasis TNBC, SG reveals manageable 
safety, with 33% objective response rates and a mPFS of 
5.5  months [135]. The subsequent phase III ASCENT 
trial confirms improvements in both PFS and OS, which 
accelerates US FDA approval of SG [136]. Another 
phase III study, SASCIA, assesses the therapeutic effect 
of SG in primary HER2 negative breast cancer patients 
(HR + or TNBC) with high relapse risk after standard 
neoadjuvant treatment (NCT04595565). In addition, 
more ADCs targeting novel antigens in TNBC patients 
are in clinical trials, including LIV-1, receptor tyrosine 
kinase-like orphan receptor 1 (ROR1) and ROR2.

Compared with conventional chemotherapy, ADC can 
preciously target the tumor cells, which provide a broad 
therapeutic window. For TNBC with high heterogeneity, 
ADC is more suitable for combination therapy with other 
targeted agents to enhance synergy. Thus, it’s promising 
research to explore more combination strategy. Besides, 
more attention should be paid to its toxicities. In addi-
tion to off-target effects, AEs are related to payload effec-
tiveness. ADCs combined with non-overlapping toxic 
immune checkpoint inhibitors (ICIs) may be a potential 
option.

Immune checkpoint inhibitors (ICIs)
Immune checkpoints, most notably cytotoxic T-lympho-
cyte-associated protein 4 (CTLA-4) and programmed 
cell death protein 1 (PD-1), inhibit effector T lympho-
cytes to limit the anti-tumor autoimmune response 
[137]. PD-L1 expressing in the tumor cells binds to PD-1 
which is on the surface of T cell and prevents T cell acti-
vation [138]. The tumor-infiltrating lymphocytes also can 
express highly PD-1, and both of them are increased in 
TNBC [139]. Therefore, ICIs can enhance the anti-tumor 
immune responses to kill tumor cells [140]. These pro-
cesses are illustrated in Fig. 4. ICIs including monoclonal 
antibodies against PD-1 (pembrolizumab, nivolumab), 
PD-L1 (atezolizumab, durvalumab, avelumab), and 

Fig. 4 Immune checkpoint inhibitors for the treatment of TNBC. Immune checkpoints limit the anti-tumor autoimmune response by inhibiting 
effector T lymphocytes. PD-L1 expressing in the tumor cells binds to PD-1 which is on the surface of T cell and prevents T cell activation. The 
tumor-infiltrating lymphocytes also can express highly PD-1, and both of them are increased in TNBC. ICIs can enhance the anti-tumor immune 
responses to kill tumor cell
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CTLA-4 (ipilimumab) have shown promising results 
in treating many types of cancer. Nowadays, there have 
been two ICIs approved by the FDA. One is Atezoli-
zumab in 2019, which is approved in combination with 
nab-paclitaxel to treat unresectable locally advanced or 
metastatic TNBC patients with PD-L1 positive in 2019 
[141]. In a phase III clinical trial (KEYNOTE-355), the 
other ICI, pembrolizumab plus chemotherapy distinctly 
improved the PFS of patients with metastatic TNBC, 
compared with placebo plus chemotherapy [142]. And 
therefore, Pembrolizumab, was approved in 2020 to 
treat metastatic TNBC patients with PD-L1-expressing 
in combination with chemotherapy [143]. In addition 
to combining chemotherapy, the combination of ICIs 
and targeted agents in the treatment of TNBC also has 
great clinical potential. For example, PARPis can lead to 
cell death through inhibiting the repair of DNA damage. 
Surprisingly, repressed PARP enhances PD-L1 expres-
sion in TNBC cells, creating conditions for ICIs to target 
[144]. In a clinical trial, niraparib-pembrolizumab shows 
potential anti-tumor activity for patients with advanced 
or metastatic TNBC, and significantly higher response 
rates in patients with BRCA mutations (NCT02657889) 
[98]. Furthermore, many other ICIs are also being studied 
in clinical trials and promising predictive biomarkers for 
immunotherapy in TNBC are also very potential in clini-
cal practice.

Combination with other therapies or factors can also 
augment the efficacy of ICIS. The first of the therapy 
is Dysregulated Tumor Vasculature. When the tumor 
expands to a certain extent, tumor cells within the tumor 
core become increasingly hypoxic, and expresses the 
Angiogenic Growth Factors, which is associated with 
the expression of hypoxic induced transcription fac-
tors [145, 146]. Under the hypoxia conditions of tumor 
microenvironment, the metabolic demand balance of 
angiogenesis and surrounding tissue is destroyed, causes 
angiogenesis [146]. In the IMbrave150phase III clinical 
trial (NCT03434379), the anti-PD-1 reagent, combined 
with an anti-angiogenic agent, had a clinically promi-
nent amelioration in mPFS, compared with the protein 
kinase inhibitor [147]. The other one is Interleukin-8 and 
CXCR1 / CXCR2. IL-8 can bind to CXCR1 and CXCR2 
G-Protein coupled receptors on granulocytes, mono-
cytes, and endothelial cells [148, 149]. Some research 
indicated that anti-CXCR2 monoclonal antibody caused 
remarkable tumor-resistance activity, even after delayed 
anti-PD-1 treatment [150]. The Phase I Trial for Humax-
IL8 (NCT 02,536,469) indicates that serum IL-8 levels 
have decreased significantly in patients who use IL-8 as 
a prognostic biomarker to inhibit anti-PD-1 checkpoints. 
This indicates that IL-8 suppression can be regarded as 
potential candidates for ICI combination treatment [151]. 

Further, Cluster of differentiation 73, normally expressed 
on Treg cells, is an ectonucleotidase that dephosphoryl-
ates extracellular AMP to adenosine [152]. It can pro-
mote the adhesion of lymphocytes restrain the migration 
of lymphocytes and reduce lymph nodes [153]. We sum-
marize partial of clinical trials with results on ICIs in 
Table 2.

Conclusion and perspective
TNBC is still the refractory subtype of breast cancer with 
the worst prognosis due to the resistance and insensi-
tivity to radiotherapy and chemotherapy. Now, surgery 
combined with radiotherapy and chemotherapy is the 
main treatment for patients with TNBC. Good news is 
that several dysfunctional signaling pathways and pro-
teins have been observed in patients with TNBC, such 
as PI3K/AKT/mTOR, MAPK signaling pathways, CDKs 
4/6, notching signaling, PARP, EMT-associated pathways 
and AR, which can be used as novel therapeutic targets 
and some specific agents have received FDA approval. 
And with improved knowledge of immune checkpoints, 
effective immunotherapy has gradually applied in TNBC 
patients. At present, there are amounts of ongoing tri-
als testing the efficacy of targeted agents and ICIs for 
patients with TNBC. It’s a long and tough way for clini-
cians to make effective and safe drugs into clinics.

Patients with TNBC show different clinical response to 
treatment due to the high heterogeneity of TNBC. There 
are six subtypes of TNBC, and patients with different 
subtypes have been found to show different responses 
to drugs. For example, as mentioned above, compares 
with other subtypes, LAR subtype is more sensitive to 
CDK4/6 inhibitors and AR antagonist. Immunotherapy 
is more appropriate for PD-L1 positive patients. For both 
clinicians and patients, how to predict the clinical effi-
cacy of drugs, and which therapeutic schedule to choose 
is in need of guidance. Thus, future development of new 
predictive biomarkers is urgently needed for selecting 
patients who will benefit most from a particular therapy.

Combination therapy has shown better performance 
than monotherapy in multiple clinical trials. For exam-
ple, the concomitant administration of chemotherapy 
with TGF-β -targeted drugs which have been found to 
improve the chemotherapy-resistance and recurrence, 
the combination of AR antagonists with PI3K/mTOR 
inhibitors, the combination of ICIs and PARPis which 
can enhance PD-L1 expression in TNBC cells, and other 
combinations are in clinical trials. However, the mecha-
nisms of combination therapies are not fully understood. 
More molecular research is necessary to figure out the 
mechanisms of combination therapy to explore better 
combination options, including but not limited to the 
combination among immunotherapy, targeted therapy, 
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Table 2 Partial clinical trials of ICIs involving patients with TNBC

Clinicaltrials.gov, accessed on November 1, 2021

Pathway NCT Phase Results Treatment Reference

Group 1 Group 2 Group 1 Group 2

ICIs (Anti PD-1) NCT03125902 III mPFS: 
6.0 months
mOS: 
22.1 months
ORR: 63% (95% 
CI, 56%-70%)

mPFS: 5.7 months
mOS: 28.3 months
ORR: 55% (95% CI, 45%-65%)

Paclitaxel + Atezolizumab Paclitaxel + Pla-
cebo

[154]

ICIs (Anti PD-1) NCT03197935 III pCR: 58%
treatment-
related serious 
adverse events: 
23%

pCR: 41%
treatment-related serious adverse 
events: 16%

Atezolizumab + Chemo-
therapy (nab-
paclitaxel + doxoru-
bicin + cyclophospha-
mide)

Placebo + Chem-
otherapy 
(nab-pacli-
taxel + doxoru-
bicin + cyclo-
phosphamide)

[155]

ICIs (Anti PD-1) NCT03036488 II pCR: 64.8% (95% 
CI, 59.9%- 69.5%)
incidence of 
treatment-
related adverse 
events of grade 3 
or higher: 78.0%

pCR:51.2%(95%CI,44.1%-58.3%)
incidence of treatment-related 
adverse events of grade 3 or 
higher: 73.0%

Pembrolizumab + Chemo-
therapy (paclitaxel + car-
boplatin)

Placebo + Chem-
otherapy 
(paclitaxel + car-
boplatin)

[156]

ICIs (Anti PD-1) NCT02622074 I pCR: 60% (95% CI 
49%-71%)

Pembrolizumab + Chemo-
therapy

[157]

ICIs (Anti PD-1)
AXL inhibitor

NCT03184558 I PFS: 13.1 months 
(95% CI, 
12.4–18.3)
OS: 32.0 months 
(95% CI,13.6–
37.1)
DCR: 3.4%

Pembrolizumab + Bem-
centinib

ICIs (Anti PD-1)
IDO1 inhibitor

NCT02178722 I/II ORR: 11.1% MK-3475 + INCB024360

ICIs (Anti PD-1)
IDO1 inhibitor
GITR inhibitor

NCT03277352 I/II ORR: 30%
DCR: 70%
OS: 25.59 months

Pembrolizumab + Epaca-
dostat + INCAGN01876

ICIs (Anti PD-1) NCT01848834 I ORR: 18.5% Pembrolizumab [158]

ICIs (Anti PD-L1) NCT01375842 I ORR in first-line: 
24%
ORR in second-
line: 6%

Atezolizumab [159]

ICIs (Anti PD-1) NCT02838823 I ORR: 5%
mPFS: 
1.8 months (95% 
CI, 1.4 -4.6)

Humanized anti-PD-1 
monoclonal antibody

[160]

ICIs (Anti PD-L1) NCT02447003
(Group A)

II mPFS: 
2.0 months (95% 
CI,1.9–2.0)
mOS: 9.0 months 
(95% CI, 7.6–11.2)

Pembrolizumab [161]

ICIs (Anti PD-L1) NCT02447003
(Group B)

II ORR: 21.4% (95% 
CI 13.9–31.4)

Pembrolizumab [162]

ICIs (Anti PD-1) NCT02499367 II ORR: 20.0%;
mPFS: 
1.9 months

Nivolumab [163]

ICIs (Anti PD-L1) NCT02555657 III mOS: 
12.7 months 
(95% CI, 9.9–16.3)

mOS: 11.6 months (95% CI, 
8.3–13.7)

Pembrolizumab Chemotherapy [164]
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and chemoradiotherapy. Furthermore, for combination 
therapy, the sequence and timing of medications are also 
worth exploring. Whether different modes of admin-
istration will affect the therapeutic effect for the same 
combination. Postoperative adjuvant, neoadjuvant, or 
maintenance therapy. Current clinical evidence is insuffi-
cient to determine whether postoperative adjuvant, neo-
adjuvant, or sequential therapy is more satisfactory. And 
what’s the administration sequence of sequential therapy?

In addition to the development of new drugs, AEs and 
resistance are also worth studying. For some drugs, AEs 
limit their application in clinical. This happens a lot when 
many patients terminate treatment because they can’t 
tolerate treatment-related side effects. Serious side effects 
can even lead to death. So, more attention should also be 
paid to AEs early in trials. After drugs are widely applied 
to the clinic, patients are prone to resistance in the later 
course of treatment which is a great challenge for clini-
cal application. Resistance has been observed with sev-
eral targeted agents in patients with other solid tumors. 
Except for further figuring out dominant mechanisms 
of resistance within TNBC, new predictive biomarkers 
are also necessary to predict resistance. It’s essential to 
ensure the long-term safety and tolerability of the thera-
peutic regimens.

In spite of extensive clinical studies on precise medi-
cine in TNBC, whether drugs based on signaling path-
ways and immune checkpoints can be applied widely in 
clinical practice or whether they can really improve PFS 
of the TNBC patients need more data and studies. In the 
future, we hope to achieve the individualized and pre-
cise treatment of TNBC through targeted therapy and 
immunotherapy.
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