
Bridge vibration measurements using 
different camera placements and techniques 
of computer vision and deep learning
Yongsheng Bai1,2, Halil Sezen1*, Alper Yilmaz1 and Rongjun Qin1 

1  Introduction
Most bridges and buildings are large in size and volume. It is difficult and challenging for 
measuring their response to external excitations and assessing their performance at full 
scale for Structural Health Monitoring (SHM) missions. In practice, SHM can be imple-
mented at a local scale when a limited number of sensors are placed only at critical loca-
tions of important infrastructure. Vibration- and vision-based sensors are commonly 
used for deformation and vibration measurements of existing structures. The former can 
record the acceleration or dynamic response of the structures, thus, inherent dynamic 
characteristics such as structural frequencies and vibration modes can be inferred from 
the measurements and observations, and utilized to assess the performance of the 
structures. The vision-based systems in civil engineering have been used not only for 
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detecting visual damage (Bai et al. 2023), but also for measuring deformations and vibra-
tions (Dong and Catbas 2021). In recent years, the cost of cameras and Unmanned Aerial 
Vehicles (UAVs) has decreased dramatically to make them an attractive option for SHM.

Computer vision has been used for monitoring the movement of objects accurately, 
which our vision system can notice but is unable to quantify. The objective of this 
research is to apply vision-based technologies to quantitatively capture and analyze 
the motion of structures. We were motivated by studies using computer vision meth-
ods to measure the movement of structures (Feng et al. 2015; Chen et al. 2017). Also, 
some practices (Bai et  al. 2021b, 2023) provide insights on how current knowledge of 
computer vision and deep learning can be facilitated to monitor and measure structural 
response to excitations in laboratory and field experiments.

In this research, three practical ways of camera placements are illustrated in Figs. 4, 
5 and 6 are utilized to capture the motions of structures: 1) stationary cameras placed 
remotely and focused on a bridge for tracking one or multiple targets simultaneously, 2) 
structure-mounted cameras fixed on a bridge as contact sensors (e.g., accelerometers, 
see Section 2) to measure the bridge’s vibrations, and 3) UAVs deployed to record both 
motions of the bridge and drones when nearby stationary objects are utilized as the ref-
erence. The first camera placement was tested with laboratory experiments and achieved 
subpixel accuracy (Bai et al. 2021a). Then, a more comprehensive study is implemented 
further using data from field experiments and other laboratory tests. A stationary cam-
era itself can be the reference for the moving bridge. Otherwise, the nearby buildings or 
other motionless surroundings can be treated as a stationary reference to eliminate the 
movement of cameras caused by ambient motions, including the wind, ground motion 
induced by the surrounding traffic, and the UAV’s movement during its flight. Also, it 
is strongly believed that the combined experience and expertise of structural engineer-
ing and computer vision are helpful to achieve good performance with the proposed 
framework when the appropriate targets and references are selected. For example, in the 
experiments of bridge vibration measurements, it is the mid-spans where the most sig-
nificant motion happens and it is their joint regions where there are more textures that 
can be considered as the tracking targets. The cameras used in the field experiments cost 
60 to 500 US dollars each and were operated at low speeds (i.e., 30 to 84 frames/second). 
Markers were not needed for the tests.

We have three main objectives for using camera-based technologies easily and effec-
tively to monitor and assess the dynamic performance of in-service bridges: 1) inte-
grating three possible camera placements mounted on different platforms to measure 
the vibrations of bridges using a deep learning framework, 2) validating the proposed 
framework of processing visual data with two shaking table tests and field experiments 
of pedestrian bridges, and 3) applying both displacement and frequency subtractions 
to remove camera motion in these measurements. These camera placements and tech-
niques are addressed in Section 3, and their limitations are discussed in Sections 4, 5, 
and 6. Because pedestrian bridges are easily excited and the experiments can be con-
veniently repeated in the field, six of them were selected as the demonstration for the 
experimental studies in this paper. With the same framework, tests on traffic and railway 
bridges and a building in the progressive collapse study were also conducted and showed 
promising results for deflection and vibration measurements (Bai 2022). In all these 
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field experiments, accelerations measured by the wireless accelerometers and displace-
ments measured by various cameras were not compared directly. Rather, the structural 
frequencies obtained from the measured accelerations and displacements (e.g., Figs. 15, 
16 and 17 and Table 1) were used to validate the method proposed in this paper.

2 � Related work
In order to better understand our work, research, and applications on displacement 
and vibration measurements with computer vision and deep learning methods, which 
inspired us to have a new framework in this paper, are addressed in this section. Also, 
studies about UAVs and wireless accelerometers are reviewed since we used both in our 
research.

Conventional computer vision techniques for measuring displacement or vibration 
can achieve high accuracy in practice. Feng et al. (2015) proposed an upsampled cross-
correlation as a template matching algorithm to measure the displacement and vibration 
in a shaking table test and performed two field tests, including the tests on a railway and 
a pedestrian bridge. Chen et al. (2021) proposed a method with Digital Image Correla-
tion to track the displacement or vibration of individual points on a model bridge. Dong 
et al. (2019) utilized optical flow estimation to track non-target objects on grandstand 
structures and implemented modal identification. Some researchers also employed vari-
ous template-matching algorithms to track and measure the displacement or vibrations 
of buildings (Lee et al. 2017; Yin et al. 2014; Liu et al. 2016; Rajaram et al. 2017; Chen 
et al. 2017). Guo and Zhu (2016) applied the Lucas-Kanade template tracking algorithm 
on displacement measurement in an experiment, which is used as another method in 
this research. In these studies, how to obtain the subpixel accuracy for the measure-
ments was addressed. An accuracy of 0.016 to 0.25 mm and 0.64 to 3.5 mm is reported, 
respectively, for the displacement measurements with cameras in these laboratory and 
field experiments.

Image-based deep learning methods for vibration measurements have achieved better 
performance since they can extract more useful features in the following research. Dong 
et  al. (2020) implemented FlowNet2 on displacement and vibration measurements of 
various structures. Their approach to eliminating the movement of cameras during field 
tests is instructive to us about how to use displacement subtraction for true vibrations. 

Table 1  Fundamental frequency (Hz) of six pedestrian bridges measured and extracted by three 
different camera placements and accelerometers (Accs), and calculated by structural analysis with 
SAP2000

Remote, Structure- and Drone- stand for remote, structure-mounted and drone-mounted cameras. M and L stand for 
the Mask R-CNN + SIFT and LK tracker methods, respectively. D- and F- refer to displacement subtraction and frequency 
subtraction

Remote Accs Structure-mounted Accs Drone-mounted Accs Structural 
analysis

CPB-1 M: 3.99 (L: 3.99) 4.03 M: 4.02 (L: 4.02) 3.99 D-: 4.04 (F-: 4.02) 3.99 4.04

CPB-2 M: 5.44 (L: 5.44) 5.44 M: 5.49 (L: 5.47) 5.47 D-: 5.45 (F-: 4.94) 5.45 5.44

CPB-3 M: 5.43 (L: 5.43) 5.43 M: 5.47 (L: 5.45) 5.45 5.44

CPB-4 M: 3.84 (L: 3.84) 3.85 M: 3.84 (L: 3.84) 3.85 D-: 3.91 (F-: 3.87) 3.84 3.88

CPB-5 M: 4.68 (L: 4.68) 4.66 M: 4.69 (L: 4.62) 4.64 D-: 4.70 (F-: 4.68) 4.59 4.75

CPB-6 M: 4.61 (L: 4.61) 4.62 M: 4.61 (L: 4.62) 4.61 D-: 4.68 (F-: 4.68) 4.60 4.75
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Xiao et al. (2020) investigated a proposed SHM system using deep learning algorithms 
to evaluate the structural responses with visual data fused with data from conventional 
sensors. Dong and Catbas (2019) applied the Visual Graph Visual Geometry Group net-
work to extract features on the target and performed a field test on a two-span bridge. 
From these papers, an accuracy from 0.0087 to 0.08 mm was reported in the laboratory 
tests. Bai et al. (2021a) proposed a High-resolution Mask Regional Convolutional Neu-
ral Network (HR Mask R-CNN) to track and accurately measure the deflection of three 
concrete beams, and the vibrations of three masses on a shaking table in the laboratory 
tests. The deep learning method was trained by following standard data annotation, loss 
regulation, and parameter settings. Moreover, a measurement-smoothing technique 
referred to as the Scale-Invariant Feature Transformation (SIFT) was also introduced for 
high-accuracy measurements. Thus, the average error of deflection measurements from 
HR Mask R-CNN + SIFT for three test beams is 0.13 mm, and the difference between 
the extracted and input frequencies is less than 9 % by identifying all the intended fre-
quencies. This paper is based on our previous study but is more comprehensive.

Recently, UAVs are largely deployed for vibration measurements for their high mobil-
ity and efficiency. These studies (Yoon et al. 2018; Chen et al. 2021; Hoskere et al. 2019; 
Ribeiro et al. 2021; Perry and Guo 2021; Khuc et al. 2020) provided good examples for 
researchers to follow, and their methods to process the visual data from the drones are 
helpful to this research. For example, Khuc et al. (2020) utilized the UAVs to measure 
the swaying displacement of small-scale structures. Between two consecutive frames in 
a video, the keypoints on a target were located and matched so that their average move-
ment represents the displacement. This is a method similar to our research on how to 
eliminate camera motion. But, in our study, all the frames in a video are aligned to the 
first frame by the affine transformation (Szeliski 2010).

Wireless accelerometers have been used as contact sensors to detect and capture the 
dynamic response of various bridges (Gheitasi et al. 2016; Gibbs et al. 2019; Baisthakur 
and Chakraborty 2020; White et al. 2020), and their data can validate the vibration meas-
urements from cameras. In our study, several G-Link-200-8G wireless accelerometers 
(LORD 2022) were employed as ground-truth sensors. These accelerometers have high 
sensitivity for three axes (i.e., the input range is ±2/2/4/8g ), and their bandwidth can 
reach 1 kHz . Its noise will be lowered to 25µg

√
Hz , but its wireless range and sampling 

rate can be up to one kilometer and 4 kHz . Also, programmable high- and low-pass digi-
tal filters are utilized in the built-in program. This sensor can work continuously until 
the batteries lose their power. In addition, multiple accelerometers can be used simulta-
neously for lossless data collections, scalable network sizes, and node synchronizations 
of ±50µs . Two or three of them were placed on testing bridges as another vibration data 
source in our field experiments.

3 � Methodologies
In this section, how a camera can perform the displacement or vibration measure-
ments is introduced at first, then, three different camera placements, filters to sup-
press the noise, and two techniques to remove the camera motion are discussed. The 
experiments conducted on the pedestrian bridges belong to free-damped vibration, in 
which a bridge is subjected to an initial excitation (e.g., a jump on the bridge’s deck) 
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and can vibrate at one or more frequencies. This oscillation diminishes from the peak 
to the standstill because of damping (Chopra 2019). In contrast, simulated structures 
on shaking tables are forced to vibrate by the tables and reach their resonant states 
when their frequencies are equal to the input ones from the tables.

3.1 � Two‑dimensional displacement measurements

Cameras can be used to capture the movement of an object or a target in the real 
world and save their projection on films (conventional cameras) or electronic stor-
age devices (digital cameras). The pin-hole model is a typical model to interpret the 
relationship between a 2D image and the real world. The motion of this target can be 
recorded with a camera as shown in Fig. 1: the target represented by a point moves 
from position A to position B in real-world coordinates, but its motion can be pro-
jected to the image plane so that its trajectory ab is captured by the camera. This 
motion can be decomposed into two principal directions (i.e., dx and dy) defined by 
the image plane, in which the left corner is the origin while x and y axes refer to the 
direction from left to right and from top to bottom, respectively. The coordinates of 
each point on the image plane are in pixels, where one pixel is the smallest 2D square 
to divide the image plane evenly in two directions. Pixels can be used as the length 
unit of the image plane for measurement. For example, the convention to describe the 
pixel resolution is to use the set of two integer numbers, width and height. Width is 
the number of pixel columns in x direction and height is the number of pixel rows in 
y direction.

If each tracking target is assumed to be a rigid body, its motion can be represented 
by any point on it or by a bounding box to scope it. As shown in Fig. 2, the transla-
tion of a target between the first and ith frame, dxi and dyi , can be calculated as the 
position change of the bounding box or the average change of tracking points in the 
image plane of a stationary camera. The measured motions of a target can be directly 
used as its displacement since the camera is standstill and not affected by the target’s 
movements. Otherwise, the motionless surroundings have to be utilized to remove 
the camera’s motion in the measurements (see Eqs. 4 and 5).

Fig. 1  Projection of displacement from A to B in the real world on an image plane
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3.2 � Measuring the motions of targets with a deep learning method and an optical flow 

approach

To track the moving targets on a structure, template- and optical-flow-based methods 
have been proven to be effective in literature review. In this paper, a deep learning 
method using the High-resolution Network as the backbone, which is a template-
based method and referred to as Mask R-CNN, is proposed to track and crop the 
targets with visual data (Bai et  al. 2021b; Bai 2022). In addition, SIFT (Scale-Invar-
iant Feature Transformation) is utilized to obtain more accurate measurements on 
the cropped images of the targets. This pipeline was verified with a static laboratory 
test and a shaking table test, whereas an optical flow approach named Lucas-Kanade 
(LK) tracker is employed for verification and comparison (Bai et al. 2021a). Figure 3 
is the flowchart of Mask R-CNN + SIFT. The LK tracker has a similar framework, but 
directly tracks the target and computes optical flow between neighboring frames.

The displacement or vibration measurements can be converted from pixels to 
length units (inches or millimeters), which is also called a scalar, s. The horizontal and 
vertical displacements �xi and �yi of the target can be obtained as follows:

Fig. 2  Translation of a target measured by a bounding box or by matching keypoints

Fig. 3  Flowchart of Mask R-CNN + SIFT for automated displacement and vibration measurements with a 
stationary camera
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With this conversion, the measurements were converted into millimeters (mm). The 
scalar is in a range between 1.10 and 3.40 mm/pixel in our field experiments. Also, the 
SIFT helps us to obtain subpixel accuracy, thus, the error of displacement measurements 
for three concrete beams in a laboratory test can be 0.13 mm (Bai et al. 2021a). In field 
experiments, the same subpixel precision can be achieved but accuracy may be lower 
than tests in the laboratory because of the longer distance with our current cameras.

3.3 � Three camera placements

Three following different ways of camera placements are studied for potential real appli-
cations. Based on our research, structure-mounted cameras may be the first application 
used in field experiments by us.

1) Structure-mounted cameras: A camera can be fixed on the bridge deck and 
have the same motion as the standing point. First, the camera will focus on nearby 
motionless objects such as buildings and the ground, and then the excitation (e.g., 
jumps on a pedestrian bridge) is applied to the structure. In this case, the camera 
plays a role of an accelerometer to reflect the vibration where the camera is seated. 
Figure 4 illustrates how a camera and its tripod are placed on the deck of a pedes-
trian bridge and the nearby building is used as the reference for bridge motion. The 
camera has the same motion as the bridge since heavy bags are hung on the hook of 
the camera and partially supported by the bridge’s deck. The locations for these cam-
eras must be far from the bridge supports and undergo motion that is signified due 
to excitations during the experiments, for example, all cameras in field experiments 
of this study were placed near or on the mid-span of pedestrian bridges.

(1)�xi = s × dxi

(2)�yi = s × dyi

Fig. 4  An example of a structure-mounted camera to measure the vibration of a pedestrian bridge
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2) Remote cameras: In this case, a camera is placed remotely (e.g., far or close 
away) from the monitored bridges. The camera should be kept stationary during 
the testing process as much as possible, but it is not necessary to prevent slight 
motion of the camera since that motion can be canceled with displacement and 
frequency subtractions (see next subsection). In addition, the focal length of a 
camera is decisive for long-distance measurements. The longer the focal length 
is, the farther the camera can be placed from the bridges. A typical illustration of 
this camera placement is shown in Fig. 5. There are several advantages for remote 
cameras in measuring the vibration or displacements of the targets: First, a cam-
era can capture the motion of multiple locations for the bridge simultaneously 
while a structure-mounted camera is limited to one target. Second, there are more 
available observation locations to fix a remote camera so that there are fewer risks 
for structural engineers who perform SHM missions. Finally, the targets can be 
mounted with markers or not, so it is convenient and less time-consuming for 
structural experts.
3) Drone-mounted cameras: A drone has high mobility and can be quickly 
deployed in SHM tasks. In Fig. 6, a drone flies to a certain height and keeps stable 
when focusing on a part of the pedestrian bridges and nearby reference objects 

Fig. 5  An example of a remote camera to measure the vibration of a railway bridge

Fig. 6  An example of a drone for vibration measurement of a pedestrian bridge
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during the experiment. The motion of the drone can be obtained by aligning all 
the frames of the video to the first frame with the affine transformation (Szeliski 
2010): First, the Lucas-Kanade tracker is used to focus on the reference (i.e., sta-
tionary objects) and obtain the affine transformation matrix between the first and 
current frame in the drone video. Second, the affine matrix is utilized to align the 
current frame to have the same perspective or viewpoint as the first frame. We 
can use Eq. 3 to map points and parallel lines with this affine transformation and 
not to change their geometrical relationships. 

where X ′ = (x′i, y
′
i)
T and X = (xi, yi)

T represent intensity values of the ith pixel 
located at position ( x′i , y

′
i ) on the aligned image and ( xi , yi ) on the original image, 

A = (
a b
c d

) and T = (
t1
t2
) are linear transforms (i.e., rotation and scale) and transla-

tions in the affine transformation. a, b, c, and d are the rotation coefficients whereas 
t1 and t2 are translation in x and y directions. Third, the LK tracker and Mask R-CNN 
+ SIFT can be employed to measure the bridge motion and drone motion simulta-
neously. Finally, the pure motion of the observed bridges can be obtained from Eq. 4. 

where U, U0 , and Ur are the pure bridge motion, measured bridge motion in the 
drone and drone movement from aligned images, respectively. This is referred to as 
displacement subtraction. On the other hand, if F, F0 and Fr , respectively, are defined 
as the frequencies extracted from the pure bridge motion, measured bridge motion 
in the drone and drone movement itself. We can obtain the distribution of the fre-
quencies of the observed bridges with drone-mounted cameras as this: 

This is a direct way of using the subtraction of the frequency domain. Therefore, it is 
called frequency subtraction. Both techniques utilized to eliminate the camera or drone 
motion are addressed in Section 4.

3.4 � Filters for vibration signals and frequency extraction

At the beginning of this study, we found that the trend of vibration measured by the 
cameras is not flat when a free-damped vibration occurred by an initial excitation (see 
Fig.  7a). Also, noise caused by very low or high frequency affects the accuracy of fre-
quency extraction methods. In addition, we noted that some filters are utilized to sup-
press the low frequencies for the data from the wireless accelerometers used in our 
experiments. Therefore, several filters had been compared so that the robust one can 
be used to filter the original vibration signals and obtain low-noise data from cameras. 
Figure 7 shows an example in which various filters are applied to the measured vibra-
tion for the free-damped vibration of a pedestrian bridge. But the trends for the filtered 
vibration by both Convolution and Median filters are not retrieved to be flat. The other 
three filters, including FIR (finite impulse response), IIR (infinite impulse response), and 

(3)X ′ = AX + T

(4)U = U0 − Ur

(5)F = F0 − Fr
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Butterworth band filters (Press and Teukolsky 1990), can detrend well and retrieve back 
the similar shape of free damped vibration. It can be noted that, however, the IIR and 
Butterworth band filters can have a good agreement with the shape and the phases of the 
original signal. In Fig. 8, the frequencies extracted from the filtered vibration by these 
three filters have the same patterns and values. The natural frequencies of the bridges 
are detectable and consistent with each other. Since the very low and high frequencies 
can be suppressed significantly by a band passing technique, the Butterworth band pass-
ing filter is finally chosen to detrend and eliminate very low and high frequencies in the 
measured vibration signals with cameras.

The procedure for frequency extraction of the vibration is as follows: The vibration 
signals obtained by applying the Mask R-CNN + SIFT or LK tracker for visual data are 
filtered by the Butterworth band filter at first, then, frequencies of these filtered signals 
are extracted by Fast Fourier Transform (FFT) (Cooley and Tukey 1965) separately. In 
this paper, the highest frequency that our method can detect is the Nyquist frequency, 
which is half of the frame rate.

3.5 � Displacement or frequency subtraction for systematic motion removal

The systematic motion of a camera or a drone occurs due to the wind, ground motion, 
or the drone’s movement in the air. If camera motion is small (e.g., less than one 
pixel), the pure vibration of the excited structures can be obtained via subtraction of 

Fig. 7  Filtered vertical vibration of a pedestrian bridge (i.e., CPB-4 in Fig. 14d) with different filters. a to 
f are results from Convolution, Median, FIR (finite impulse response), IIR (infinite impulse response), and 
Butterworth band filters, respectively
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the motion of the reference and targets on the structure, which is called displacement 
subtraction (Chen et al. 2021; Dong et al. 2020; Nishi and Matsuda 2017). Then, the 
dynamic characteristics of structures like natural frequencies can be further extracted 
since the contribution of the camera motion is directly removed in the time domain 
(Eq. 4). Displacement subtraction is an intuitive way to assess the actual vibration of 
structures. Also, frequency subtraction is employed in this paper to extract the fre-
quencies of vibration for infrastructure from visual data, including 1) extracting the 
frequencies of camera motion and the vibration of the excited structure in the camera 
separately, and 2) subtracting them directly to obtain the frequencies of the vibrated 
structures. (see Eq. 5 and Fig. 17).

Fig. 8  Filtered vertical vibration of camera data and extracted frequencies by three different filters and 
acceleration data for CPB-4 pedestrian bridge. a, b, and c are results from band filters of FIR, IIR, and 
Butterworth, respectively. d is the measurement by an accelerometer
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4 � Experiments
Shaking table tests and field experiments on pedestrian bridges are used to validate our 
proposed framework. Other field experiments on traffic and railway bridges were dis-
cussed in the dissertation of the first author (Bai 2022).

4.1 � Shaking table tests in the laboratory

Shaking table tests can be experiments to simulate and assess the dynamic performance 
of structures in a controlled environment. Two online videos are utilized for this pur-
pose, and our framework is applied directly to capture the vibrations and frequencies of 
the simulated structures. Since there is no geometric information in the shaking table 
tests, we used the pixel unit to indicate our results. All the measured vibrations are in 
the horizontal direction.

4.1.1 � The shaking table test 1 with multiple single‑DOF masses

Our proposed method was applied on a shaking table test with three separate masses 
(Mstkwon 2008b) to check its applicability in monitoring the dynamic movement of 
objects. In this test, there are three rectangles (masses) fixed on the shaking table at dif-
ferent heights (see Fig.  9a). Each rectangle, which is supported by two sticks and has 
its unique resonant frequency in the horizontal direction. This is due to differences in 
the lateral stiffness of each pair of sticks. The frequencies of the applied shaking are 
increased from 4.0 to 13.65 Hz to excite these masses and cause their harmonic vibra-
tions. From the recorded video, 150 frames are randomly selected from a total of 6,674 
frames and labeled for training the Mask R-CNN. The video has an image size of 640×
480 and a frame rate of 30 per second. SIFT is not applied to smooth the measurements 
since the goal of this test is to detect the frequencies instead of accurate amplitudes of 
the vibration. Thus, the motion of the bounding box represents the translation of each 
object. The LK tracker is utilized to verify our method by tracking the same vibration 
of the shaking table. On one hand, all the raw data are processed by the Butterworth 
filter, and FFT is applied to extract the frequencies for each tracking target. The filtered 
vibrations of the shaking table with the LK tracker and Mask R-CNN are shown in the 
left figures in Fig. 10. There are three major frequencies of vibration at approximately 

Fig. 9  Examples of training data for two shaking table tests (Mstkwon 2008b, a). The original images are 
shown in (a) and (c), and the tracking targets for the masses, floors and shaking tables are in different colors 
in (b) and (d)
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4.00, 6.35, and 11.35 Hz excited by the table. Both methods capture these frequencies 
with a less than 9.9% error. On the other hand, the vibrations of three rectangles are 
measured by the Mask R-CNN too. As shown in Fig. 11, their resonant frequencies are 
very close to the frequencies identified in Fig. 10 (i.e., 4.0, 6.35, and 11.35 Hz). The error 
rates for resonant frequencies of three masses are 0% ((4.0-4.0)/4.0=0% ), 9.9% ((6.98-
6.35)/6.35=9.9% ) and −2.6%((11.06-11.35)/11.35=−2.6% ), respectively.

Fig. 10  Vibrations (left) and frequencies (right) of the shaking table in Fig. 9a measured by two methods. a 
and b are the results from Mask R-CNN and the LK tracker, respectively

Fig. 11  Vibrations (left) of three masses measured by Mask R-CNN and the corresponding frequencies (right) 
calculated by FFT in shaking table test 1. a, b and c are the results for mass 1 to 3 in Fig. 9a



Page 14 of 25Bai et al. Advances in Bridge Engineering            (2023) 4:25 

4.1.2 � A simulated multi‑story structure in the shaking table test 2

This is another laboratory experiment from a video including 3,573 frames in a two-
minute video (Mstkwon 2008a), and the proposed framework of Mask R-CNN + SIFT 
is used to track and measure the dynamic performance of this simulated structure. 
The frame rate is 30 frames per second and the image size is 640×480 for this video. 
208 frames are randomly selected for labeling (see Fig. 9c). The Mask R-CNN has been 
trained to track three rectangles and the shaking table simultaneously. In the test, there 
are two designated frequencies, 4.35 and 12.55 Hz, for this three-story structure. The 
measured vibrations and frequencies of three rectangles are shown in Fig. 12, in which 
the extracted frequencies are almost identical to the frequencies of the shaking table as 
a resonant response. This is because the amplitude of each rectangle is more than one 
pixel, so there is no need to use the SIFT to achieve the subpixel accuracy of the vibra-
tions of these rectangles. In addition, the modes of this structure are captured in video 
and found by our model. Figure 13 shows two examples of its modes in the video and 
modal extraction with our method. These two modes corresponding to the resonance 
excitation are captured. The third mode, however, is not detected since there is no exci-
tation. It can be inferred that the modes of the structure can be measured by the pro-
posed method and have good agreement with the law of structural dynamics.

4.2 � Field experiments on pedestrian bridges

Six pedestrian bridges on the main campus of The Ohio State University (OSU) were 
tested in this study (see Fig. 14). All of them are steel truss structures with steel tubes 
and concrete slabs since the steel tube trusses for pedestrian bridges are lightweight 

Fig. 12  Vibrations (left) of three floors measured by Mask R-CNN and the corresponding frequencies (right) 
calculated by FFT. a, b and c are the results for floors 3 to 1 in Fig. 9c
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and the components can be manufactured in a factory with low cost and high qual-
ity. CPB-1 is a three-span bridge and its middle span is 78 ft long. The other five 
bridges have a single span and simple supports. CPB-2 and CPB-3 are almost the 
same with a 30-ft-long span, Also, CPB-5 and CPB-6 have an identical configuration 
of an 80.75-ft-long span. CPB-4 is a 72-ft-long pedestrian bridge. All of the vibra-
tions measured by cameras, drones, and accelerometers are in the vertical direction 
for these pedestrian bridges.

It is common that the stiffness of these bridges usually is not high, which means the 
vibration caused by walking and running is acceptable. Therefore, some bridges on the 
OSU main campus are chosen as the way to validate our methods. In these field tests, 
jumps from a person are the source to cause the vibrations of these bridges. Since this 
excitation leads to the free-damped vibration of each pedestrian bridge, the three pro-
posed camera placements are applied and our proposed framework for visual data pro-
cessing is tested. To monitor the motion of a target on the bridge, the Mask R-CNN 
was trained at first with 50 frames randomly selected from the videos, thus, the target 
can be recognized and tracked with the proposed pipeline of or displacement vibration 
measurements.

Fig. 13  Dynamic modes of the multi-story structure in Fig. 9c captured by our method. a and b are two 
modes in the video, and c is the measured modes by our method

Fig. 14  Six pedestrian bridges tested in this study
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4.2.1 � Tests on CPB‑1

This is a three-span bridge. The vibrations of its midspan in the second span were moni-
tored. Three ways of camera placements, including remote, structure-mounted, and 
drone-mounted cameras as shown in Figs.  4, 5 and 6, are used to measure the vibra-
tions of this bridge. In data processing steps, both Mask R-CNN + SIFT and LK tracker 
are used. The frame rate of cameras placed on the deck and nearby the bridge is set as 
45 and 60, while the drone has a video with 48 frames per second. Their resolutions 
(image size) are 1,920×1,200 and 1,920×1,080, respectively. The remote and structure-
mounted cameras have a 25-mm long lens each. The long lenses enable the distant 
reference buildings to be clearly captured by the cameras, thus, high-accuracy measure-
ment can be achieved. Since the drone can fly very close to the bridge, the targets can 
have a good definition in these videos. The filtered vibrations and extracted frequencies 
with different camera placements are shown in Figs. 15, 16 and 17. For a free-damped 
vibration of the bridge, structure-mounted and remote cameras can be used to meas-
ure the vibration shape and magnitudes of the bridge. In Figs. 15a and 16a, compared 
to the fundamental frequency (the largest peak on each FFT plot) of this bridge cap-
tured by the accelerometers, the Mask R-CNN + SIFT method has a difference of −1.0% 
((3.99-4.03)/4.03=−1.0% ) and 0.8% ((4.02-3.99)/3.99=0.8% ) using remote and structure-
mounted cameras.

Figure 17 shows that the drone-mounted camera does not capture the exact dynamic 
response of the bridge accurately and the frequency plot has more noise than the other 

Fig. 15  Processed visual data measured by a remote camera (top two recordings) and accelerometers 
(bottom recording) on the CPB-1. a, b and c are measured vibrations and extracted frequencies from Mask 
R-CNN, LK tracker, and accelerometers, respectively
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two camera placements. If the largest peak in these FFT plots is the fundamental fre-
quency of this bridge, both displacement and frequency subtractions can find it (around 
4.0 Hz) precisely as we did in Figs.  15 and 16. These results show that the proposed 
framework and techniques for visual data processing work well for all these camera 
placements. But it also indicates that a drone-mounted camera may be more easily influ-
enced by the drone itself and weather conditions in the field. In addition, we found that 
appropriate excitations on these bridges are the key for significant movements of targets 
to be captured by our proposed framework when other experiments on traffic and rail-
way bridges were conducted (Bai 2022).

4.2.2 � Experiments on six pedestrian bridges

The measurements for the fundamental frequency of six pedestrian bridges are shown 
in Table 1 when each bridge was excited with one or multiple jumps in the field experi-
ments. It should be pointed out that the drone data for CPB-3 are missing because it has 
a similar structure to CPB-2 and the drone-mounted camera test was not performed. 
The results of the CPB-1 have already been shown in Figs. 15, 16 and 17. Table 1 indi-
cates our proposed framework can accurately capture all the fundamental frequencies of 
these tested pedestrian bridges. In this table, SAP2000 (CSI 2022) is used as a structural 
analysis method to model and compute the frequencies of these bridges as described in 
the dissertation of the first author (Bai 2022). The calculated fundamental frequencies 
are very close to the measured ones with the proposed pipeline.

Fig. 16  Processed visual data measured by a structure-mounted camera (top two recordings) and 
accelerometers (bottom recording) on the CPB-1. a, b and c are the measured vibrations and extracted 
frequencies by Mask R-CNN, LK tracker, and accelerometers, respectively
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4.2.3 � Sensitivity of structure‑mounted cameras for measuring the vibrations of bridges

Figure 8 shows the measured vibrations and extracted frequencies (peaks on FFT plots) 
when the camera was placed on the deck of the CPB-4 bridge, which means that the 
camera is used as a contact sensor. It shows that our proposed methods can not only 
accurately detect the vibrations of the bridge due to a jump, but also capture the top four 
frequencies of this bridge as the wireless accelerometers did. The same observation was 
found in the field experiments of CPB-1 in Fig. 16.

5 � Ablation study
5.1 � Effect of different speeds for camera operation

We conducted several experiments on the CPB-4 bridge with the structure-mounted 
camera placement to evaluate the influence of different frame rates, window sizes, and 
sampling rates on visual data acquisition and processing. First, the camera was used 
with various frame rates when an excitation like a jump was applied, and the bridge’s 
vibrations were precisely captured. The test result is shown in Fig. 18. In each test, the 
camera was operated from 30 to 84 frames per second when the bridge was excited by 
one jump. The reference is the building around the bridge (see Fig.  4), so the camera 
can capture almost the same shape of the free-damped vibration as the accelerometers 

Fig. 17  Processed visual data measured by a drone-mounted camera (top two recordings) and 
accelerometers (bottom recording) on the CPB-1. a and b are displacement and frequency subtractions, 
respectively, and c is the accelerometer data
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have done for this bridge. The five frequencies (peaks on FFT plots), which are detected 
by the accelerometers as 3.83, 5.95, 6.75, 15.20, and 16.70 Hz, are also captured by the 
structure-mounted camera accurately except for the case when the frame rate is 30. An 
unexpected frequency at 13.27 Hz, as shown in red, is provided by the latter. In all of 
these cases, the fundamental frequency can be well detected. This study shows that the 

Fig. 18  Measured vibration and extracted frequencies from a structure-mounted camera with varied 
operation speeds for CPB-4. a to f are the results from our method to process the visual data when fps = 30, 
40, 50, 60, 78.5, and 84, respectively, and g is accelerometer data (e.g., the maximum range of the frequency 
axis is half of the sample rate)
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structure-mounted cameras can have the same accuracy as traditional accelerometers 
in SHM missions. Also, it can be concluded that the low-speed camera standing on 
the bridge can not identify higher frequencies of the pedestrian bridges. Based on our 
experiments and the studies (Bai 2022), the cameras to monitor the vibrations of pedes-
trian bridges should have a frame rate of no less than 30 frames per second, such that the 
fundamental frequency and other significant frequencies can be captured. The higher 
the camera speed is, the more frequencies including higher ones can be detected.

5.2 � Effects of different window sizes and sampling rates on visual data

A study on the effect of different windows sizes and locations is conducted on pro-
cessing the above visual data when a camera was placed on the CPB-4 bridge record-
ing the bridge motion with 78.5 frames per second (see Fig.  18e). Figure  19 shows 

Fig. 19  Different window sizes and locations to sample datapoints in vibration signals measured on CPB-4 
with a structure-mounted camera. The sizes and locations of windows to sample data are shown in (a), and b 
to e are the filtered vibration of corresponding windows on original data and extracted frequencies
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that four correct frequencies of this bridge, which are around 3.86, 5.97, 15.17, and 
16.72 Hz, can be captured accurately by the proposed framework with Mask R-CNN 
+ SIFT only if the sampling windows (e.g., Windows 1, 3 and 4) include the whole 
free damped vibration of the bridge. But the noise becomes obvious in Window 2 
since the structural vibration has already disappeared in this period. In addition, the 
same data are sampled at every one, two, three, and four datapoints (see Fig. 20) to 
extract the frequencies during the data processing. Some datapoints are discarded to 
investigate if the remaining ones are sufficient to represent the characteristics of these 
measured vibrations. It shows that the extracted frequencies lose the accuracy (e.g., 
the frequencies shown in Fig. 20c and d in red colors) when the sample rates decrease 
to every three and four datapoints, but the fundamental frequency (i.e., around 3.85 
Hz) can be found.

Fig. 20  Measured vibration and extracted frequencies from a structure-mounted camera on CPB-4 with 
different sampling rates. a to d are resulted by sampling every one, two, three, and four datapoints on the 
original data (e.g., the maximum range of the frequency axis is half of the sample rate)
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6 � Discussion
The proposed framework has shown its effectiveness in processing data from remote, 
structure-mounted, and drone-mounted cameras in laboratory and field experiments. 
These camera placements and visual data processing techniques may offer engineers 
more options using cameras to assess bridges in SHM missions. Its performance is per-
fect in the shaking table test since the vibration shapes and modes are all captured accu-
rately. This is also consistent with our experimental results when our framework achieves 
an accuracy of 0.13 mm for measuring the mid-span deflection of concrete beams (Bai 
et al. 2021a). Our method will be automatic and real-time for repeated tests both in the 
field and laboratory after training. Also, other deep learning algorithms instead of the 
HR Mask R-CNN that we used in this paper can be employed to track targets, and then 
our data processing techniques are able to smooth the measurements, denoise the sig-
nals, and extract the frequencies with these visual data.

In practice, factors including temperature, moving vehicles, wind, source of excita-
tion of structures, and lenses of cameras must be taken into account for more accurate 
vibration measurements of existing bridges. Longer lenses and high-definition cameras 
are preferable so that a higher subpixel accuracy can be achieved, especially when the 
distance between cameras and targets is large. For example, we used 25-mm lenses on 
pedestrian bridges for remote and structure-mounted cameras in these tests, where the 
targets were 8 to 30 m from the cameras. The reference buildings and other motionless 
surroundings were in the view of cameras. Also, camera movements affect the accuracy 
of vibration measurements for bridges. Experiments addressed in Bai (2022) show that 
drone-mounted cameras do not work for these railway and traffic bridges because they 
are rigid and the corresponding excitation under normal load levels is insignificant to 
them. In addition, all these field experiments were conducted when the targets were in 
good visibility in cameras.

Each camera placement has its own merits and disadvantages. Drones can collect data 
quickly and can be close to the target bridges, but may not accurately capture frequen-
cies of vibrations larger than the fundamental frequency of these pedestrian bridges. 
Structure-mounted cameras are able to overcome this shortcoming but need to be fixed 
on bridges. Otherwise, remote cameras can be placed far away from the bridges. Cur-
rently, limited by the cameras’ quality, we only measured the vibrations of one target on 
a pedestrian bridge with these three camera placements, but multiple cameras can be 
synchronized to focus on different targets on the bridges as we did in the experiments 
on a railway bridge (Bai 2022). Also, it is possible to monitor multiple targets with high-
quality cameras mounted on drones or placed remotely. However, whatever camera 
placements are used for data collection, the cameras must be standstill or have a station-
ary object in videos. We are still working on some guidelines for the consideration of all 
these factors.

7 � Conclusions
In order to mimic human vision for measuring bridge vibrations, a framework using dif-
ferent camera placements and utilizing techniques of computer vision and deep learn-
ing is proposed to save time and cost in SHM missions. It can not only provide ways of 
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visual data acquisition, but also show how to use data processing techniques, including 
noise removal, data sampling, and camera motion removal, for achieving accurate and 
reliable results. There are some conclusions in this research: 

1)	 Three camera placements were tested for the applications of the vibration measure-
ments on existing bridges. Our experiments show that the proposed framework can 
help process the visual data effectively. Structure-mounted cameras, which were first 
tested by us, can be used as contact sensors for more accurately measuring vibra-
tion signals and extracting more natural frequencies. Remote cameras can perform 
long-distance measurements well with long lenses. Drone-mounted cameras can 
detect the fundamental frequencies of the structures even though they may not pro-
vide accurate magnitudes of the vibrations for pedestrian bridges. Both methods of 
frequency and displacement subtractions were successfully applied to eliminate the 
camera movement in field experiments.

2)	 Six pedestrian bridges, which are all in service and the normal traffic was not 
affected, were used to validate the proposed framework. Dynamic characteris-
tics of these bridges under the free-damped vibration can be captured. Since the 
modal shapes of the simulated structures in shaking table tests can be found with 
our methods, it is possible to apply the framework to obtain the modal shapes and 
other dynamic characteristics of these bridges. It should be noted that this proposed 
framework can get better results when appropriate excitations on existing traffic and 
railway bridges are applied (Bai 2022). Also, the Mask R-CNN used for motion track-
ing in the proposed framework can be replaced with other deep learning algorithms 
to measure the vibrations of bridges.

3)	 The influences of frame rates of cameras, positions and sizes of sampling windows, 
and sampling rates (camera speed) are also studied for visual data processing in prac-
tice. Our experiments indicate that the camera speed should be larger than 30 frame 
per second, and the sampling window should include the vibrations from beginning 
to the end. Also, some visual datapoints can be discarded without affecting the accu-
racy if high-speed cameras (e.g., fps≥78.5 in our experiments) are used for these in-
service bridges.

Structural damage detection can be potentially applied to the visual data obtained from 
the proposed framework. Also, the applicability of cell phones with the same framework 
as discussed in this paper is worthy of testing for bridge vibration measurements in the 
future.
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