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Abstract

Aerodynamic flutter instability has been a major concern for long-span flexible
bridges, such as suspension and cable-stayed bridges, subjected to wind actions that
result in the so-called self-excited forces. Though turbulence effects on bridge flutter
have been studied in the last few decades, its true effects remain a debate due to
the limitation of previous wind tunnel facilities, such as using turbulence scales that
are too small in these experiments. In this paper, the characterizations of self-excited
forces are presented in both the frequency-domain and in the time-domain. Then,
the flutter analysis is conducted under both smooth flow and turbulent flow in order
to investigate the effect of wind turbulence on the flutter instability. The effect of
wind turbulence is directly modeled in the time-domain in order to avoid the
complicated random parametric excitation analysis of the equation of motion used
in previous studies. By comparing the results of different turbulence intensities with
that of the smooth flow, it is found that the turbulence has a stabilizing effect on
bridge flutter. The turbulence can change the vibration patterns and weaken the
spatial vibration correlation to some extent. As a result, the critical flutter velocity can
be increased by 5% to 10% over that under smooth flow.

Keywords: Flutter instability, Long-span bridges, Turbulence, Frequency-domain,
Time-domain

1 Introduction
The aerodynamic instability of long-span bridges under strong wind excitations

has been a major concern in recent years, especially with the continuously in-

creasing span length built around the world, especially in China. The well-known

failure of the old Tacoma Narrows Bridge has heightened people’s attention to

wind-resistant design for long-span bridges and led to many research studies and

investigations on bridge flutter performance (Zhang et al. 2017; Caracoglia 2018;

Tang et al. 2019; Gao et al. 2020). At first, flutter analysis was based on the thin

airfoil theory given by Theodorsen and Mutchler (1935). Afterwards, Scanlan and

his co-authors (Scanlan and Tomo 1971; Scanlan and Jones 1990) developed the

formulations of the lift, drag, and pitching moment motion-dependent forces,
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otherwise known as the self-excited forces, which are presently widely used.

These equations involve the flutter derivatives obtained from experimental mea-

surements on sectional bridge deck models. There are general two approaches for

flutter analysis: the frequency-domain approach and the time-domain approach.

In the frequency-domain method, the critical flutter velocity, the flutter mode

shape, and the corresponding frequency can be obtained by conducting a com-

plex eigenvalue analysis (Agar 1989; Miyata and Yamada 1990; Jain et al. 1996;

Dung et al. 1998; Ge and Tanaka 2000; Liu et al. 2018; Han et al. 2015). In the

time-domain method, the self-excited forces are represented in the form of the

indicial functions (Scanlan et al. 1974; Zhang et al. 2010; Caracoglia and Jones

2013; Zhang et al. 2019) or rational functions (Chen et al. 2000; Chowdhury and

Sarkar 2005), which can be identified through experimental tests or numerical ap-

proaches from available flutter derivatives.

While a few studies have investigated the effect of wind turbulence on bridge aero-

dynamic instability (Lin and Ariaratnam 1980; Bucher and Lin 1988a, 1988b, 1989; Lin

and Li 1993), for most of the previous work, the wind turbulence has been neglected in

the flutter analysis. However, based on the experiments carried out in wind tunnels on

full aeroelastic models of long-span suspended bridges, it is shown that the level of

wind turbulence generated in wind tunnels influences the aerodynamic instability of

the structure (Diana et al. 1993). Based on their observations on the measured flutter

derivatives, Scanlan and Jones (Scanlan and Jones 1991; Scanlan 1997) found that the

flutter instability performance can be enhanced in a turbulent wind field because the

turbulence may weaken the inherent correlation of the self-excited forces along the

bridge deck. At the same time, to theoretically investigate the wind turbulence effect on

bridge flutter instability, complicated random parametric excitation analyses were con-

ducted since the equation of motion becomes a randomly parametrically excited type

of equation. The results showed that wind turbulence with high intensity might also

have adverse effects that reduce bridge flutter instability (Bucher and Lin 1988a, 1988b;

Cai et al. 1999). These results also raise the question: Can the influence of wind turbu-

lence on flutter instability be fully reflected in the measured flutter derivatives? Huston

(1986) has conducted a series of studies on the effects of large-scale turbulence on the

flutter derivatives and found that the turbulence does not always stabilize bridge flutter.

According to Li and Lin (1995), the presence of wind turbulence changes the combined

structure-fluid critical mode and results in a new energy balance. They suggested it is

the random deviation from the deterministic flutter mode that renders either the stabil-

izing or destabilizing effect of turbulence possible.

From these studies of turbulence effects on bridge flutter performance mentioned

above, it can be found that the majority of studies rely on wind tunnel tests due to the

inherent complexity of wind-bridge interactions, which makes their mathematical for-

mulations extremely difficult. However, the accuracy of the results of wind tunnel tests

largely depends on the matching degree of the turbulent atmospheric flows, which is

influenced by many factors, such as the Reynolds numbers, the integral scales, the tur-

bulence intensities, and the anisotropy, etc. Typically, only a fraction of the turbulence

characteristics can be matched in a wind tunnel experiment (Haan 2000). Numerical

analysis of bridge flutter performance in turbulent flow is relatively rare, and it has al-

ways been considered as a supplement of experimental simulation. These numerical
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simulation approaches, such as the random parametric excitation (RPE) analysis (Lin

1979; Cai et al. 1999), are usually too complex mathematically and/or too computation-

ally consuming. In the present paper, a simplified numerical approach is proposed in

which the influence of wind turbulence on bridge flutter instability is investigated nu-

merically in the time-domain, which not only avoids the complicated stochastic solu-

tion process, but also can technically include any nonlinear effects (geometric and/or

material nonlinear) in the analysis when deemed necessary. Taking the Karman

spectrum as the target spectrum, turbulent wind fields with different turbulence inten-

sities are simulated and utilized here. For comparison, three approaches: (i) the

frequency-domain approach based on flutter derivatives, (ii) the time-domain approach

based on rational functions under smooth flow, and (iii) the time-domain approach

under turbulent flow, haven been applied to predict the critical flutter velocity. These

results are compared and discussed based on the analysis of a prototype long-span

bridge.

2 Description of bridge and dynamic characteristics
The Taihong Bridge analyzed in the present study is a single span suspension bridge

that has a span length of 808m, a streamlined steel box girder with a width of 37.5 m,

and a height of 3 m. The two main cable planes are 33.6 m apart, and the bridge deck is

suspended by hangers at intervals of 12 m. The two bridge towers are reinforced con-

crete structures with a height of 112.7 m and 107.6 m, respectively. A sketch of the

bridge is shown below in Fig. 1.

The commercial finite element software ANSYS is used here to establish the 3D finite

element (FE) model of the Taihong Bridge. In the finite element model, the main girder

and the towers are simulated by Beam4 elements, and the main cables and suspension

cables are simulated by Link10 elements. Figure 2 shows the finite element model of

the Taihong Bridge.

The dynamic properties of the Taihong Bridge, including its natural vibration fre-

quencies and mode shapes are analyzed based on the dead load deformed configur-

ation. The results are shown in Table 1. The vertical bending and torsional vibrations

are usually the critical modes of flutter for suspension bridges. It can be found that the

Fig. 1 Sketch of the Taihong Bridge: (a) elevation view (unit: cm); (b) cross section (unit: mm)
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frequencies of the first order symmetric vertical bending and torsion are 0.183Hz

(Mode 4) and 0.451Hz (Mode 16), respectively, with a frequency ratio of 2.46; the fre-

quencies of the first order antisymmetric vertical bending and torsion are 0.137Hz

(Mode 3) and 0.491Hz (Mode 19) respectively, with a frequency ratio of 3.58. The typ-

ical mode shapes are shown in Fig. 3.

3 Identification of flutter derivatives using forced vibration method in time
domain
The flutter derivatives represent the characteristics of the self-excited aerodynamic

forces of the bridge section and are the most important parameters in the flutter in-

stability analysis of long-span bridges. Many studies have focused on the identification

of the flutter derivatives (Yamada and Ichikawa 1992; Sarkar et al. 1994; Gu et al. 2000;

Fig. 2 FE model of the Taihong Bridge

Table 1 Dynamic properties of the Taihong Bridge

Mode
number

Natural
frequency (Hz)

Mode shape Mode
number

Natural
frequency (Hz)

Mode shape

1 0.099 1st symmetric lateral
bending

11 0.342 1st antisymmetric lateral
bending

2 0.103 Longitudinal floating of
main girder

12 0.352 Main cables vibration

3 0.137 1st antisymmetric vertical
bending

13 0.401 Main cables vibration

4 0.183 1st symmetric vertical
bending

14 0.403 3rd antisymmetric
vertical bending

5 0.246 2nd symmetric vertical
bending

15 0.447 Main cables vibration

6 0.252 Main cables vibration 16 0.451 1st symmetric torsion

7 0.260 Main cables vibration 17 0.452 3rd symmetric vertical
bending

8 0.293 Main cables vibration 18 0.457 Main cables vibration

9 0.298 2nd antisymmetric
vertical bending

19 0.491 1st antisymmetric
torsion

10 0.335 Main cables vibration 20 0.496 Main cables vibration
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Chen et al. 2002). Self-excited lift force Lse and pitching moment Mse per unit length

are defined as (Scanlan and Tomo 1971)

Lse ¼ 1
2
ρU2B KhH

�
1
ḣ
U

þ KαH
�
2
Bα̇
U

þ K2
αH

�
3αþ K 2

hH
�
4
h
B
�

�
ð1aÞ

Mse ¼ 1
2
ρU2B2 KhA

�
1
ḣ
U

þ KαA
�
2
Bα̇
U

þ K2
αA

�
3αþ K 2

hA
�
4
h
B
�

�
ð1bÞ

in which h is the vertical or heaving displacement; α is the torsional or pitching dis-

placement; ḣ is the vertical or heaving velocity; α̇ is the torsional or pitching velocity; ρ

is the air density; U is the mean wind velocity; B is the bridge deck width; Ki = ωiB/U

(i = h, α) is the reduced circular frequency; ωh and ωα are the circular frequencies of the

heaving and pitching motions, respectively; and H*
i and A*

i (i = 1,2, …,4) are the flutter

derivatives (H*
1, H

*
4, A

*
2 and A*

3 are called direct flutter derivatives while H*
2, H

*
3, A

*
1

and A*
4 are called cross flutter derivatives).

By combining the coefficients of flutter derivatives, Eqs. (1a) and (1b) can be

expressed as:

Lse ¼ H1ḣþH2α̇þH3αþ H4h ð2aÞ

Mse ¼ A1ḣþ A2α̇þ A3αþ A4h ð2bÞ

Fig. 3 Typical mode shapes

Liu et al. Advances in Bridge Engineering             (2020) 1:7 Page 5 of 23



in which Hi and Ai (i = 1,2, …,4) are equivalent flutter derivatives whose relationships

with the flutter derivatives are given in matrix forms as:
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According to Eq. (2), Hi and Ai (i = 1,2, …,4) can be obtained from the self-excited

force time-histories and vibration time-histories by the principle of least square fitting.

Then H*
i and A*

i (i = 1,2, …,4) can be obtained according to Eq. (3) based on the identi-

fied Hi and Ai (i = 1,2, …,4). The time-domain forced vibration method can be divided

into single DOF and coupled vibration identification methods according to the forced

vibration mode of the model. In this paper, 1-DOF harmonic oscillation of the tested

model is simulated and the single DOF identification method is used. More specific de-

tails can be found in previous studies (Han et al. 2014).

The results of the 8 identified flutter derivatives under different wind attack angles

are shown in Fig. 4, though 18 flutter derivatives are used in the general formulation

described later.

4 Flutter instability analysis
The equation for motion of a bridge under smooth flow can be expressed as:

M€qþ Cq̇þ Kq ¼ Fse ð4Þ

where M, C, and K are the global mass, damping, and stiffness matrices, respectively; q,

q̇ , and €q represent the nodal displacement, velocity, and acceleration vectors, respect-

ively; and Fse denotes the vector of the nodal aero-elastic forces.

Self-excited lift force, Lse, drag force, Dse, and pitching moment, Mse, per unit length

are defined in a general form with 18 flutter derivatives as (Scanlan 1978; Jain et al.

1996)

Lse ¼ 1
2
ρU2B KH�

1
ḣ
U
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2
Bα̇
U
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3αþ K2H�

4
h
B
þ KH�

5
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6
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B
�

�
ð5aÞ

Dse ¼ 1
2
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1
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4
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Mse ¼ 1
2
ρU2B2 KA�

1
ḣ
U

þ KA�
2
Bα̇
U

þ K2A�
3αþ K2A�

4
h
B
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6
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B
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�
ð5cÞ

in which H�
i , P

�
i , and A�

i (i =1 to 6) are the aerodynamic flutter derivatives related to

the vertical, lateral, and torsional directions, respectively; h, p, and α are the vertical,
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lateral, and torsional displacements of the bridge deck, respectively; and the dot on the

cap denotes the derivative with respect to time. An iterative process is usually used to

define the oscillation frequency present in K and the aerodynamic flutter derivatives H�
i

, P�
i , and A�

i Approach I-Frequency-Domain Approach using Smooth Flow Flutter

Derivatives.

The 3D finite element flutter analysis is performed to determine the critical flutter

wind speed and flutter modes of the Taihong Bridge under different attack angles of

wind flows. In the analysis, a pair of user-defined Matrix27 elements are used to simu-

late the aerodynamic forces acting on each element of the main girder. One Matrix27

element is used to simulate the aerodynamic stiffness, and the other one is used to

simulate the aerodynamic damping (Han et al. 2015). By solving the equation of motion

after assembling the aerodynamic stiffness and damping matrices, the flutter instability

Fig. 4 Flutter derivatives of the Taihong Bridge under different wind attack angles (−5o to 5 o)
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and critical wind velocity of the system can be determined from the values of the real

part of the complex eigenvalues. The system is dynamically stable if the real part of all

eigenvalues is negative and dynamically unstable if the real part of one or more eigen-

values is positive. At a certain wind velocity, the real part becomes zero, which means

the system is on the critical state and the corresponding wind velocity is defined as the

critical flutter wind velocity.

In this study, damped complex eigenvalue analysis is carried out under wind velocities

ranging from 0 to 150m/s of different wind attack angles by assuming that the structural

damping ratio is 0.5%. The complex eigenvalues of multiple modes under a wind attack

angle of − 3° are shown in Fig. 5 as an example. It is found that the critical flutter mode is

mode 16, i.e., the first symmetric torsion mode. The deformation shape of mode 16 under

the critical flutter velocity is shown in Fig. 6, which can be found to be the coupling of the

symmetric vertical bending and the symmetric torsion. The critical flutter wind velocity and

corresponding frequencies under different wind attack angles are summarized in Table 2.

Fig. 5 Complex eigenvalues versus wind velocity: (a) real part; (b) imaginary part
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4.1 Approach II -time-domain approach under smooth flow

To compare the frequency-domain and time-domain approaches, the self-excited forces

per unit span can also be expressed in terms of impulse response function as follows

(Lin and Yang 1983):

Lse tð Þ ¼ 1
2
ρU2

Z t

− ∞
ILseh t − τð Þh τð Þ þ ILsep t − τð Þp τð Þ þ ILseα t − τð Þα τð Þ� �

dτ ð6aÞ

Dse tð Þ ¼ 1
2
ρU2

Z t

− ∞
IDseh t − τð Þh τð Þ þ IDsep t − τð Þp τð Þ þ IDseα t − τð Þα τð Þ� �

dτ ð6bÞ

Mse tð Þ ¼ 1
2
ρU2

Z t

− ∞
IMseh t − τð Þh τð Þ þ IMsep t − τð Þp τð Þ þ IMseα t − τð Þα τð Þ� �

dτ ð6cÞ

where I denotes the impulse function of the self-excited forces, and the subscripts

Fig. 6 Deformation shapes of mode 16

Table 2 Results of multi-modes flutter analysis

Wind attack angle Critical wind velocity
(m/s)

Frequency
(Hz)

−3° 95 0.447

0° 85 0.450

+3° 75 0.451
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represent the corresponding force component. For example, ILseh , IDseh , and IMseh are im-

pulse functions of the lift force, drag force, and pitching moment corresponding to the

vertical movement h, respectively.

According to the equivalency of the spectral characteristics between the aero-

dynamic self-excited forces expressed by the impulse response function and the

self-excited forces defined with the flutter derivatives by Scanlan (1978) as shown

in Eq. (6), the relationship between the impulse response function and the flutter

derivatives can be obtained as follows:
�ILseh ¼ k2ðH�

4 þ iH�
1Þ; �ILsep ¼ k2ðH�

6 þ iH�
5Þ; �ILseα ¼ k2BðH�

3 þ iH�
2Þ;

�IDseh ¼ k2ðP�
6 þ iP�

5Þ; �IDseP ¼ k2ðP�
4 þ iP�

1Þ; �IDseα ¼ k2BðP�
3 þ iP�

2Þ; (7).
�IMseh ¼ k2BðA�

4 þ iA�
1Þ; �IMseP ¼ k2BðA�

6 þ iA�
5Þ; �IMseα ¼ k2B2ðA�

3 þ iA�
2Þ;

where the �I is the Fourier transform of I, and the subscripts denote the corresponding

force components.

The Roger’s approximation, a kind of rational function approximation approach, is

often utilized to express �Ifxð f ¼ L;D;M; x ¼ h; p; αÞ (Chen et al. 2000). Taking the im-

pulse function of the lift force induced by the vertical motion as an example, �ILseh can

be expressed as:

�ILseh iωð Þ ¼ A1 þ A2
iωB
U

� �
þ A3

iωB
U

� �2

þ
Xm

l¼1

Alþ3iω

iωþ dlU
B

ð8Þ

where dl and An (l = 1 to m; n = 1 to m + 3) are frequency independent coefficients,

which can be determined through parameter fitting of the flutter derivatives obtained

by the wind tunnel test. The value of m is user-defined, which determines the approxi-

mation accuracy. Among the rational function, the third term of (i.e., the A3 term) rep-

resents the additional aerodynamic mass and is normally negligible.

It should be noted that for each force component, the coefficients of dl and An (l = 1 to m;

n = 1 to m + 3) are different, and m= 2 is used in the present study. The nonlinear least-

squares method is used here to determine these coefficients in Eq. (8). Then, to validate the

procedure, the flutter derivatives are back calculated based on Eq. (7) and called simulation

values here. Figure 7 shows the comparison of experimental values and simulation values of

the flutter derivatives of the Taihong Bridge under a wind attack angle of − 3°.

By taking the Fourier transform of (8) after obtaining the corresponding parameters,

the impulse response function can be expressed as:

ILseh tð Þ ¼ A1δ tð Þ
þ A2

B
U
δ̇ tð Þ þ δ tð Þ

Xm

l¼1
Alþ3 −

Xm

l¼1
Alþ3dl

U
B

exp −
dlU
B

t

� �
ð9Þ

By substituting Eq. (9) into Eq. (6a), the aerodynamic lift force induced by the vertical

motion can be obtained as follows:

Lseh tð Þ ¼ 1
2
ρU2 A1h tð Þ þ A2

B
U
ḣ tð Þ þ

Xm

l¼1
Alþ3

Zt

− ∞

e −
dlU
B t − τð Þḣ τð Þdτ�

2
4 ð10Þ

Similarly, the expressions for the other self-excited force components can be ob-

tained. After obtaining the expressions of all the aerodynamic self-excited forces, flutter
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Fig. 7 Comparison of experimental and simulation values of flutter derivatives
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analysis in the time domain can be performed using ANSYS. The equation of motion

of the structure at time ti can be expressed as:

M€X tið Þ þ CẊ tið Þ þ R tið Þ ¼ F tið Þ ð11Þ

where F(ti) represents the equivalent nodal forces induced by external forces at time ti,

and R(ti) denotes the equivalent nodal resistance of the structure.

At time ti + Δt, the equation of motion becomes as follows:

M€X ti þ Δtð Þ þ CẊ ti þ Δtð Þ þ R ti þ Δtð Þ ¼ F ti þ Δtð Þ ð12Þ

The Newmark- β method is used to solve this equation of motion considering the

geometry nonlinearity of the structure and the nonlinearity of aerodynamic loads. The

nodal acceleration and velocity can be expressed as follows:

€X ti þ Δtð Þ ¼ 1

αΔt2
X ti þ Δtð Þ − X tið Þ½ � − 1

αΔt
Ẋ tið Þ − 1

2α
− 1

� �
€X tið Þ ð13Þ

Ẋ ti þ Δtð Þ ¼ β
αΔt

X ti þ Δtð Þ − X tið Þ½ � − β
α
− 1

� �
Ẋ tið Þ − Δt

2
β
α
− 2

� �
€X tið Þ ð14Þ

According to Eq. (13) and Eq. (14), the acceleration and velocity of the structure at a

given time can be obtained through iterations. By increasing the wind speed gradually

and conducting transient dynamic analysis of the structure, the flutter critical wind vel-

ocity can be determined.

Figures 8, 9, and 10 show the time histories of the displacements of the mid-span

under a wind attack angle of 0° at pre-critical, critical, and post-critical stages, respect-

ively. The vertical and torsional displacements are defined at the center of the bridge

deck. It can be found that when the wind velocity is 77 m/s, 79 m/s, and 80 m/s, the

displacement amplitudes are convergent, becoming constant, and changing to diver-

gent, respectively. Therefore, 79 m/s is identified as the onset wind velocity of bridge

flutter. Figure 11 shows the spectrum of displacements at the critical wind velocity, and

it is found that the vibration is a vertical-torsional coupled one with the dominant fre-

quency being around 0.448Hz for the torsional vibration (Fig. 11a) and 0.10Hz and

0.446Hz for the vertical vibration (Fig. 11b). It is noted that the first symmetric torsion

mode (Mode 16) has a natural frequency of 0.451 Hz and this frequency reduces

slightly when it approaches the flutter stage as shown in Fig. 5. Meanwhile, the 1st

anti-symmetric vertical bending mode (Mode 3) has a frequency of 0.173 Hz and it ap-

proaches 0.1 Hz at the occurrence of flutter. The flutter in the time-domain analysis

shows a coupled vibration involving a few modes similar to that in the frequency-

domain. A few other modes might be also involved since they have a frequency near

the neighborhood of 0.1 Hz (see Table 1). The critical flutter velocities under different

wind attack angles and corresponding dominant frequencies are summarized in Table 3.

It can be found that the results of the time-domain analysis are consistently slightly

lower than that from the frequency-domain analysis.

4.2 Approach III - time-domain approach under turbulent flow

Since flutter derivatives are a direct description of the self-excited forces, a number of

studies have been conducted to investigate the influence of turbulence on flutter deriv-

atives. Diana et al. (1992) found that turbulence had little effect on flutter derivatives
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by measuring the flutter derivatives in a turbulent wind field from the full-scale test.

Sarkar et al. (1994) also concluded that turbulence did not significantly affect the flutter

derivatives under smooth flow. Therefore, it seems like turbulence does not signifi-

cantly influence the self-excited forces through the flutter derivatives directly. Due to

the lack of experimentally obtained flutter derivatives under fully “matched” turbulent

flow, the effect of wind turbulence on the flutter derivatives might not fully reflect its

effects on the bridge flutter performance. Therefore, in the following analysis, the flut-

ter derivatives measured in the smooth flow instead of in turbulent flow are used in the

formulations of the self-excited forces, i.e., they remain the same as in Approach II. In

Fig. 8 Time-histories of motion at mid-span (pre-critical, U = 77m/s)
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order to investigate the effect of wind turbulence on the critical flutter velocity, a tur-

bulent wind velocity component is added on the mean wind velocity of Approach II in

the formulations of the self-excited forces. This is a similar approach to that used by

Bucher and Lin (1988a, 1989) in treating the self-excited forces in turbulent flow. How-

ever, Bucher and Lin (1988a, 1989) used a complicated stochastic solution process for

the parametrically excited differential equations of motion. In comparison, the present

approach is to numerically solve the nonlinear equations of motion in the time-

domain.

Taking the aerodynamic lift force induced by vertical motion as an example, it can be

expressed as:

Fig. 9 Time-histories of motion at mid-span (critical, U = 79m/s)
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in which u(t) denotes the turbulent component of wind velocity, which can be obtained

by field measurements or numerical simulations.

Due to the lack of field measured wind data, the harmonic synthesis method is used

here to generate a sample of the turbulent wind velocity time-history of the bridge

main beam. Four turbulent wind fields, with turbulence intensities ranging from 5% to

20%, are simulated here to investigate their effects on flutter instability. The main pa-

rameters of the turbulent wind field are listed in Table 4. Figure 12 shows the turbulent

Fig. 10 Time-histories of motion at mid-span (post-critical, U = 80 m/s)
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Fig. 11 Spectrum curves of displacements

Table 3 Results of time-domain approach under smooth flow

Wind attack angle Critical wind velocity (m/s) Dominating Frequency (Hz)

−3° 94 0.443

0° 79 0.448

+3° 71 0.450
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wind velocity time-history (Iu = 5%) at the mid-span and the 1/4-span of the bridge.

Figure 13 shows the simulated turbulent wind spectrum, and it can be found that the

simulated turbulent wind spectrum agrees well with the target spectrum.

The results of flutter analysis under different turbulent flows, compared with the re-

sults under smooth flow, are shown in Fig. 14. Specific critical flutter velocities under

different wind attack angles are summarized in Table 5. It can be found that wind tur-

bulences do have stabilizing effects on bridge flutter. In general, the critical flutter vel-

ocity increases monotonically with the increase of turbulence intensity from 5% to 20%.

It should also be noted that with relatively low turbulence intensities (such as typical

5% and 10%), the critical flutter velocities are almost the same with that under the

smooth flow, and the stabilizing effect is not obvious. With relatively high turbulence

intensities (such as 15% and 20%), the critical flutter velocity can be increased by 5% to

10% due to the turbulence effect. The stabilizing effect is mainly from the de-

correlation effect of the turbulence on the aerodynamic forces as discussed below.

Figure 15 shows the post-critical time histories of the displacements at the mid-span

under turbulent flow (Iu = 15%). It can be found that the motion of the bridge deck be-

comes much more irregular and random in the turbulent flow compared to that in the

smooth flow. Hence, turbulence not only increases the critical flutter velocity, but also

Fig. 12 Turbulent wind velocity history (Iu = 5%)

Table 4 Parameters of turbulent wind field

Parameter Value

Main span length 808m

Bridge deck elevation 130.08 m

Simulated points number 68

Time interval 0.125 s

Target spectrum Karman
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changes the vibration patterns to some extent. Figure 16 shows the comparison of the

correlation of the motion at mid-span and 1/4-span under the smooth flow and turbu-

lent flow. The correlation coefficient of the vertical displacements at these two points

under both the smooth flow and the turbulent flow are calculated in Table 6. It can be

found that, under the smooth flow, the vibration is highly synchronized at each location

of the bridge deck, which is more likely to generate stronger wind-bridge interactions.

However, this consistent pace in vibration has been broken in the turbulent flow. This

Fig. 14 Comparison of flutter analysis results

Fig. 13 Turbulent wind spectrum curve (Iu = 5%)
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Table 5 Critical flutter velocity (m/s) of time-domain approach under turbulent flow

Turbulence
intensity

Wind attack angle

−3° 0° +3°

Iu = 0%
Iu = 5%

94
95

79
80

71
72

Iu = 10% 96 80 74

Iu = 15% 99 85 77

Iu = 20% 100 87 78

Fig. 15 Time-histories of motion at mid-span under turbulent flow
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Fig. 16 Comparison of motion at mid-span (left axis) and 1/4-span (right axis)

Table 6 Comparison of correlation coefficient of vertical displacement at mid-span and quarter
span under smooth and turbulent flow

Correlation type Correlation coefficient

Smooth flow Turbulent flow

Pearson correlations 0.978 −0.531

Spearman correlations 0.952 −0.466

Kendall correlations 0.825 −0.327
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kind of inconsistency in motion affects the motion-dependent flutter forces and con-

tributes to the increase of the critical flutter velocity.

5 Conclusions
Although the frequency-domain approach and the time-domain approach are theoretic-

ally equivalent since the rational functions are extracted from the experimentally ob-

tained flutter derivatives, it can be found that there are still some differences in the

numerical values of the critical flutter velocities by comparing the results of Approach I

and Approach II. The differences may be caused by the following reasons. Firstly, the

numerical identification of the parameters in the rational functions introduces a degree

of approximation and results in numerical errors due to the highly irregular behavior of

several flutter derivatives. Secondly, the frequency-domain approach is based on the

linear-elasticity theory and decomposes the structural response into multiple main par-

ticipation modes by using the linear modal decomposition technique, while the time-

domain approach considers the nonlinearities of the geometry and aerodynamic loads.

The frequency-domain method is much more straightforward since it directly relies on

experimental data and is less expensive from a computational point of view. However,

the time-domain method is more flexible and powerful in some bridge analysis, such as

the nonlinearity analysis, coupled flutter, and buffeting analysis, etc.

By comparing the critical flutter velocities of Approach II and Approach III, it can be

found that the turbulence in the cross wind can raise the critical flutter velocity. The in-

crease in amplitude is dependent on the turbulence intensity. It is also found that the tur-

bulence influences the vibration patterns and the spatial vibration correlation. However, it

should be noted that the effect of turbulence on flutter derivatives is not considered in this

study. Many studies have been conducted to investigate the flutter derivatives under the

turbulent flow, and different research conclusions have been made. It is still a debate

whether the effect of wind turbulence on flutter instability can be fully reflected by the

measured flutter derivatives. Therefore, presently, the mechanism of the influence of tur-

bulence on flutter derivatives is still not clear, and further study is needed.

The effect of the turbulent wind field on the aerodynamic instability of bridges is a

complex process, which needs to take into account its effect on the flutter derivatives,

the effect on the spatial correlation of self-excited forces, the effect of turbulence-

induced buffeting on the aerodynamic instability, and other factors comprehensively. In

the present study, the turbulence effects on flutter instability are numerically simulated

in the time domain, which considers the nonlinear effects and spatial correlations. The

effect of buffeting vibrations on flutter instability is under study in this developed nu-

merical framework and will be reported later. Future studies, involving both wind tun-

nel experiments and numerical analysis, are needed to further advance the

understanding of the effects of turbulence on the aerodynamic instability of bridges.

Abbreviations
RPE: Random parametric excitation; FE: Finite element

Acknowledgments
Not applicable.

Availability of data and material
Data used in the finite element analysis will be available upon request.

Liu et al. Advances in Bridge Engineering             (2020) 1:7 Page 21 of 23



Authors’ contributions
SL carried out the modeling and numerical analysis. CC provided guidance in methodology development and
technical writing. YH participated in the design of the study and provided the experimental data. The authors read
and approved the final manuscript.

Funding
This work described in this paper is partially supported by the National Science Foundation of China (No. 51778073;
51678079). These supports are greatly appreciated.

Competing interests
The authors declare that they have no competing interests.

Received: 19 May 2020 Accepted: 29 June 2020

References
Agar TJA (1989) Aerodynamic flutter analysis of suspension bridges by a modal technique. Eng Struct 11(2):75–82
Bucher CG, Lin YK (1988a) Stochastic stability of bridges considering coupled modes. J Eng Mech 114(12):2055–2071
Bucher CG, Lin YK (1988b) Effect of spanwise correlation of turbulence field on the motion stability of long-span bridges.

J Fluids Structures 2(5):437–451
Bucher CG, Lin YK (1989) Stochastic stability of bridges considering coupled modes: II. J Eng Mech 115(2):384–400
Cai CS, Albrecht P, Bosch HR (1999) Flutter and buffeting analysis. I: finite-element and RPE solution. J Bridg Eng 4(3):174
Caracoglia L (2018) Modeling the coupled electro-mechanical response of a torsional-flutter-based wind harvester with a

focus on energy efficiency examination. J Wind Eng Ind Aerodyn 174:437–450
Caracoglia L, Jones NP (2013) Time domain vs. frequency domain characterization of aeroelastic forces for bridge deck

sections. J Wind Eng Ind Aerodyn 91(3):371–402
Chen A, He X, Xiang H (2002) Identification of 18 flutter derivatives of bridge decks. J Wind Eng Ind Aerodyn 90(12):

2007–2022
Chen X, Matsumoto M, Kareem A (2000) Time domain flutter and buffeting response analysis of bridges. J Eng Mech 126(1):

7–16
Chowdhury AG, Sarkar PP (2005) Experimental identification of rational function coefficients for time-domain flutter analysis.

Eng Struct 27(9):1349–1364
Diana G, Bruni S, Cigada A, Collina A (1993) Turbulence effect on flutter velocity in long span suspended bridges. J Wind Eng

Ind Aerodyn 48(2–3):329–342
Diana G, Cheli F, Zasso A, Collina A, Brownjohn J (1992) Suspension bridge parameter identification in full scale test. J Wind

Eng Ind Aerodyn 41(1–3):165–176
Dung NN, Miyata T, Yamada H, Minh NN (1998) Flutter responses in long span bridges with wind induced displacement by

the mode tracing method. J Wind Eng Ind Aerodyn 77:367–379
Gao G, Zhu L, Wang F, Bai H, Hao J (2020) Experimental investigation on the nonlinear coupled flutter motion of a typical flat

closed-box bridge deck. Sensors 20(2):568
Ge YJ, Tanaka H (2000) Aerodynamic stability of long-span suspension bridges under erection. J Struct Eng 126(12):

1404–1412
Gu M, Zhang R, Xiang H (2000) Identification of flutter derivatives of bridge decks. J Wind Eng Ind Aerodyn 84(2):151–162
Haan FL (2000) The effects of turbulence on the aerodynamics of long-span bridges Doctoral dissertation, University of Notre

Dame
Han Y, Liu S, Hu JX, Cai CS, Zhang J, Chen Z (2014) Experimental study on aerodynamic derivatives of a bridge cross-section

under different traffic flows. J Wind Engineering Indust Aerodynamics 133:250–262
Han Y, Liu SQ, Cai CS, Li CG (2015) Flutter stability of a long-span suspension bridge during erection. Wind Struct 21(1):41–61.

https://doi.org/10.12989/was.2015.21.1.04141
Huston DR (1986) The effects of upstream gusting on the aeroelastic behavior of long suspended-span bridges. Doctoral

dissertation, Princeton University
Jain A, Jones NP, Scanlan RH (1996) Coupled flutter and buffeting analysis of long-span bridges. J Struct Eng 122(7):716–725
Li QC, Lin YK (1995) New stochastic theory for bridge stability in turbulent flow. II. J Eng Mech 121(1):102–116
Lin Yk (1979) Motion of suspension bridges in turbulent winds. J Eng Mech Div 105(6):921–932
Lin YK, Ariaratnam ST (1980) Stability of bridge motion in turbulent winds. J Structural Mechanics 8(1):1–15
Lin YK, Li QC (1993) New stochastic theory for bridge stability in turbulent flow. J Eng Mech 119(1):113–127
Lin YK, Yang JN (1983) Multimode bridge response to wind excitations. J Eng Mech 109(2):586–603
Liu S, Cai CS, Han Y, Li C (2018) Reliability analysis on flutter of the long-span Aizhai bridge. Wind Structures Int J

27(3):175–186
Miyata T, Yamada H (1990) Coupled flutter estimate of a suspension bridge. J Wind Eng Ind Aerodyn 33(1):341–348
Sarkar PP, Jones NP, Scanlan RH (1994) Identification of aeroelastic parameters of flexible bridges. J Eng Mech 120(8):

1718–1742
Scanlan RH (1978) The action of flexible bridges under wind, I: flutter theory. J Sound Vib 60(2):187–199
Scanlan RH (1997) Amplitude and turbulence effects on bridge flutter derivatives. J Struct Eng 123(2):232–236
Scanlan RH, Beliveau JG, Budlong, KS (1974) Indicial aerodynamic functions for bridge decks. J Engineering Mechanics Div

100(4):657–672
Scanlan RH, Jones NP (1990) Aeroelastic analysis of cable-stayed bridges. J Struct Eng 116(2):279–297
Scanlan RH, Jones NP (1991) Stochastic aspects of bridge deck aeroelasticity under turbulent flow. Probabilistic Eng

Mechanics 6(3–4):129–133
Scanlan RH, Tomo J (1971) Air foil and bridge deck flutter derivatives. J Soil Mechanics Foundations Div 97(6):1717–1733

Liu et al. Advances in Bridge Engineering             (2020) 1:7 Page 22 of 23

https://doi.org/10.12989/was.2015.21.1.04141


Tang Y, Hua XG, Chen ZQ, Zhou Y (2019) Experimental investigation of flutter characteristics of shallow Π section at post-
critical regime. J Fluids Structures 88:275–291

Theodorsen T, Mutchler WH (1935) General theory of aerodynamic instability and the mechanism of flutter
Yamada H, Ichikawa H (1992) Measurement of aerodynamic parameters by extended Kalman filter algorithm. J Wind Eng Ind

Aerodyn 42:1255–1263
Zhang M, Xu F, Ying X (2017) Experimental investigations on the nonlinear torsional flutter of a bridge deck. J Bridg Eng

22(8):04017048. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001082
Zhang W, Qian K, Xie L, Ge YJ (2019) An iterative approach for time domain flutter analysis of bridges based on restart

technique. Wind Structures Int J 28(3):171–180
Zhang Z, Chen Z, Cai Y, Ge Y (2010) Indicial functions for bridge aeroelastic forces and time-domain flutter analysis. J Bridg

Eng 16(4):546–557

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Liu et al. Advances in Bridge Engineering             (2020) 1:7 Page 23 of 23

https://doi.org/10.1061/(ASCE)BE.1943-5592.0001082

	Abstract
	Introduction
	Description of bridge and dynamic characteristics
	Identification of flutter derivatives using forced vibration method in time domain
	Flutter instability analysis
	Approach II -time-domain approach under smooth flow
	Approach III - time-domain approach under turbulent flow

	Conclusions
	Abbreviations
	Acknowledgments
	Availability of data and material
	Authors’ contributions
	Funding
	Competing interests
	References
	Publisher’s Note

