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Abstract

E3 ubiquitin ligases are a large family of enzymes that join in a three-enzyme ubiquitination cascade together with
ubiquitin activating enzyme E1 and ubiquitin conjugating enzyme E2. E3 ubiquitin ligases play an essential role in
catalyzing the ubiquitination process and transferring ubiquitin protein to attach the lysine site of targeted
substrates. Importantly, ubiquitination modification is involved in almost all life activities of eukaryotes. Thus, E3
ligases might be involved in regulating various biological processes and cellular responses to stress signal
associated with cancer development. Thanks to their multi-functions, E3 ligases can be a promising target of cancer
therapy. A deeper understanding of the regulatory mechanisms of E3 ligases in tumorigenesis will help to find new
prognostic markers and accelerate the growth of anticancer therapeutic approaches. In general, we mainly
introduce the classifications of E3 ligases and their important roles in cancer progression and therapeutic functions.

Keywords: E3 ligases, Ubiquitination, 26S proteasome degradation, Cancer progression, Therapeutics, PROTACs

Introduction
Almost all proteins in cells and some of the extracellular
proteins are constantly updated through degradation
and replacement with newly synthesized proteins. The
degradation of proteins is mainly through two major
pathways: autophagy and ubiquitin proteasome system
(UPS), both of which are essential for maintaining cellu-
lar homeostasis[1]. Autophagy is a crucial adaptive
mechanism to deal with different cellular stresses via de-
grading excessive or abnormal proteins in cells mediated
by lysosomes [2]. The UPS is a cascade reaction and an
important way for short-lived, misfolded, and damaged
proteins degradation [3]. As reported, the UPS can regu-
late degradation of over 80% proteins in cells and its
dysregulation has been revealed in most hallmarks of
cancer [4]. Above all, E3 ligases are the important part
of the UPS and can provide regulatory specificity [5]. E3
ubiquitin ligases regulate the last step of the enzymatic

cascade, which also consists of ubiquitin activating en-
zymes (E1s) and ubiquitin conjugating enzymes (E2s).
E3 ligases can selectively attach ubiquitin to lysine,
serine, threonine or cysteine residues to the specific sub-
strates [6]. The process of attaching ubiquitin and
ubiquitin-like proteins to cellular proteins is called ubi-
quitylation, which plays a vital role during posttransla-
tional modification (PTM) [7]. As reported, the
ubiquitin-proteasome degradation pathway is one of the
most important mechanisms for controlling the levels of
protein expression. Furthermore, ubiquitylation process
also has profound effects on the cellular localization, in-
teractions or stability of proteins [8, 9]. In this review,
we will firstly introduce the various types of E3 ligases
family. Then, we will explain the biological functions
and molecular mechanisms of E3 ligases in cancer devel-
opment. Finally, we summarize the novel therapeutic
role of E3 ligases in cancer treatment.

The types and cascade process of ubiquitination
Ubiquitin (Ub) consists of 76 amino acids that is highly
conserved among all eukaryotes [10]. The essential fea-
tures of ubiquitin protein are the seven key lysine sites
(K6, K11, K27, K29, K33, K48, and K63) and its N-
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terminus. As reported, no matter in the intracellular en-
vironment or the extracellular reaction system, every ly-
sine site of ubiquitin and the N-terminal methionine 1
(Met1) site can respectively form different ubiquitin
linkage types [11]. In general, there are eight main kinds
of ubiquitin linkage types and each of them performs
distinct physiological functions [12]. During these link-
age types, K48 and K63 linked ubiquitination are two of
the most well studied. K48-linkages are the most abun-
dant ubiquitination chains in biological processes. The
main function of K48-linkages is to target substrates for
26S proteasome-mediated degradation [13]. K63-
linkages are mainly involved in intracellular signaling
events in DNA damage repair, cytokine signaling or au-
tophagic degradation signaling [1, 14, 15]. Besides, the
functions of other linkage types have not been studied in
much detail till now so that they are referred as ‘atypical’
ubiquitin linkages. K6-linkages have been reported to
participate in DNA damage response as well [16]. K11-
linkages are implicated to regulate cell cycle, proteaso-
mal degradation or membrane trafficking. K11-linkages
can even influence innate immune response by targeting
innate immune factors for degradation [17–19]. K27-
linkages are associated with protein secretion, DNA
damage repair and mitochondrial damage response

involved by the E3 ligase Parkin [20, 21]. K27-linkages
are also important activators of the innate immune re-
sponse. For example, the E3 ligase RNF185 targets cGAS
and AMFR targets STING for K27-linked ubiquitination,
both leading to proinflammatory and antiviral response
[22, 23]. K29-linkages have been reported to play a role
in proteasomal degradation, innate immune response
and regulation of AMPK related protein kinases [24–26].
K33-linkages are related with the regulation of innate
immune response through affecting cGAS-STING- and
RLR-induced type I IFN signaling and intracellular traf-
ficking [27, 28]. Met1-linkages also called linear ubiqui-
tin chains have been revealed to be catalyzed by linear
ubiquitin chain assembly complex (LUBAC), which con-
sists of two RBR type E3 ligases, HOIL-1 and HOIP [29].
Met1-linkages are capable of promoting the activation of
NFκB signaling by targeting NEMO a member of IKK
complex that phosphorylates NFκB inhibitor α (IkBα).
Meanwhile, Met1-linkage can likewise inhibit type I IFN
signaling through mediating NEMO and TRAF3 inter-
action and then disrupting MAVS-TRAF3 complex
(Fig.1) [30, 31]. Furthermore, according to the way ubi-
quitin acts on its substrates, ubiquitination modifications
can be classified into three styles: mono-ubiquitination,
multi-ubiquitination, and polyubiquitination. Mono-

Fig. 1 Different ubiquitin linkage types and their functions. Ubiquitin (Ub) a small protein consists of 76 amino acids highly conserved among all
eukaryotes. Ubiquitin is characterized by its 7 lysine sites (K6, K11, K27, K29, K33, K48, K63) and N-terminal methionine1 (Met1) site, which are also
functional sites. Due to these specific linkage sites, ubiquitination can be classified into different styles and then perform distinct biological
functions. And ubiquitin attaches to target substrate through identifying its lysine (K) site
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ubiquitination is defined as the target substrate labeled
with a single ubiquitin. And mono-ubiquitination regu-
lates the function of substrates via a nonproteolytic
mechanism [32]. Multi-ubiquitination is defined as many
different lysine residues of the target substrate are la-
beled with a single ubiquitin at the same time. However,
polyubiquitination is defined as a single lysine residue of
the target protein labeled with multiple ubiquitin mole-
cules [33].
Ubiquitination is defined as a series of enzymatic cas-

cades consisting of three crucial enzymes, including E1s,
E2s, and E3 ubiquitin ligases. Firstly, E1 enzyme cata-
lyzes the formation of a thioester bond between its own
active cysteine site and the C terminus of ubiquitin in an
ATP-dependent manner. Subsequently, the activated
ubiquitin is joined to the active cysteine site of E2 via a
thioester bond. Finally, E3 ligase recruits the E2 loaded
with the activated ubiquitin. The E3 ubiquitin ligase in-
teracts with both the target substrate and E2 ubiquitin
ligase and then catalyzes the transfer of ubiquitin from
the E2 to the target substrate directly or indirectly. The

ubiquitin is bond to a lysine site on the target substrate
by an isopeptide bond (Fig.2) [34, 35].

The classification and features of E3 ligases
As described previously, not only the increasing amount
but also the function of E3 ligases have been proved to
play a key role in cancer progression. As E3 ligases can
directly bind to substrates and determine the specificity
of ubiquitin system, there would be a large number of
E3 ligases but only a few E1 and E2 ligases in distinct or-
ganisms [36, 37]. According to the difference of struc-
ture and function, E3 ligases can be approximately
divided into four types: HECT type, U-box type, RING-
finger type, RBR type. Interestingly, different types of E3
ligases have low sequence homology and large differ-
ences in composition [36].

HECT E3 ligases
HECT (homologous to the E6AP carboxyl terminus) E3
ligases family is one of the largest and earliest studied E3
ligases [38]. HECT ligases contain a common

Fig. 2 Overview of the cascade process of ubiquitination. Ubiquitination is an important cascade process of posttranslational modification
catalyzed by three key enzymes. Firstly, E1 catalyzes the activation of Ub through a thioester bond in an ATP dependent mechanism. Then,
activated Ub is transferred to the active-site cysteine residue of an E2. The last step is mediated by an E3 ligase that recognizes the E2 complex
and facilitates the transfer of Ub from E2 to the target substrate. Due to the different binding style of Ub on the target substrate, types of
ubiquitination modification are divided into three: mono-ubiquitination, multi-ubiquitination and poly-ubiquitination
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homologous to E6-associated protein C-terminus
(HECT) domain, where the activated E2 ligase can trans-
fer Ub to the active cysteine site before binding to the
target substrate. The N-terminal domains are the posi-
tions where target substates bind (Fig.3a) [39]. Due to
the difference of N-terminal domain, HECT E3 ligases
can be classified into three groups: the Nedd4 family (9
members), the HERC family (6 members) and another
HECTs (13 members) [36]. In addition to the common
HECT C-terminal domain, the Nedd4 subfamily is spe-
cialized by the presence of WW and C2 domain that is
also well studied. The N-terminal C2 domain can bind a
Ca2+ and phospholipid, which is not only necessary for
targeting proteins to phospholipid membranes, but also
can help target substrate proteins for ubiquitination
[40–42]. The HERC subfamily is characterized by con-
taining one or more RCC-like domains (RLD) [43]. Ac-
cording to the number of RLDs, HERC subfamily can be

further classified into two large and four small HERCs.
RLDs have two major functions that can regulate the
small GTPase Ran as a guanine nucleotide exchange fac-
tor (GEF) and interact with chromatin through histones
H2A and H2B [44, 45]. Additionally, there are still many
other HECT ligases including E6AP and HUWEI. E6AP
plays the founding member and contains a zinc-binding
fold named the AZUL (amino-terminal Zn-finger of
Ube3a ligase) domain. However, HUWE1 contains a
WWE domain and a ubiquitin-associated (UBA) do-
main, which affects various aspects of cancer develop-
ment [46, 47].

RING-finger E3 ligases
RING (really interesting new gene) E3 ligases are the
major type of E3 ligases and characterized by their RING
domain [6, 48]. There are more than 600 different RING
type ligases expressed in human cells [49]. During

Fig. 3 Types of ubiquitination ligases. a The HECT type E3 ligases contain the conserved C-terminal HECT domain and the N-terminal consists
with different domains depending the specific subtype. HECT type E3 ligases involved ubiquitination process including a two-step reaction:
ubiquitin is first carried by E2 ligase binding to the HECT domain and then transferred to a catalytic cysteine on the E3 ligase, the second step is
the transfer of ubiquitin from the E3 ligase to the substrate. b The RING type E3 ligases are characterized by the presence of a zinc-binding
domain called RING at the N-terminal. RING E3s mediate a direct transfer of ubiquitin from E2 ligase to the substrate. c The U-box type E3 ligases
contain U-box domain at the C-terminal which is responsible for binding the ubiquitin-charged E2 ligase and stimulating ubiquitin transfer. d The
RBR type E3 ligases consist of two predicted RING domains (RING1 and RING2) separated by IBR domain . RBR E3 ligases catalyzed ubiquitination
process involves a two-step reaction where ubiquitin is first transferred to a catalytic RING2 domain on the E3 and then to the substrate
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ubiquitination process, the RING domain of RING E3 li-
gases binds the E2 conjugation enzyme. Contrary to
HECT E3 ligases, the Ub is transferred from the E2 to
the substrate directly, bypassing an E3-Ub intermediate
(Fig.3b) [50, 51]. RING E3 ligases are divided into two
big families: monomeric RING finger and multi-subunit
E3 ligases. Monomeric RING E3 ligases not only have
the domain for substrate binding and ubiquitination, but
also have the function of autoubiquitination, such as
COP1, Mdm2, and TRAF6 [52]. Multi-subunit E3 ligases,
such as the cullin-RING ligases (CRLs) are a highly diverse
class of ubiquitin ligases characterized by several common
features. The cullin scaffold includes the N terminus
RING-box protein, an adaptor protein, and the C
terminus substrate receptor. Another crucial multi-
subunit E3 ligases APC/C is assembled of 19 subunits in-
cluding a RING subunit (Apc11) and a cullin-like subunit
(Apc2) [53, 54]. SCF E3 ligases are the largest E3 ligases
complex, including Skp1, Cullin1 and F-box proteins [55].
These proteins connect with each other and perform dis-
tinct functions. F-box is crucial for the recognition of the
substrates. Skp1 is responsible for binding the catalytic
core of the SCF complex to the F-box motif. Meanwhile,
Cullin1 is necessary for adjusting the connection with
other SCF complex components [56, 57]. RING E3s can
be also regulated by different modifications, including
autoubiquitination, neddylation, phosphorylation, and
interaction with small molecules [58].

U-box E3 ligases
U-box E3 ubiquitin ligases are a relatively small family,
which is necessary for controlling the quality of post-
translational protein in eukaryotic cells [59]. The C-
terminus of U-box E3 ligases contains a conserved U-
box domain of about 70 amino acid residues from yeast
to humans. The three-dimensional structure of U-box is
similar to the RING finger domain that is necessary for
the enzymatic activity [60]. The process of U-box E3 li-
gases catalyzed ubiquitination is defined as that
ubiquitin-binding enzyme E2 interacts with U-box ligase
through the U-box domain. Subsequently the Ub is dir-
ectly transferred from E2 to identify the lysine site of
substrate (Fig.3c) [61].

RBR E3 ligases
The newly discovered RING-IBR-RING (RBR) E3 ligases
are proved as a unique family of RING-HECT hybrid E3
ligases, which are not the same as RING and HECT
types. The RBR E3 ligases are specialized by a conserved
catalytic region, including a RING1, a central in-
between-RINGs (IBR) and a RING2 domain [62]. RING1
can recruit the E2 loaded with ubiquitin, and RING2 do-
main contains a catalytic cysteine. The IBR domain can
adopt the same fold as the RING2 domain, when lacking

the catalytic cysteine residue. Additionally, different RBR
E3 ligases also contain specific domains to distinguish
from each other. RBR E3 ligases can be involved in
intermolecular interactions to keep the proteins in an
autoinhibited state. Such state is regulated by different
kinds of mechanisms, such as phosphorylation or
protein-protein interactions [63]. In analogy with HECT
E3 ligases, RBR E3 ligases, such as human homolog of
Ariadne (HHARI) and Parkin for example, perform its
function through two-step reactions, and the Ub is firstly
transferred to a catalytic cysteine site on RING2 and
then to the substrates [64, 65]. Although they are gener-
ally similar to HECT E3 ligases, RBR ligases tend to ubi-
quitinate substrates through linear ubiquitin chain,
which is a distinct mechanism [58]. Thus, the linkage
specificity of RBR E3 ligases suggests a distinct and more
striking mechanism (Fig.3d) [66]. The linear ubiquitin
chain assembly complex (LUBAC) is a multi-subunit E3
ligases complex consisting of HOIP, HOIL-1L, Parkin
and SHARPIN. LUBAC can specifically assemble Met1-
linked (also known as linear) Ub chains to modulate NF-
κB signaling [67–70].

The multi-functions of E3 ligases in regulating
cancer progression
Ubiquitination modulates cellular functions through
maintaining the homeostasis and coping with various
stress stimulation. Thus, the dysregulation of ubiquitina-
tion process can result in multiple human diseases, espe-
cially cancer [71]. E3 ligases are critical for modulating
cellular homeostasis owning to their efficient regulation
and substrate specificity during the cascade of ubiquiti-
nation. Evidently, E3 ligases are significantly involved in
cancer progression, such as proliferation, invasion, apop-
tosis, DNA damage and repair, metabolism, immunity
and many other aspects (Fig.4) [33].

Regulation of cancer cell proliferation, invasion and
apoptosis
HECTD3 (Homologous to the E6-associated protein
carboxyl terminus domain containing 3) is one of HECT
E3 family that contains an N-terminal DOC domain and
a C-terminal HECT domain [72]. Many evidences have
proved that HECTD3 is a pro-survival protein in several
types of cancer. It has been discovered that the overex-
pression of HECTD3 mainly regulates the K63 but not
K48 polyubiquitination, thereby promoting the
stabilization of MALT1. The stabilized MALT1 activates
CARMA3–Bcl10–MALT1 pathway in angiotensin II
receptor-positive breast cancer, leading to the promotion
of cancer cell proliferation and invasion [73, 74]. NEDD4
is also a canonical C2-WW-HECT subgroup E3 ligase
that has been proved to positively modulate proliferation
of cancer cells. The tumor suppressor PTEN is a
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relevant substrate of NEDD4, whose ubiquitination
brings about the degradation or translocation shuttling
and erlotinib resistance, eventually contributing to non-
small-cell lung cancer progression [75, 76]. SCF E3 li-
gases are one of the most typical example of multi-
subunits-RING type E3 ligases. SCF complex is mainly
comprised of RBX1, SKP1, CUL1 and F-box protein
family, whose dysregulation is highly related with cancer
progression [77]. RBX1 contains the canonical RING fin-
ger domain. RBX1 is overexpressed in multiple cancers,
thus to modulate the proliferation of gastric cancer cells
[78]. Besides, RBX1 is more likely to form a complex
with other E3 ubiquitin ligases to show its function. In
addition to the SCF complex, RBX1 is also a member of
the critical subunits of CUL3/SPOP/RBX1 complex.

Importantly, CUL3/SPOP/RBX1 complex is proved to
suppress prostate cancer progression by targeting CYCL
IN E1 for polyubiquitination degradation [79]. CUL1 is
not only the first and most widely studied member of
cullin family, but also a necessary scaffolding component
of SCF complex to form a catalytic core complex [77].
CUL1 is reported to promote breast cancer cell migra-
tion and invasion through inducing relative cytokine
gene expression, such as CXCL8 and IL11 [80]. The F-
box proteins are specialized by an amino-terminal 40-
residue F-box motif, which are able to stimulate the spe-
cific ubiquitination of various substrates [81]. FBXW7 is
a tumor suppressor extensively studied in different kinds
of human cancers, that is deleted or mutated in various
cancers [82]. FBXW7 is capable of interacting with Mcl-

Fig. 4 Multi-functions of E3 ligases. Based on the different E3 ligases and their specific substrates, E3 ligases can involve in many different cellular
progression such as proliferation, apoptosis, DNA damage repair, immunity and metabolism. We have shown some E3 ligases mentioned in this
review and how they function in regulating cancer cell progression. For example, the E3 ligases FBXW7, HECTD3, CUL3/SPOP/RBX1, Parkin, SKP2
are involved in regulating proliferation or apoptosis through targeting proliferation-associated proteins for ubiquitination. E3 ligases HUWE1,
RNF126, RNF138 are shown to regulate cancer cell DNA damage repair by targeting specific substrates for ubiquitination. E3 ligases FBXO38,
KLHL22, TRIM25, RNF2 regulate cancer cell immune response through promoting ubiquitination of specific substrates. And E3 ligases PPARγ, SKP2,
CHIP, VHL, TRAF6, HUEW1,MuRF1 are capable of mediating cancer cell metabolism by targeting related substrates for ubiquitination. Note:we use
different background colors to distinguish each E3 ligases. Blue background represents the genes they target for degradation and pink
background represnets genes they target for stabilization or others but not degradation. We use × to show the disruption of
protein-protein interaction
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1, the pro-survival Bcl-2 family member, to facilitate the
degradation via ubiquitination in a GSK3
phosphorylation-dependent manner, leading to cancer
cell apoptosis [83]. FBXW7 is also the E3 ligase of an
important oncogene c-Myc. FBXW7 accelerates the deg-
radation of c-Myc and inhibits the tumor cell prolifera-
tion in Adult T-cell Leukemia [82, 84]. Another
important F-box protein SKP2 significantly involves in
the regulation of cell cycle and proliferation. SKP2 stabi-
lizes LKB1 via K63-linked ubiquitination that is required
for the growth of cancer cell. Meanwhile, SKP2 and
LKB1 are both overexpressed in late-stage hepatocellular
carcinoma [85]. In addition, SKP2 stimulates breast can-
cer tumorigenesis through K48-linked ubiquitination of
the tumor suppressor PDCD4 [86]. As an important
multi-subunit RING type E3 ligase, APC/C promotes the
transition from metaphase to anaphase during mitosis,
which implicates its pivotal role in controlling cellular
division and tumorigenesis [87]. Cdc20 and Cdh1 are
two essential activators of APC/C that determine the
specificity of APC/C to substrates during cell cycle.
Cdc20 is highly associated with various cancers. Overex-
pression of Cdc20 can promote the activation of prostate
cancer progression related WNT/ β-catenin pathway by
regulating β-catenin [88]. APC/CCdc20 can also regulate
apoptosis by targeting Bim, a pro-apoptotic protein, and
Mcl-1, a pro-survival protein, for degradation [87]. Fur-
thermore, Cdc20 is able to target the tumor suppressor
SMAR1 for polyubiquitination degradation in kinds of
cancers, such as breast cancer, cervical and colon cancer
[89]. Another APC/C activator Cdh1 characterized as
tumor suppressor is highly associated with cancer pro-
gression. The highly important function of the E3 ligase
APC/CCdh1 is to regulate cell cycle, promoting the tran-
sition into G1 through targeting mitotic proteins for
degradation [87]. APC/CCdh1 can suppress MEK/ERK
oncogenic pathway by targeting BRAF oncogenic kinase
for degradation [90]. Importantly, APC/CCdh1 tends to
promote cancer cells to adapt to immune response by
destabilizing SPOP, as cullin 3-SPOP is the direct E3 lig-
ase to target PD-L1 for degradation. Thus, APC/CCdh1 is
able to regulate the expression of PD-L1 indirectly [87,
91]. The RBR type E3 ligase Parkin is highly related with
Parkinson’s disease and important in controlling mito-
chondrial homeostasis and ROS [92]. In addition, Parkin
can also function as a tumor suppressor and inactivated
in various human cancers. Parkin is reported to ubiquiti-
nate HIF1α for degradation through its lysine 477, even-
tually inhibiting breast cancer cell migration and
invasion [93]. Furthermore, Parkin is capable of blocking
the RIPK1−RIPK3 interaction, which is important in
modulating necroptosis and AMPK activation by target-
ing RIPK3 for K33-linked polyubiquitination. Therefore,
Parkin tends to prevent inflammation-induced cancer by

inhibiting necroptosis and many other promising mecha-
nisms (Table 1) [95, 96].

Regulation of DNA damage repair
DNA damage and repair systems are extremely import-
ant in regulating human biology and disease, especially
cancer. DNA damage may directly lead to cell death or
gene mutation and even malignant transformation of
cells [121]. DNA double-strand breaks (DSBs) can re-
cruit DDR proteins around the break sites and assemble
into a highly ordered, dynamic complex for repair. Two
major DNA repair pathways are used in eukaryotic cells,
including non-homologous end joining (NHEJ) and
homologous recombination, as well as branches of these
pathways to repair DSBs [122]. It has been reported that
the ubiquitination of chromatin around the DSB site also
participates in the repair process of DDR, suggesting the
possible role of E3 ligases [123]. The HECT type E3 lig-
ase HUWE1 is highly associated with DNA repair
through its ubiquitination functions in cancer develop-
ment [33]. BRCA1 shows great importance in regulating
DNA damage repair through homologous recombination
(HR), leading to genomic instability in breast and ovar-
ian cancers [97]. HUWE1 mediates DNA repair by pro-
moting H2AX and BRCA1 ubiquitination and
degradation, resulting in the suppression of HR-
dependent DSB repair that is critical for breast cancer
progression [98]. HUWE1 also affects DNA damage re-
sponses by regulating the stability of polymerases Pol β
and Pol λ during base excision repair. Pol β can be
mono-ubiquitinated at Lys-41, 61, and 81 by HUWE1
and subsequently degraded through the E3 ligase CHIP
catalyzed poly-ubiquitination [99]. Interestingly, HUWE1
can target both the anti-apoptotic protein Mcl1 and the
tumor suppressor p53 for ubiquitination degradation in
different conditions. HUWE1 has been implicated to tar-
get Mcl1 for ubiquitination in response to DNA damage
[100]. Conversely, HUWE1 is incapable of regulating the
expression of p53 in response to DNA damage [124].
The E3 ligase WW domain-containing ubiquitin E3 lig-
ase 1 (WWP1) may modulate the development of breast
and prostate cancer by affecting the activity of p53 in re-
sponse to DNA damage [100]. The RING type E3 ligase
RNF138 is composed of an N-terminal RING finger do-
main and a putative C-terminal ubiquitin interaction
motif [101]. RNF138 plays vital roles in DNA damage re-
pair by binding to DNA damage sites with the zinc fin-
ger domain, thereby ubiquitinating key repair factors.
Such ubiquitination could accelerate DNA end resection
and promote ATR-dependent signaling and DSB repair
by HR pathway [125]. Hence, RNF138 may contribute to
cancer cell survival in response to DSB-induced agents
[126]. RNF138 can ubiquitinate the RAD51D protein for
degradation, affecting the homologous recombination
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(HR)-mediated DNA repair [101]. And the inactivation
mutation of RAD51D contributes to breast and ovarian
cancer development [102]. The expression of RNF138
can regulate cellular response to different DNA-damage
agents, especially the recruitment of RPA, CtIP, Exo1 and
Blm to DNA damage sites, thereby controlling HR repair
[126, 127]. The RING type E3 ligases RNF126 and breast
cancer associated gene 2 (BCA2) both play important
roles in DNA damage repair and cancer development.
RNF126 targets Ku80 for polyubiquitination and dissoci-
ates Ku70/Ku80 from DNA, accelerating NHEJ-mediated
DNA repair in 293T and U2OS cells [103]. BCA2 regu-
lates DDR through interacting with many DDR related
proteins such as γH2AX and Rad51 [105]. Since both of
RNF126 and BCA2 could regulate DNA damage repair
and cancer development, they may be the promising tar-
gets for cancer therapy (Table 1) [105].

Regulation of immunity
Mammalian immune system functions as an essential
defense to monitor homeostasis, to resist the invasion
and infection of pathogens, and even to eliminate abnor-
mal cells. Therefore, immune system plays vital roles in
response to tumorigenesis [128]. Recently, tumor im-
munology has been a research hotspot and therapeutic
target, which is defined as body's immune response to
tumor and the mechanism of tumor cell escape immune

effect [129]. Accumulating evidence suggests that E3 li-
gases can regulate innate and adaptive immunity
through ubiquitination of immune response related pro-
teins [130]. Tripartite motif (TRIM) protein family is a
large kind of RING-type E3 ligases subfamilies. It partici-
pates in regulating numerous cellular activities, espe-
cially innate immune responses [131]. As previously
revealed, the TRIM family members may not only be a
potential viral restriction factors, but also have some
anti-viral functions, suggesting their roles in immune re-
sponse function [132, 133]. TRIM25 targets the N-
terminal CARDs of the viral RNA receptor Retinoic-
acid-inducible gene-I (RIG-I). RIG-I interacts with
MAVS for K63-linked ubiquitination, inducing the acti-
vation of type I interferon-mediated host protective in-
nate immunity against viral infection [106, 107].
TRIM25 may also target tumor suppressor P53 for ubi-
quitination and degradation in response to anti-tumor
immunity. Because p53 can promote the expression of
interferon-stimulated genes (ISGs) through upregulation
of IRF9, a component of the ISG factor 3 (ISGF3) [108,
109]. Besides, TRIM25 is capable of promoting prostate
cancer cell proliferation via modulating P53 signals
[110]. The RING type E3 ligase RNF2 is a potential
interferon-dependent antiviral responses inhibitor. RNF2
inhibits type-I-interferon-mediated antiviral response
through directly binding to STAT1, thereby increasing

Table 1 Keys E3 ligases involve in the regulation of cancer progression

E3 ligase Target Cancer/Cell type Function Refs

HECTD3 MALT1 breast cancer proliferation and invasion [73, 74]

NEDD4 PTEN lung cancer proliferation [75, 76]

RBX1 CYCLIN E1 prostate and gastric cancer proliferation [78, 79]

CUL1 CXCL8, IL8 breast cancer migration and invasion [80]

FBXW7 Mcl-1, c-Myc leukemia apoptosis, proliferation [82–84]

SKP2 LKB1, PCDC4, Akt liver and breast cancer proliferation, metabolism [85, 86, 94]

APC/C Bim, Mcl1, SMAR1, BRAF, SPOP prostate, breast, cervical and colon cancer apoptosis, proliferation, cell division [87–91]

Parkin HIF1α, RIPK3 breast cancer migration, invasion, necroptosis [92, 93, 95, 96]

HUWE1 BRCA1, Mcl1, P53 breast cancer DNA damage repair [97–100]

WWP1 P53 breast and prostate cancer DNA damage repair [100]

RNF138 RAD51D breast and ovarian cancer DNA damage repair [101, 102]

RNF126 Ku80, PDK1 293T, U2OS cells DNA damage repair, glycolysis [103, 104]

BCA2 γH2AX, Rad51 breast cancer DNA damage repair [105]

TRIM25 RIG-1, P53 prostate cancer tumor immunity [106–110]

FBXO38 PD-1 293T, Jurkat cells tumor immunity [111, 112]

C-Cbl PD-1 colorectal cancer tumor immunity [113]

CHIP PKM2 ovarian cancer glycolysis [114]

VHL HIF1α renal cancer glycolysis [115–117]

TRAF6 HK2 liver cancer glycolysis [118, 119]

UFM1 PDK1 gastric cancer glycolysis [120]
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its K33-linked polyubiquitination to separate STAT1/
STAT2 from DNA [134, 135]. Immune checkpoints are
definitely important for immune system to inhibit ab-
normal and excessive immune response and avoid self-
damage [136]. Unfortunately, tumors can even utilize
the immune checkpoints pathway to escape the immune
surveillance and anti-tumor immune response, thus to
promote tumor growth and progression [137, 138]. Pro-
grammed cell death protein 1 (PD-1) and its ligand PD-
L1 have been proved to be one of the efficient immune
checkpoints targets for treating human cancers. Their
aberrant expression may inhibit T cell effector activity
and promote tumor immune escape [139]. PD-1 also
undergoes multiple post translational modifications.
Ubiquitination is essential in maintaining the stability of
PD-1 [111]. Furthermore, many E3 ligases have been re-
ported to regulate PD-1 homeostasis. For instance,
FBXO38 is the specific E3 ligase of PD-1 that promotes
the degradation of PD-1 through K48-linked polyubiqui-
tination in 293T and Jurkat cells. FBXO38 is important
for controlling the anti-tumor activity of T cells by regu-
lating the expression of PD-1 [111, 112]. The E3 ligase
KLHL22 interacts with PD-1 and promotes the ubiquiti-
nation degradation of PD-1 before transportation to the
cell surface, thereby enhancing tumor immunity [140].
The RING type E3 ligase Casitas B lymphoma (c-Cbl)
regulates the expression of PD-1/PD-L1 in colorectal
cancer. C-Cbl targets PD-1 for ubiquitination degrad-
ation through the interaction between the C-terminus of
c-Cbl and the cytoplasmic tail of PD-1. C-Cbl also in-
hibits PD-1 by inactivating PI3K/Akt, Jak/Stat, and
MAPK-Erk signaling (Table 1) [113].

Regulation of metabolism
Metabolism is the general term for all chemical
changes in organisms that is complex and unified,
mainly including glucose metabolism, lipid metabol-
ism, amino acid metabolism [141]. Metabolic changes
are one of the important characteristics of tumors. In
order to maintain continuous proliferation, tumor
cells must adjust their metabolism and nutrient acqui-
sition methods, such as Warburg effect [142, 143].
Moreover, as an important PTM, ubiquitination can
also participate in regulating metabolic pathway, indi-
cating that E3 ligases may be involved in regulating
tumor metabolism. Peroxisome proliferator-activated
receptors (PPARs) are key regulatory factors in re-
sponse to lipid metabolism, containing PPARα,
PPARγ, and PPARβ/δ [144]. PPARγ is an E3 ligase
and could degrade nuclear factor κB (NFκB)/p65 via
ubiquitination, resulting in the inhibition of NFκB-
mediated inflammatory responses and tumor growth
[145]. PPARα can be monoubiquitinated by E3 ligase
MuRF1 to modulate its localization. PPARα also

interacts with E3 ligase MDM2 to regulate the tran-
scriptional activity [146, 147]. Additionally, PPARα
can interact with progestin and adipoQ receptor 3
(PAQR3) to promote the ubiquitination mediated deg-
radation of PPARα by the E3 ligase HUWE1. There-
fore, such degradation affects the role of PPARα in
lipid metabolism [148]. As an important component
of the SCF complex, Skp2 triggers the ubiquitination
of Akt, which is critical for the regulation of Warburg
effect [149]. In addition, Skp2 can also influence cell
glucose uptake and glycolysis through Akt ubiquitina-
tion [94, 150, 151]. The U-box E3 ligase carboxyl
terminus of Hsc70-interacting protein (CHIP) inhibits
ovarian cancer progression by suppressing aerobic gly-
colysis. CHIP targets the tumor glycolysis regulator
pyruvate kinase isoenzyme M2 (PKM2) for prote-
asome degradation [114]. The heterogeneous microen-
vironments are highly related with solid tumors.
Hypoxia is one of the most well studied microenvi-
ronments associated with solid tumor development.
Hypoxia can also affect the increased chemoradiother-
apy resistance and is critical for tumor metabolism
[152]. Hypoxia-inducible factor 1 (HIF-1), the key
protein in response to hypoxia, is a heterodimeric
protein consisting of two proteins — HIF-1α and
HIF-1β. HIF-1α is a transcription factor. The nuclear
translocation of HIF-1α can promote the transcription
of many genes involved in tumor cell glucose metab-
olism, such as GLUT1, PDK1, and LDHA [153]. The
tumor suppressor Von Hippel-Lindau (VHL) is one of
the best-known E3 ligases for HIF1α in normoxia.
VHL can target the proline hydroxylation modified
HIF-1α for ubiquitination and degradation via 26S
proteasome. VHL can inhibit the transcriptional func-
tion of HIF1α to glucose metabolism associated genes
in various cancers especially renal cancer [115–117].
Metabolic pathway consists of various key metabolic
enzymes, most of which may also undergo ubiquitina-
tion modification. Hexokinase 2 (HK2), the first en-
zyme in the glycolytic pathway, is highly related to
cancer progression. HK2 is prone to be recognized by
the autophagy receptor protein SQSTM1/p62 for au-
tophagic degradation after K33-linked polyubiquitina-
tion by the E3 ligase TRAF6 in liver cancer [154].
Phosphoinositide-dependent protein kinase 1 (PDK1)
is also one of the most important metabolic enzymes,
which plays crucial roles in cancer signaling pathways, es-
pecially PI3K/Akt and Ras/MAPK pathways [118, 119].
Additionally, the expression or activity of PDK1 can also
be aborted by E3 ligases. The E3 ligase RNF126 has been
found to target PDK1 for proteasomal degradation to pro-
mote cancer cell progression [104]. The small molecule
ubiquitin protein UFM1 is reported to increase the deg-
radation of PDK1 via ubiquitination, resulting in the
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inhibition of PI3K/Akt signaling in gastric cancer develop-
ment (Table 1) [120].

Target E3 ligase as a novel therapeutic approach
in cancers
E3 ubiquitin ligases can affect most aspects of eukaryotic
biological processes by promoting protein ubiquitination
and degradation [155, 156]. Both the occurrence and pro-
gression of tumors are accompanied by abnormalities in
the ubiquitin system [157]. Therefore, the clinical success
of proteasome inhibitors makes it possible to target the
UPS for developing a series of diagnostic and therapeutic
methods against tumors [6]. As the usual proteasome in-
hibitor, bortezomib or MG132 blocks the degradation of
entire proteins, however, drugs targeting a specific E3 lig-
ase may have better selectivity with less toxicity [158].
In order to target specific E3 ligases for cancer drugs

development, the RING type MDM2 (murine double mi-
nute 2) could be the first choice due to its overexpres-
sion in various human cancers [159, 160]. MDM2 is a
direct downstream target of the genome guardian pro-
tein p53, which regulates the function and expression of
many important genes related with cell cycle arrest,
DNA repair, and apoptosis [161]. MDM2 tightly inter-
acts with p53 for its ubiquitination and proteasomal deg-
radation [162]. Due to both of its oncogenic potential
and negative regulation of p53, MDM2 is thought to be
a striking and meaningful drug target for cancer therapy.
Therefore, many small molecules that inhibit MDM2
have been designed [163]. By using high-throughput
screening, the potential small molecules Nutlins, a family
of cis-imidazoline analogues, have been identified and
tested in clinical trials. These are the first small molecule
inhibitors designed to bind to MDM2, thereby disrupt-
ing its interaction with p53 [164, 165]. There are also
many other small molecules identified, which break the
interaction of MDM2 and p53. For example, MI-219 can
target MDM2 to disrupt its interaction with p53, pro-
moting cancer cell cycle arrest and selective apoptosis
[166]. Compared to MI-219, another promising small
molecule RITA (reactivation of p53 and induction of
tumor cell apoptosis) can prevent the MDM2-p53 inter-
action by binding p53 instead of MDM2, suggesting that
it might block many other possible interactions of p53.
Thus, RITA might affect the ubiquitination of p53 and
promote the activation of p53 function in tumors [167,
168]. RG7388 (idasanutlin), a second-generation MDM2
inhibitor, was designed to reduce the potency and tox-
icity profile of earlier small molecules nutlins, which
demonstrated a dose-dependent p53 stabilization, apop-
tosis, and cell cycle arrest during trials [169, 170].
The largest E3 ligases family SCF (Skp1–cullin–F-box

proteins) mediates more than 20% ubiquitinated proteins
for 26S proteasome degradation, Thus, the F-box protein

Skp2, a member of the SCF family, can be another im-
portant drug target [171]. The E3 ligase Skp2 has been
reported to overexpress in many human cancers and can
regulate tumorigenesis, further supporting that Skp2 is a
possible target for tumor drugs development [172]. Skp2
inhibitors can be designed from many aspects, such as
reducing the expression of receptor part (Skp2) or block-
ing its interactions with Skp1 (adaptor bridge) or even
the target substrates [173]. The E3 ligase SCF-Skp2 con-
jugated with SKP1 and its accessory protein Cks1 to pro-
mote cancer cell proliferation mainly through
ubiquitination and degradation of the cyclin-dependent
kinase (CDK) inhibitor p27 [174, 175]. Skp2 Inhibitor
C1 (SKPin C1) can suppress the Skp2-mediated p27 deg-
radation by disrupting p27 binding through key
compound-receptor contacts [176]. Besides targeting
p27, Skp2 can also block p53-mediated apoptosis by
competing with p53 for the binding of p300, a transcrip-
tional coactivator. Thus, Skp2 inhibits p300-mediated
p53 acetylation [177, 178]. In addition, Skp2 is an im-
portant negative regulator of p53 that is overexpressed
in many aggressive cancers. Hence, inhibition of the
Skp2/p300 protein–protein interaction (PPI) for re-
activating p53 may be an attractive target for cancer
treatment [173, 178]. The Skp2 inhibitor M1 disrupts
the p300-binding site of Skp2, thereby releasing p300 to
bind p53 for acetylation and increasing p53-mediated
apoptosis [179]. The Skp2 inhibitor SMIP004 is able to
increase the curative effect of tumor radiotherapy.
SMIP004 can even decrease the protein stability of
PCAN, which is the target of Skp2, and inhibit breast
cancer cell proliferation (Table 2) [86].
Importantly, it is noteworthy that the emerging tech-

nology proteolysis-targeting chimeras (PROTACs) have
potential advantages compared with traditional small
molecule inhibitors (SMIs). PROTACs can bind to the
target protein and recruit E3 ubiquitin ligase, so that the
target is labeled with ubiquitin and further degraded by
the 26S proteasome [182]. PROTACs are bifunctional
molecules composed of two distinct ligands. One is de-
signed for binding the protein of interest (POI), and the
other is covalently linked and for the specific E3 ligase
binding (Fig.5) [183]. It has been nearly 20 years since
the concept of PROTAC proposed by the Crews and his
colleagues in 2001. The first PROTAC was designed to
recruit the SCF E3 ligase β-TRCP to target the POI me-
thionine aminopeptidase-2 (MetAp-2) for degradation
[184]. So far, there are more than 50 proteins targeted
by PROTACs, some of which have been proved to be
clinical drug targets for cancer therapy [183]. Import-
antly, four kinds of E3 ligases are commonly chosen for
PROTACs, including MDM2, inhibitor of apoptosis pro-
teins (IAPs), cereblon (CRBN) and VHL [185]. The first
all-small molecule PROTAC utilizes nutlin to recruit the
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E3 ligase MDM2 to degrade androgen receptor (AR) in
prostate cancer cells [180]. In 2019, a new MDM2-based
PROCTAC A1874 is designed to target bromodomain-
containing protein (BRD4) for degradation and stabilize
the tumor suppressor P53 to inhibit cancer progression
simultaneously [181]. In 2010, Y. Hashimoto and his
groups successfully linked methyl bestatin (MeBS) with
different length all-trans retinoic acid recruiting E3 lig-
ase IAPs to degrade retinoic acid-binding proteins
(CRABP-1/2) [186]. The IAP-based PROTAC named
Specific and Non-genetic IAP-dependent Protein Eraser
(SNIPER) is designed to target various proteins,

especially estrogen receptor alpha (ERα), for degradation
in breast cancer [187]. Additionally, the E3 ligase CRBN
is the target of many drugs, such as thalidomide and its
analogs. Therefore, many PROTACs based on CRBN
against multiple targets have been designed [188]. The
first CRBN-based PROTAC mainly targets BET proteins
in acute myeloid leukemia (AML) [189]. Another
CRBN-based against BET PROTAC named ARV-825
utilizes the link between OTX015 and E3 ligase CRBN
to promote BRD4 degradation, eventually inhibiting the
cancer cell progression [190]. Strikingly, there are also
many other inhibitors based on PROTACs technology,

Table 2 Description of the classifications, Pros and Cons between PROTACs and small molecule inhibitors (SMIs)

Types Classifications Pros Cons Refs

1.proteasome inhibitors:
bortezomib, MG132

1. Generally, cell and tissue permeable and
high oral bioavailability
2. In some situations, more tolerable

1.More dosing to reach the therapeutic concentration
causing more toxicities
2.Incapable of targeting undruggable and mutated
proteins

[158]

SIMs 2.E3 ligases inhibitors:
a. MDM2 targeting
drugs: Nutlins, MI-219,
RITA, RG7388
b. SKP2 targeting drugs:
SKPin C1, Skp2 inhibitor
M1, SMIP004

[164–
170]
[86,
176,
179]

E3
ligands

POI ligands 1.More potent and longer lasting effect
with lower concentration and lower
toxicities
2.Capable of undruggable and mutated
proteins
3.Overcome resistance to SMIs
4.Possible of tumor selectivity

1.Less cell and tissue permeable and more challenges
for oral administration due to its high molecule weight
2.Undesirable toxicities
3.Complete degradation of specific proteins and
degradation of undesirable proteins

MDM2-
based

AR, BRD4 [180,
181]

PROTACs IAP-
based

CRABP-1/2, ERα [168,
169]

CRBN-
based

BETs, BRD4 [171,
172]

VHL-
based

HIF1α, AR,
ERRα, BCL-XL,
BRD4

[175,
182]

Fig. 5 Schematic diagram of PROTACs. A Graphical representation of the components and process of PROTACs. The PROTACs consist of three
important parts, including a ligand binding to the POI, a covalently linked ligand of an E3 ubiquitin ligase and a linker to link these two ligands
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such as ARV-471 and ARV-110, which are both under
phase I clinical trials. ARV-471 is ERα-targeted PRO-
TAC against breast cancer progression [191]. ARV-110
is AR-targeted PROTAC against prostate cancer [192].
The E3 ligase VHL is one of the most popular targets
for PROTACs. As described previously, VHL E3 ligases
complex is essential for regulating the expression of
HIF1α that contributes to various cancers development.
So far, many kinds of inhibitors, especially PROTACs
targeting VHL for HIF1α degradation, have been de-
signed [193]. The VHL-based PROTAC named ARD-
266 can also target AR for degradation in prostate can-
cer [194]. As reported, VHL-based PROTAC is able to
regulate cellular energy homeostasis by degrading
estrogen-related receptor alpha (ERRα), which is ex-
tremely important during mitochondrial biogenesis
[195]. The inhibitor DT2216 developed by PROTAC
technology is discovered to show enhanced anti-tumor
potency by targeting E3 ligase VHL to promote BCL-XL
degradation [196]. MZ1 is an efficient compound using
PEG as a linker to tether pan-BET selective bromodo-
main inhibitor JQ1 to VH032, a potent and specific VHL
ligand. Thus, MZ1 can target BRD4 for degradation in
cervical cancer (Table 2) [197, 198].
Above all, E3 ligases are important and efficient target

for cancer therapy. Till now, each kind of drugs based
on E3 ligases has both benefits and drawbacks. The
PROTACs technology shows high selectivity, specificity
and potential to target undruggable proteins.

Conclusions and perspectives
From this review, we have briefly illustrated the princi-
ples of ubiquitin system and the important role of E3 li-
gases in cancer progression. The E3 ubiquitin ligases can
modulate various biological development processes, in-
cluding cell proliferation, apoptosis, DNA damage repair,
immunity, and metabolism. It’s worth noting that E3 li-
gases can function either as tumor promoters or sup-
pressors. And unlike many other elements in the UPS
(e.g. E1, E2), E3 ligases are not only large in quantity but
also directly target specific substrates for degradation.
Thus, E3 ligases can be a promising and effective target
for cancer therapy. It is a great expectation that targeting
specific E3 ligases would induce apoptosis or sensitize
cancer cells to apoptosis induced by conventional anti-
cancer therapies. In contrast with targeting a specific E3
for inhibition, the promising technology PROTACs is
more potent in many cases. Although, many small mol-
ecule inhibitors and PROTACs have been tested in cel-
lular experiments or even clinical trials, both of these
two approaches have their own disadvantages. Therefore,
it is still a long way to put in use for a novel class of an-
ticancer drugs, as well as discover and develop more effi-
cient E3 ligases targeted inhibitors.
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