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Cerebellar long-term depression and auto-
immune target of auto-antibodies: the
concept of LTDpathies
Hiroshi Mitoma1* , Jerome Honnorat2,3, Kazuhiko Yamaguchi4 and Mario Manto5,6

Abstract

There is general agreement that auto-antibodies against ion channels and synaptic machinery proteins can induce
limbic encephalitis. In immune-mediated cerebellar ataxias (IMCAs), various synaptic proteins, such as GAD65,
voltage-gated Ca channel (VGCC), metabotropic glutamate receptor type 1 (mGluR1), and glutamate receptor delta
(GluR delta) are auto-immune targets. Among them, the pathophysiological mechanisms underlying anti-VGCC,
anti-mGluR1, and anti-GluR delta antibodies remain unclear. Despite divergent auto-immune and clinical profiles,
these subtypes show common clinical features of good prognosis with no or mild cerebellar atrophy in non-
paraneoplastic syndrome. The favorable prognosis reflects functional cerebellar disorders without neuronal death.
Interestingly, these autoantigens are all involved in molecular cascades for induction of long-term depression (LTD)
of synaptic transmissions between parallel fibers (PFs) and Purkinje cells (PCs), a crucial mechanism of synaptic
plasticity in the cerebellum. We suggest that anti-VGCC, anti-mGluR1, and anti-GluR delta Abs-associated cerebellar
ataxias share one common pathophysiological mechanism: a deregulation in PF-PC LTD, which results in
impairment of restoration or maintenance of the internal model and triggers cerebellar ataxias. The novel concept
of LTDpathies could lead to improvements in clinical management and treatment of cerebellar patients who show
these antibodies.
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Introduction
During the last two decades, experimental and clinical
studies have established the pathological roles of auto-
antibodies against ion channels and synaptic receptors in
limbic encephalitis [1–5]. Although auto-antibodies that
target ion channels and synaptic machineries have been
documented also in immune-mediated cerebellar ataxias
(IMCAs), the types of auto-antibodies involved in IMCAs
are different from those observed in limbic auto-immune
encephalitis [6]. Anti-glutamate receptors, anti-GABA re-
ceptors and anti- leucine-rich glioma-inactivated 1(LGI1)
antibodies (Abs) are rarely observed in IMCAs, whereas

the association of CAs with anti-GAD65, anti-voltage-
gated Ca channel (VGCC), anti-metabotropic glutamate
receptor type 1 (mGluR1), and anti-glutamic receptor
delta (GluR delta) Abs has been documented [7–12]. Es-
pecially, auto-antibodies against VGCC, mGluR and GluR
delta are characteristically found in IMCAs, but not in
auto-immune limbic encephalitis [6, 13]. These target
molecules are involved in molecular cascades that induce
long-term synaptic depression (LTD) of synaptic transmis-
sions between parallel fibers (PFs) and Purkinje cells
(PCs), a crucial form of synaptic plasticity in the cerebel-
lum [6, 13].
In this review, we dissect the pathophysiological mech-

anisms underlying anti-VGCC, anti-mGluR1, and anti-
GluR delta Abs-associated cerebellar ataxias (CAs), and
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address pathophysiological roles of impaired PF-PC
LTD. Thus, we discuss (1) the roles of these auto-
immune target molecules (VGCC, mGluR1 and GluR
delta) in the induction of LTD, and (2) the clinical pro-
files of the IMCAs subtypes associated with these auto-
antibodies. We argue that PF-PC LTD dysfunction is
one of the final common pathophysiological mechanisms
in these three subtypes of IMCAs. Auto-immune re-
sponse might impair the restoration or maintenance of
the internal model, resulting in the development of CAs.

Physiology of long-term depression between
parallel fibers and Purkinje cells
Neuronal circuit of cerebellar cortex and PF-PC LTD
The cerebellar cortex receives two excitatory gluta-
matergic input fibers, namely, mossy fibers (MFs) and
climbing fibers (CFs) (Fig. 1). MFs make synaptic
connections with granule cells (GrCs) and cerebellar
nucleus (CN) neurons. PFs, axons of GrCs, meet with
multiple PCs, and form a glutamatergic synapse with
a single PC [14, 15]. At the PF-boutons, action poten-
tials activate VGCC (mainly P/Q-type VGCC) [16].
Glutamate, released from the PF terminals in a Ca2+-
dependent manner, activates AMPA-type Glu-
receptors at the dendritic spine of PC. The PF-PC
synaptic input generates and modulates simple spikes,
whose firing pattern is affected by voltage-gated K
channels and Ca2+-dependent K channels [17–19].

The PF-PC synapse is bound by a set of synaptic ad-
hesion molecules, i.e., neurexin-cerebellin1-GluR delta
[20, 21]. By contrast, a single CF that originates from
the inferior olive nucleus establishes strong multisite
synapses on the dendrites of a single PC [14, 15].
Simultaneous and repetitive activation of PF and

CF depresses PF-excitatory postsynaptic currents
with a long-term time course, which is termed the
LTD [15, 22]. Based on the finding that CF fire at
high probability in case of motor failures [23], it has
been proposed that CF carry an error signal of
motor performance and PF-PC LTD provides the
mechanism for motor learning [15], though this is
still debated.

Molecular mechanisms underlying PF-PC LTD
Conjunctive stimulation of CF and PF causes LTD of
PF-PC synaptic transmissions both in vivo [22] and
in vitro [24–26]. CF input elicits an increase in [Ca2+]i
through the VGCC (P/Q-type) (Fig. 2) [27]. PF inputs in
dendritic spines activate the mGluR-PLCβ-IP3 signaling
pathways, which elicits Ca2+ release from the Ca2+-stores
in the endoplasmic reticulum (ER) through IP3 receptors
and, consequently, increases [Ca2+]i (Fig. 2) [28].
Simultaneous activation of VGCC (P/Q-type) and

mGluR1 elicits a series of events, including an increase
in [Ca2+]i to levels higher than the additive level [29],
which leads to the activation of PKCα, which in turn

Fig. 1 Schematic diagram of the pathophysiological mechanisms underlying anti-VGCC, anti-mGluR1, and anti-GluR delta-associated cerebellar
ataxias. The antibody-mediated mechanisms include dysfunction of basal synaptic transmissions and long-term depression (LTD), leading to
impairment of the internal model. These functional disorders are followed by cell-mediated cell death, depending on the auto-immune stimulus.
PC; Purkinje cell, GC; granule cell, IN; inhibitory interneurons, CF; climbing fiber, PF; parallel fiber, MF; mossy fiber
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phosphorylates GluA2-C terminus, ultimately leading to
the detachment of AMPA receptors, including phos-
phorylated GluA2, from the scaffold protein and its in-
ternalization with PICK1 in AP2- and clathrin-
dependent manners (Fig. 2) [30]. Also CaMKII [31] and
NMDA-receptor [32, 33] are involved in PF-PC LTD
induction.
GluR delta, a synaptic adhesion molecule specific to

the PF-PC synapse [21], is also involved in LTD.
Antibodies against the N-terminus region (H2 ligand
binding site) decrease the amplitude of evoked excita-
tory postsynaptic currents [34], possibly by suppress-
ing the PF-PC synaptic interaction. In addition, the
antibodies suppressed induction of LTD in culture
preparations. Suppression of GluR delta expression in
cultured PCs by antisense oligonucleotides also re-
sulted in severe impairment of LTD [35]. These find-
ings highlight the importance of GluR delta in LTD,
for reasons other than maintenance of synaptic inter-
action. The cytoplasmic terminus of GluR delta binds
to megakaryocyte protein phosphatase (PTPMEG),
which dephosphorylates tyrosine 876 in GluA2. De-
phosphorylation of this site is necessary for PKCα-
induced phosphorylation of serine 880, an essential
step in the internalization of AMPA receptors [36].
Thus, GluR delta is assumed to gate PF-PC LTD by

coordinating the interaction between the two phos-
phorylation sites in GluA2 [36]. However, whether
this dephosphorylation through GluR delta-PTPMEG
interaction is impaired by antibodies against GluR
delta extracellular region is unknown.
In conclusion, an increase in [Ca2+]i is triggered by

conjunctive activation of VGCC and mGluR1, and the
subsequent AP2-and clathrin-dependent endocytosis of
AMPA receptors is an essential process in PF-PC LTD.
Furthermore, endocytosis is gated by dephosphorylation
of T876 of the GluA2-C terminus through GluR delta-
PTPMEG interaction.

Internal model and PF-PC LTD
Internal model and cerebellar ataxias
Evidence suggest the presence of internal models em-
bedded in the cerebellum to elaborate coordination of
motor and cognitive commands [37, 38]. The internal
model, that emulates the dynamics of body and environ-
ments, are essential for integrating the movements of
the body parts without the need for sensory feedback
[39]. An internal inverse model transforms the desired
trajectory into motor commands [40, 41] and is involved
mainly in cerebellar ocular motor controls [42]. On the
other hand, an internal forward model computes the fu-
ture state of the body based on the current estimate of

Fig. 2 Schematic diagram of long-term depression (LTD) at excitatory synapses between parallel fibers and Purkinje cells. The climbing fiber input
elicits complex spikes through the activation of dendritic P/Q type Ca2+ channels, leading to an increase in intracellular calcium concentration
([Ca2+]i). On the other hand, the parallel fiber input activates metabotropic glutamate receptor-PLCβ-IP3 signaling pathways, resulting in an
increase in [Ca2+]i. The conjunctive activation of these two pathways increases [Ca2+]i more than the additive level. The high [Ca2+]i activates
PKCα, and PKCα phosphorylates GluA2 of the AMPA (α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor, which results in
detachment of the AMPA receptor from scaffold proteins and its internalization with PICK1 in an AP2 and clathrin-dependent manner. CF;
climbing fibers, PF; parallel fibers, Glu; glutamate; AMAPA-R; AMPA receptor, mGluR1; metabotropic glutamate receptor, Cav2.1 (P/Q); P/Q type
Ca2+ voltage-gated channel, PLC; phospholipase C, PKC; protein kinase C, IP3; Inositol triphosphate, GRIP; Glutamate receptor interactive protein,
TARP; transmembrane AMPA receptor regulatory proteins, PICK1; protein interacting with C kinase, δ; GluR delta 2, PTPMEG; megakaryocyte
protein phosphatase
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the body and efferent signals of motor control [43–45].
Evidence suggests that online predictive computations
that employ the internal forward model coordinate limb
voluntary movements [46–50]. The predictive computa-
tion of the forward model affords coordination of mul-
tiple degrees of freedom and appropriate timing of
muscle activities [39]. Since the deficits in predictive ac-
tivation of the triceps muscles results in dysmetria, it is
assumed that dysmetria occurs as a result of impaired
predictive computation of the internal forward model in
the cerebellum [39]. Other ataxic symptoms including
adiadochokinesis and ataxic gaits could be attributed to
impairments of the internal forward model [39].

Internal model and synaptic plasticity
Through cerebellar leaning, the internal model is as-
sumed to be acquired and continuously updated follow-
ing changes in the external factors. To execute the task
of reaching, for example, the cerebellum organizes com-
pound movements based on the physical properties of
various body parts, including muscle strength, segment
inertia, joint viscosity, and segmental interaction, which
are stored in the cerebellum [51].
In the cerebellar cortex, multiple forms of synaptic

plasticity at different sites are induced during procedural
memory formation (Fig. 2) [52]. At the cerebellar input
synapses (MF-GrC), high-frequency bursts (> 250 msec)
of MF can induce MF–GrC LTP, whereas low-frequency
bursts induce LTD [53, 54]. Repetitive stimulation of PF
alone causes potentiation of PF-PC EPSP [25, 55]. This
postsynaptic type of LTP can reset PF-PC LTD, and vice
versa; PF-PC LTD can reset PF-PC LTP, thus PF-PC
LTP and PF-PC LTD mutually counterbalance each
other [56–59]. As for the inhibitory input to PC, GABA-
mediated inhibitory synaptic transmission undergoes a
long-lasting rebound potentiation (RP) after activation of
excitatory CF inputs [60]. Thus, the multiple forms of
synaptic plasticity in the cerebellar cortex challenges the
concept of the critical role of LTD in cerebellar motor
learning. Furthermore, in certain mutant mice that lack
PF-PC LTD, show normal motor learning. Based on
such conclusion, some researchers have argued that
LTD is not essential for motor learning [61, 62].
Recent experiments have provided substantial evidence

for the essential role of PF-PC LTD in motor learning.
First, interpretation of the results of gene-manipulation
experiments should be assessed carefully. In general,
compensatory mechanisms of synaptic plasticity are
probably expressed in gene-manipulated animals, and
the conditions necessary to induce compensated synap-
tic plasticity could be different from the ordinal experi-
mental conditions that induce PF-PC LTP or LTD in the
wild type animal. Actually, several types of PF-PC LTD-
inducing stimulation protocols have been used to induce

LTD in the same mutant mouse [63], indicating that
LTD-hypothesis could not be ruled out. Second, the use
of a new optogenetic blocker of endocytosis allows re-
versible PF-PC LTD blockade. This tool (PhotonSABER)
enables the temporal, spatial, and cell-type specific con-
trol of AMPA receptor endocytosis at active synapses.
Blockade of PF-PC LTD by photostimulation in vivo re-
sulted in impairment of vestibulo-ocular reflex (VOR)-
adaptation [64]. This photoactivation of PhotonSABER
neither affected RP nor PF-PC LTP. Although RP and
PF-PC LTP were intact, VOR-adaptation was impaired
following blockade of PF-PC LTD, thus suggesting the
importance of LTD in cerebellar motor learning.
In conclusion, CAs can be attributed to impaired pre-

dictive computation of the internal forward model in the
cerebellum. The internal model is formed and continu-
ously updated by cerebellar learning processes. Motor
learning depends on various forms of synaptic plasticity
in the cerebral cortex through an increase in the con-
trast of input signals, efficiency of learning, and accuracy
of learned behavior. However, PF-PC LTD seems to play
a crucial role in motor learning by adjusting the final
stage of the cerebellar cortical integration.

LTD-related synaptopathies in immune-mediated
cerebellar ataxias
Anti-VGCC antibody-associated cerebellar ataxia
Clinical profiles
Anti-VGCC antibodies were initially described in associ-
ation with Lambert-Eaton myasthenia syndrome (LESM)
[3]. However, the association of CAs with anti-VGCC Abs
has also been described in patients with paraneoplastic
cerebellar degeneration (PCD) with or without LEMS
[65]. The most frequent associated cancer is small cell
lung cancer (SCLC) [66]. Auto-antibodies against the P/
Q-type VGCC, the main antigen, was detected in 78% of
patients with PCDs and LEMS, and in 20% of anti-Hu Ab-
negative patients with PCDs without LEMS [66]. The pa-
tients showed subacute pancerebellar ataxias, and there
were no differences in the clinical profiles of PCD patients
with and without anti-VGCC Ab [67]. Anti-VGCC Abs
were also identified in patients with non-paraneoplastic
IMCAs [65] and a large-scale study showed that anti-
VGCC Abs were positive in 8 of 67 patients who showed
chronic cerebellar degeneration [68].
The therapeutic response depends on the background.

A study on 16 anti-VGCC Ab-positive patients with PCD
and SCLC found poor benefits to immunotherapies [67].
Of these patients, one showed complete recovery, five
showed stabilization at a low Rankin score, and five stabi-
lized or worsened at high Rankin scores. The median sur-
vival time of these patients was 12months. On the other
hand, good prognosis was reported in patients with non-
paraneoplastic conditions [68]. Immunotherapies have
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been used in patients with paraneoplastic and non-
paraneoplastic conditions, and these included intravenous
immunoglobulins (IVIg), prednisone, and mycophenolate
mofetil (Table 1).

Physiological actions of antibodies
A polyclonal peptide Ab against the major immunogenic
region in P/Q-type VGCCs (the extracellular domain-III
S5–6 loop) impaired the functions of neuronal and re-
combinant P/Q-type VGCC, and elicited a decrease in
Ca2+ currents, leading to impaired synaptic transmission
between PF and PC [73]. A reduction in P/Q-type
VGCC was also observed in the autopsies of three pa-
tients with PCDs and LEMS [74]. In experimental stud-
ies, ataxic symptoms were induced in mice by
intrathecal administration of serum IgGs obtained from
anti-P/Q type VGCC Ab-positive patients with PCDs
and LEMS [75]. However, the actions of anti-VGCC Ab
on LTD have not been studied.

Anti-mGluR1 antibody-associated cerebellar ataxia
Clinical profiles
The association of anti-mGluR1 Ab with CAs has been
reported initially in two patients with Hodgkin’s lymph-
oma [76] and one patient with prostate adenocarcinoma
[69]. The response to immunotherapy varied among the
three patients; the two patients with Hodgkin’s lymph-
oma responded well to the combination of plasma ex-
change, IVIg and oral prednisone, whereas the other

patient with prostate cancer showed no objective im-
provement after plasma exchange.
On the other hand, the association of anti-mGluR Ab

with CAs was also described in non-paraneoplastic con-
ditions [70, 77]. The clinical course is now better known
for portraying a series of 11 new patients and 19 previ-
ously reported patients (Table 1) [71]. The main neuro-
logical manifestations were subacute cerebellar gait and
limb ataxias in 25 of these 30 patients (86%), sometimes
associated with extra-cerebellar symptoms, such as be-
havioral changes (irritability, apathy, mood, personality
change, psychosis with hallucinations, and catatonia),
cognitive changes (memory problems, executive func-
tions and spatial orientation deficits) or dysgeusia. Sei-
zures were uncommon. Three of the 26 patients (11%)
had paraneoplastic conditions (cutaneous T lymphoma
and Hodgkin’s lymphoma). Serological tests identified
anti-mGluR1 Ab in both the serum and CSF, together
with evidence of pleocytosis in the CSF. MRI showed
normal in 12 of the 19 patients (63%) at the onset. Ab-
normal findings included T2/FLAIR hyperintensities or
leptomeningeal gadolinium enhancement. At follow-up,
MRI showed cerebellar atrophy in 10 of the 12 (83%).
Twenty-five of the 30 (83%) patients received immuno-
therapies, including IVIg, steroids, mycophenolate mofe-
til, cyclophosphamide, and rituximab alone or in
combinations. Ten patients (40%) showed significant im-
provements or complete resolution of symptoms, and 13
patients (52%) showed stabilization or mild

Table 1 Clinical profiles of anti-VGCC, anti-mGluR and GluR delta antibodies-associated cerebellar ataxias

Anti-VGCC Anti-mGluR1 Anti-GluR delta

Prevalence in IMCAs Sometimes Rare Rare

Trigger of autoimmunity Mainly with paraneoplasia (SCLS, prostate
adenocarcinoma, non-Hodgkin’s lymphoma).
A few without paraneoplasia

Some with paraneoplasia (Hodgkin’s lymphoma,
prostate adenocarcinoma). Others without
paraneoplasia and infection

Infection,
vaccination

Age, gender 50–60s Median 55 years (IQR 43–64), 43% females Children

Features of CAs Pancerebellar ataxias Gait and limb ataxias Gait ataxia
associated with
limb ataxia and
dysarthria

MRIa Variable: From no to mild atrophy No atrophy

Outcomes Paraneoplasia: Variable. From good to poor response to
IVIg, prednisone and mycophenolate mofetil.
Non-paraneoplasia: Improvement reported.

Paraneoplasia: Variable. From good response to
poor response to IVIg, PE.. Non-paraneoplasia:
Generally good response to IVIg, steroid,
mycophenolate, and rituximab.

Generally good
response to IVIg
or IVMP.

Paraneoplasia, n = 11 [64] Paraneoplasia /Non-paraneoplasia [69] Non-
paraneoplasia,
n = 3 [70–72]

Full or partial recovery 1 (10%) 10 (40%) 2 (67%)

Stabilization 6 (55%) 14 (56%) 1 (33%)

Persistent aggravation 5 (45%) 1 (4%) 0

IMCAs Immune-mediated cerebellar ataxias, SCLS Small cell lung cancer, IVIg Intravenous immunoglobulins, IVMP Intravenous methylprednisolone, PE
Plasma exchange
Interpretation: the occurrence of cerebellar atrophy appears variable from case to case. The mechanisms of the atrophy remain to be discovered. This occurs also
in other immune-mediated cerebellar ataxias
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improvement. Although two patients not associated with
tumors died, one patient initialized improved and died
due to unknown etiologies. Thus, only one patient
showed progressive worsening of CAs.

Physiological actions of antibodies
IgGs purified from the sera of patients with Hodgkin’s
lymphoma blocked glutamate-stimulated formation of
inositol phosphates in mGluR1α-expressing Chinese-
hamster-ovary cells [76]. The IgGs blocked the induction
of LTD in tissue slices [72]. Application of IgGs in the
subarachnoid space elicited ataxic gaits in mice, which
disappeared after absorption of anti-mGluR1 Ab [75,
76], while administration of the same Ab in the flocculus
also evoked acute disturbances in compensatory eye
movements [72]. A recent study confirmed that CSF
from the patients decreased mGluR1 clusters in cultured
neurons [71].

Anti-GluR delta antibody-associated cerebellar ataxia
Clinical profiles
The association of anti-GluR delta Ab with CAs has
been described in a few patients with non-
paraneoplastic conditions [78–81]. The conditions af-
fected children aged 8 months to 13-years and med-
ical history showed infection or vaccination preceding
CAs. These patients exhibited prominent gait ataxia
associated with variable degree of limb ataxia and
dysarthria with an acute time-course. Serological tests
were positive for anti-GluR delta Ab in the serum
and CSF and laboratory tests showed pleocytosis
without oligoclonal bands in the CSF, while MRI
demonstrated no evidence of cerebellar atrophy. Most
of these patients responded well to immunotherapy of
IVIg or IVMP coupled with clinical improvement in
CAs (Table 1). Another 25-month-old girl with
chronic recurrent CA positive for anti-GluR delta Ab
also showed a good response to corticosteroid therapy
[82].

Physiological actions of antibodies
Although subarachnoidal injection of Ab against the H2
ligand binding site of GluR delta elicited the develop-
ment of ataxic phenotype in mice and the Ab impaired
simplified LTD in cultured PC [34], the actions of anti-
GluR delta Ab on LTD in mature PC with intact physio-
logical neuronal circuitry remain to be investigated in
adult cerebellar slices.

Possible pathophysiological mechanisms
Diversity and composite in auto-immune mechanisms
Anti-VGCC, anti-mGluR1, and anti-GluR delta Abs-
associated CAs show divergent clinical profiles, for
example, different background (paraneoplastic or non-

paraneoplastic) and age preponderance. In addition to
the clinical diversity among these subtypes, compound
and overlapped immune mechanisms appear to be in-
volved even in each etiology, especially in anti-VGCC
Ab-associated CA. Both in vitro and in vivo studies
have shown that antibodies towards VGCC impaired
the release of neurotransmitters, leading to the devel-
opment of CAs. Despite this evidence of functional
disorders, cerebellar cell loss was found in postmor-
tem studies [74]. This discrepancy suggests that
antibody-induced functional disorders are followed by
additional cell-mediated mechanisms that lead to cell
death. It is suggested that in paraneoplastic condi-
tions, the auto-immune signal is augmented in a posi-
tive feed-back fashion [83]. For example, persistence
of the auto-immune responses to cancer cells would
continue to cause secretion of cytokines that elicit
sustained vascular hyperexcitability and infiltration of
immune cells. Death of cancer cells subsequently
leads to lasting release of intracellular antigens. These
persistent and amplified auto-immune conditions
might recruit sequential responses, from antibody-
mediated functional disorder to additional cytotoxic
T-cell-mediated cell death [75].
In conclusion, various backgrounds (paraneoplas-

tic, infectious or unknown conditions) can trigger
auto-immune attacks against the cerebellar circuits
in anti-VGCC, anti-mGluR1, and anti-GluR delta
Abs-associated CAs, where multiple auto-immune
reactions can be elicited depending on the quality,
intensity or duration of the auto-immune stimulus.
Sequential responses, from humoral functional dis-
orders to cell-mediated irreversible cell death, might
sometimes occur (Fig. 1).

Functional disorders and internal model impairments
In spite of the diversity and composite of auto-immune
mechanisms, anti-VGCC, anti-mGluR1, and anti-GluR
delta Abs-associated CAs also appear to have a single
final common pathway. Patients with these three sub-
types commonly show good prognosis without or only
mild cerebellar atrophy when associated with non-
paraneoplastic conditions, which is contrast to the poor
prognosis in anti-GAD ataxia. The anti-GAD ataxia
sometimes shows resistance to immunotherapy, result-
ing in severe CAs associated with marked cerebellar at-
rophy and cell death [84]. Thus, the good therapeutic
response in these three etiologies can be an outstanding
feature of IMCAs, and reflects staying of functional dis-
orders, dysfunction of the internal model. Taken to-
gether, we propose that anti-VGCC, anti-mGluR1, and
anti-GluR delta Abs commonly distort the internal
model leading to the development of cerebellar func-
tional disorders.
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LTD as a common final pathophysiological pathway?
One possible mechanism for the functional disorders
is deficit in the basal synaptic transmission in the
cerebellar circuits. In addition to anti-VGCC Ab [73],
impaired synaptic transmission on PC was docu-
mented in anti-mGluR1 Ab [85] and anti-GluR delta
Ab [34]. Disturbance of the basal synaptic transmis-
sion subsequently lead to distortion of the internal
model (Fig. 1).
The alternative mechanism is a deficit in PF-PC LTD,

since VGCC and mGluR1 are molecules required for the
increase in Ca2+ concentrations and subsequent induc-
tion of PF-PC LTD, while GluR delta plays an important
role in AMPA receptor trafficking. Consistently, it has
been demonstrated that IgGs from some of these pa-
tients impaired the induction of LTD [72]. The physio-
logical relationship between LTD dysfunction and
internal model impairment is as follows (Fig. 1).
(1) When these auto-antibodies interfere with the

basal synaptic transmission, any impairment of the in-
ternal model should be compensated for by synaptic
plasticity, including PF-PC LTD. Thus, PF-PC LTD dys-
function can distort internal model restoration.
(2) It has been a matter of debate whether PF-PC LTD

is required to develop normal motor performance [86].
However, recent studies suggest that PF-PC might be in-
volved in execution of the internal model. First, using
the method of conditional knockout mice (a
tetracycline-controlled gene expression system), acute
blockade of mGluR impaired PF-PC LTD and simultan-
eously elicited motor incoordination without affecting
basal synaptic transmission [85]. Second, a study on
neural activities in monkeys indicates a facilitative role
of PF-PC LTD in the online predictive controls [87].
The cerebellar output, before the movements, is gener-
ated by phasic suppression of PCs and concomitant acti-
vation of the dentate nucleus cells (disinhibition
mechanism) [87]. Impairments in the disinhibition elicit
a delay in movement initiation, which was termed asthe-
nia by Holmes G [88]. Notably, the phasic suppression
on PCs is assumed to be tuned by facilitation by PF-PC
LTD [87].
It is uncertain whether dysfunction of LTD can dir-

ectly alter the internal model. This hypothesis will be
validated using in vitro and in vivo experiments in which
PF-PC LTD is directly blocked by molecular manipula-
tion of AMPA receptor endocytosis (e.g., PhotonSABER
method [64] or manipulation of transmembrane AMPA
receptor regulating proteins [89]). In these in vivo
models, impairments in execution of the internal model
will be examined by monitoring predictive muscle acti-
vations, an index for on line predictive controls [39].
The long-term alterations will be analyzed using in
learning paradigms.

Conclusion
Anti-VGCC, anti-mGluR1, and anti-GluR delta Abs-
associated CAs show divergent clinical profiles in auto-
immune background (paraneoplastic or non-
paraneoplastic) and susceptible age. However, these pa-
tients commonly show good prognosis without cerebellar
atrophy in non-paraneoplastic conditions, suggesting
functional disorders in the internal model. These autoanti-
bodies would impair basal synaptic transmissions in the
cerebellar cortex. Besides, the dysregulated synaptic
plasticity-related dysfunction might be overlapped, since
VGCC, mGluR1, and GluR delta are involved in the
induction of PF-PC LTD. Deficits in restoration of the
internal model might occur. Furthermore, dysregulated
PF-PC LTD might impair the execution processes of the
internal model. In order to highlight the synaptic
plasticity-related dysfunction, we propose the concept of
“LTDpathies” to gather cerebellar ataxias associated with
antibodies targeting the critical mechanism of PF-PC
LTD. Auto-antibodies impair fundamental paths of a key-
plasticity in the cerebellar cortex. “LTDpathies” share a fa-
vorable prognosis, highlighting that this group of disorders
does not target the cerebellar reserve in terms of neuronal
destruction, but rather blocks adaptative mechanism in
the cerebellum.
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