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Abstract

Stay cables are typically exposed to the environment and traffic loading leading to
degradations due to corrosion and cyclic loading after years’ in service. A non-
destructive method to detect the defects of cables as early as possible is needed
and important for adequate large-span bridge maintenance. Use of a status-driven
acoustic emission (AE) monitoring Convolutional neural network (CNN) method is
investigated by combing wavelet analysis and transfer deep learning. CNN is used to
construct the relationship between AE signals’ scalograms and cable status. The
trained CNN is suitable to identify the in-situ monitored signals and evaluate the
current status of cables during the operation of a bridge. As a pilot study, the binary
AE signals classification CNN is implemented to identify noise & fracture AE signals in
static tests of a stay-cable. Accuracy of the method is investigated. In addition, the
trained model is examined using AE signals which are not used in the machine
learning to check possible improvements of the accuracy. Expectations in
recognition of results and status-driven monitoring potentials are addressed in the
paper.

Keywords: Acoustic emission, Stay cables, Wavelet analysis, Transfer deep learning,
Convolutional neural network

1 Introduction
Stay cables and high-strength steel wires, are the most critical load-carrying members

in a variety of civil structures. In bridge engineering application, stay cables are highly

vulnerable to long-term effects (Li et al., 2012a) (i.e. fatigue), vibration effects (Li &

Ou, 2016) (i.e. wind- and rain-induced vibrations), and environmental actions (Li et al.,

2012b) (i.e. corrosion) after years of service. Early detection and real-time monitoring

of fracture of stay cables is critically necessary to prevent a complete collapse of brid-

ges and thus ensure the safety of a bridge.

Various detection methods for damage in bridge cables are available, including visual

inspection, cable stress measurement (Lin et al., 2017; Zarbaf et al., 2017), magnetic
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flux leakage (MFL) testing (Xu et al., 2012), X-ray testing, and ultrasonic testing (Rizzo

& Lanza Di Scalea, 2005). Acoustic emission (AE) technique is one of typical nonde-

structive technique, and currently developed to provide real-time monitoring of a grow-

ing structure damage (Pomponi & Vinogradov, 2013; Bianchi et al., 2015; Feng et al.,

2018; Cheng et al., 2019). This technique has proven to be effective in detecting dam-

age and its location. A substantial effort, including non-iterative algorithms and itera-

tive algorithms, has been devoted to study the location of the acoustic emission source.

The applicable results were reported for both the same medium and different media

(Zhou et al., 2017). The successful application of AE on source identification and

localization inspired researchers to adapt the technique for damage monitoring and

early damage warning of stay cables. Several studies have been performed to demon-

strate the relationship between the characteristics of AE signals and wire fracture of ca-

bles under fatigue loading or corrosion.

However, signal identification from sensors used to locate the damage position is dif-

ficult due to Kaiser effects (Choi et al., 2005), signals attenuation (Qian et al., 2016), sig-

nal reflection (Ebrahimkhanlou & Salamone, 2018) and environment noise

(Ebrahimkhanlou & Salamone, 2018). To identify the original signal, it is necessary to

understand the types of noise sources and to ensure the elimination of their influence.

Traditional AE signals classification methods are based on AE events (i.e. amplitude,

rise time, energy, counts etc.) and the damage signals are identified by setting AE

events threshold. The performance of threshold method is strongly dependent on the

choice of the selected threshold value. It is noted that early triggering or missing true

arrival time could occur with arbitrarily set threshold value. Such classification ability is

relatively limited leading to incorrect damage location of stay cables.

Artificial intelligence (AI) and machining learning (ML) technologies are developing

very fast, especially the deep learning (DL) in computer vision is making a giant pro-

gress (Krizhevsky et al., 2012; Mayrbaurl & Camo, 2004). The implementation of artifi-

cial neural networks (ANNs) with ML or DL method enables computers to perform

time-consuming and labor-intensive identification by learning from experience. A num-

ber of studies have introduced DL techniques could effectively improve the classifica-

tion accuracy in civil engineering application (Gao & Mosalam, 2018; Wang et al.,

2018; Kerh et al., 2017). As one of the DL techniques, convolutional neural network

(CNN) was developed to solve handwritten-digits recognition tasks around 1990s

(LeCun et al., 1989). Its recent wide applications are attributed to the great develop-

ment of computer hardware and the boosting from ImageNet Visual Recognition Chal-

lenge (Simonyan & Zisserman, 2014). Compared with BP neural network-based shallow

learning, no manual feature extraction are required in CNN-based deep learning (Kerh

et al., 2017; Rafiei et al., 2017). CNN models are becoming increasingly deeper to im-

prove performance, achieve high accuracy, robustness, and adaptability in image classi-

fication (Krizhevsky et al., 2012; Mayrbaurl & Camo, 2004). However, building new

CNNs requires time and effort, especially in hyper-parameters optimization. A hyper-

parameters search can take weeks or even months for deep CNNs. The big data is re-

quired to configure and optimize the hyper-parameters at each epoch in the training

process. Hence, building a new CNN from beginning is challenging. Transfer learning

(TL) is a new ML technique, which could use knowledge from source domains to target

domains (Yosinski et al., 2014). A model developed for a task is reused as the starting
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point for a model on a second task in DL to relax the big data requirement for training

a deep CNN (Pan & Yang, 2010; Oquab et al., 2014; Bengio, 2012).

Due to the high performance of TL CNNs in image classification, using TL CNNs to

classify AE signals is promising. Based on the above research, this paper proposes a

status-driven AE monitoring method by combing wavelet scalograms (Klee & Allen,

2018) and TL CNNs to identify status and remaining fatigue life of stay-cables. As is

shown in Fig. 1, the signal characteristics and the remaining fatigue life are obtained via

fatigue tests on cables. The AE signals in the time domain corresponding to different

damage status are converted to the time-frequency domain via continuous wavelet

transform (CWT) (Pan & Yang, 2010) to get scalograms image dataset. CNN is

employed to construct the relationship between AE signals and cable status. The

trained CNN will be used to identify the signals obtained through in-situ monitoring

and evaluate the current status of cables in the servable bridges. Finally, the department

of bridge maintenance and management will make decisions on the replacement of ca-

bles based on reported status.

In this paper, a 6-strands stay-cable was axially loaded and monitored using AE tech-

nique until the failure. The AE signals of noise & fracture are collected and then identi-

fied by analyzing experimental results and AE signal features. A binary AE signal

classification is achieved by using wavelet transform and TL CNNs based on GoogLe-

Net. The trained CNN model is validated by the AE signals which are not used in the

training. The study demonstrates the advantage and potential of the proposed status-

driven AE monitoring method to diagnose and monitor the damage of stay-cables in

real-time.

2 Methodology
2.1 Image datasets based on wavelet transform

Wavelets are mathematical functions that cut signals into different frequency band, and

then study each frequency band with a resolution matched to its scale (Ricker, 1953).

The continuous wavelet transform (CWT) (Pan & Yang, 2010), which could provide an

Fig. 1 Status-driven AE monitoring methods
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over-complete representation of the acoustic emission signals by translating and scaling

parameter of the wavelets vary continuously, is employed to decompose the signals into

frequency bands, and then achieve local time information via correlated resolution.

Given a time series f(t), the continuous wavelet transform is expressed by the following

integral:

Xω s; τð Þ ¼
Z ∞

−∞
f tð Þ 1ffiffiffiffiffi

sj jp ψ
t−τ
s

� �
dt ð1Þ

where: f(t) is the monitoring signals in the time domain; ψ(t) is the analyzing wavelet, a

continuous function in time-frequency domain; ψðtÞ with the over-line represents the

complex conjugation of ψ(t); s is the scale factor and its inverse is corresponding to the

frequency; τ represents time shift or translation (Pan & Yang, 2010).

The position of the wavelet in the time domain is given by τ and its position in the

frequency domain is given by s. Therefore, the wavelet transform, by mapping the ori-

ginal series into a function of τ and s, gives us information simultaneously on time and

frequency (Sejdic & Djurovic, 2008). In particular, the Morlet wavelet (Pan & Yang,

2010) is employed in this paper and expressed as below:
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where: κσ is the parameter used to satisfy the admissibility criterion, cσ is the

normalization constant, defined as below:
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The time-frequency characteristics of acoustic emission signals are visualized by sca-

logram after wavelet transform, where the x-axis represents time and the y-axis repre-

sents scale, while the frequency coefficient value is shown by varying the color. The

scalogram is the equivalent of the spectrogram for wavelets and can be used to identify-

ing instantaneous frequency. The scalograms (Fig. 2-a), which are used for training and

validating CNNs, are created as RGB images as the datasets. The image with N ×M

pixel resolution is input into a computer, there are N ×M × 3 numbers according to

RGB colors. For example, as shown in Fig. 2, the scalogram image with 224 × 224 pixel

resolution (Fig. 2-a) have 150, 528 numbers (Fig. 2-b) from 0 to 255 read by the

computer.

2.2 Convolutional neural networks

2.2.1 Architecture overview

Artificial neural networks (ANNs) (Schalkoff, 1997) are computing systems inspired by

the biological neural networks, which produce output depending on the input and acti-

vation. The ANNs connected the output of certain neurons to the input of other neu-

rons forming a directed and weighted graph through a learning process by modify the

weights and activation functions. CNN is an extended architecture to the traditional

ANN. Like ANN, CNN consists of the input layer, hidden layers and output layers. The

significant difference is that CNN is appropriate to the pattern recognition within
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images while ANN is not practical for solving computational complexity of image data.

CNNs consider the input image as a 3D matrix (Fig. 2-b) and arrange neurons of each layer

in three dimensions. A CNN continuously reduces the neurons along the width and height,

increases the depth, and eventually outputs neurons as 1 × 1 ×X size for classification.

2.2.2 Basic building components of CNN

A CNN consists of several convolutional (CONV) layers with activation function

(ReLu) and pooling/subsampling layers (POOL) optionally followed by fully connected

(FC) layers. CNNs (Simonyan & Zisserman, 2014) express a single score function: from

the raw image pixels to classifications cores, and also have loss function (e.g. Softmax)

on the last (fully-connected) layer.

In the convolution layers, each filter is convolved along the width and height of the

previous layer, and outputs a 2D activation map of the filter that consists of neurons.

The activation function (ReLU) is applied in each artificial neuron performing the max

(0, x) on the input neurons. The convolution layers significantly reduce the complexity

of operations by a locally connected mode which extracts local features; To limit the

unbounded nature of ReLU, local normalization is performed by local response

normalization (LRN) layers which conduct a mathematical operation on n × n area. If

the input neuron is xi, the output neuron yi could be described as below:

yi ¼
xi

1þ α
P

i
xi

n

� �β ð9Þ

where: n, α and β are hyper-parameters.

The pooling layer is used to reduce the neurons along the width and height, whereas

the depth remains unchanged, aiming to reduce parameters, control over-fitting, and

keep valid feature information. The convolution layers and pooling layers will be re-

peated a few times before they are connected to the fully connected layers (see Fig. 3).

Overfitting is something that needs to be controlled in all machine learning approaches.

Dropout layers randomly put input neurons as zero with a certain rate. The previous

research has identified that using dropout layers in the fully connected layers can re-

duce overfitting effectively.

Fig. 2 Schematic diagram of image-based AE signals
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2.2.3 Construction and reconstruction

The training of CNNs includes forward pass (construction) and backward pass (recon-

struction). In the forward pass, the input training samples are used to calculate the loss

based on loss functions. For the backward pass, the gradient of each parameter is calcu-

lated by the backpropagation (BP) methods (Schalkoff, 1997). Parameters are updated

in the direction of a negative gradient. The iteration continues until the convergence of

networks reach. In particular, stochastic gradient descent combined with momentum

method (SGDM) is employed in this study (Qian, 1999). SGDM updates the parameters

using a portion of the sample parameters at one time. The number of the samples in

this portion is called batch. Updating parameter in one batch is named an iteration and

updating the parameters of all training samples is called an epoch (Kerh et al., 2017).

The parameter update strategy is described as below:

D←mD←l∇L Wð Þ ð10Þ

W←W þ D ð11Þ

where: W is the weight (bias is similar), D is the weight update, L is the loss function,

and l is the learning rate.

3 Static experiment and AE test on stay cable
3.1 Experimental scheme

A 6-strands, 36 wires each, of cable with 3 m of length and 77 mm of nominal diameter

has been used and shown in Fig. 4-b, in which the cable has an Independent Wire Rope

Core (IWRC). The wires were manufactured by USHA Martin Limited with a high

mechanical resistance (1770 ~ 1960MPa). In order to get the database for fracture &

noise AE signals, the static tensile test of a stay-cable until failure was performed in a

10 MN test bench at the Stevin II Laboratory at TU Delft, see Fig. 5. A 16-channel Sen-

sor Highway III (SH-III) system was supplied by MISTRAS to record AE signals at a

sample rate of 2.5MHz with 40 dB pre-amplification. Preamplifiers were powered by a

20–30 V DC and 25mA supplies.

Two types of sensors are selected to cover an operating frequency range of 10–100

kHz (Casey et al., 1985). Four R3I AST sensors with resonant frequency, Ref V/(m/s) of

25 kHz and another four R6I AST sensors with resonant frequency, Ref V/(m/s) of 55

kHz were chosen for comparison. The filter frequency range of these two types of sen-

sors are 10–40 kHz and 40–100 kHz, respectively for R3I AST and R6I AST sensors.

Figure 4-a describes the sensor arrangement at the stay cable. R3I AST (S1/3/5/7) and

R6I AST sensors (S2/4/6/8) are represented in white and black, respectively. These are

the PAC model integral preamp sensors with an operating temperature range from −

Fig. 3 Illustration of a typical conventional neural network
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35 °C to 75 °C. Contact between sensors and cables was guaranteed by using couplant

and insulation tape. The detection threshold is fixed at 35 dB for all sensors.

Other than the test machine, two LVDT (linear variable differential transformer) de-

vices were attached to the cable to measure the elongation of the cable, represented as

the red crosses in Fig. 4-a. The cable was pre-stressed to a level of 10% of the minimum

breaking load (MBL) 4850kN. Axial tensile load was applied until failure in displace-

ment control (0.175 mm/s loading rate).

3.2 Test results and discussion

The cable is not completely separated as represented in Fig. 6, where two different

failure modes are observed. Considering the axial stress is governing in the wires,

cup and cone failure is dominated caused by a reduction in cross-section. In

addition, shear failure also appears due to the helical structure of the cable. The

load-time curve of the cable is illustrated in Fig. 8. The measured breaking force is

5138kN and 5.9% higher compared to the MBL prescribed by the manufacturer,

which is within the expected range.

The determination of approximate time of wire breaks is important for further frac-

ture & noise signal identification. Verreet (Verreet, 2005) concluded that breaking

strength of a cable due to the failure of a single wire is reduced locally and with less

than 1% in cables with multiple wires, which is calculated as 0.34% on average from

Fig. 7. The local reduction is calculated as around 17.5kN based on the measured

breaking load (5138kN) in this case study. As detailed in the scale-up view of Fig. 8,

each small load drop (approximately 17kN) can be regarded as the indication of the

presence of a wire break in the cable. A new equilibrium within cables will be achieved

after a wire break. The stress redistribution repeats until the remaining wires are not

sufficient to overcome the external load. To verify the time identification method based

on the load-time curve, a device which recorded the sound continuously was placed

Fig. 4 Schematic of the stay cable and sensor arrangement
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next to the test bench. After comparison, there are 16 wire breaks in total recorded

during the experiment.

Drummond (Drummond et al., 2007) concluded that the energy parameter is the

most effective parameters to discriminate wire breaks from other AE sources, such as

the internal friction between individual cables. This is due to the energy parameter is

related to the strain energy of dislocations, fractures, and crack propagation. The cable

failed at the region between S3/4 and S5/6. Figure 9 presents the energy-time results

(blue line) and load-time curve (orange line) of one R3I AST sensor (S7) and one R6I

AST sensor (S8). For better illustration, the diagrams are scaled to the time scaling ran-

ging from 950 to 1200 s, when the wire breaks occurred. The energy values from S7 are

relatively higher than S8, while the R3I AST sensor missed 6 out of 16 wire breaks. It

can be concluded that AE signals generated from fractures of cables are more distrib-

uted in a frequency range of 40–100 kHz. In addition, Sensor 8 capture the fracture-

related AE signals effectively as the farthest sensor. The same analytical results also can

be observed from the AE signals recorded by S2, S4 and S6. Therefore, R6I AST sen-

sors are more appropriate for wire breaks identification compared to R3I AST sensors

within the 3 m cable.

After determining the occurrence of signals related to wire breaks, the typical

signals and related time-frequency scalograms of fracture & noise AE signals ob-

tained from the tests are shown in Fig. 10 and Fig. 11. The wave shape depends

on the nature of source emission, enabling the identification and classification of

AE sources. A signal from a fracture is of higher amplitude and shorter duration

than the characteristics of signals caused by noise. Fracture related signals are with

significant amplitude decay and wide frequency bandwidth over a short duration.

Although the difference between two signals is obvious, the lack of quantitative

principles to distinguish fracture & noise signals leads to the effort by using TL

CNN methods.

Fig. 5 Test set-up
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4 TRANING and validation of binary AE signals
4.1 Training and validating based on GoogLeNet

From the aforementioned comparison, the recorded signals from R6I AST sensors (S2/

4/6/8) are used for further signal processing by CWT. Specifically, the signals from

Sensor 2/4/6 are used as training data, while the signals from Sensor 8 are used as test

Fig. 6 Failure mode of the stay cable

Fig. 7 Local reduction of the cable’s breaking strength due to single wire break (Verreet, 2005)
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data. Considering relatively small data set of AE signals in using DL approach, TL

CNNs (Krizhevsky et al., 2012) are used to classify the noise or fracture signals, see

Fig. 12 .

The status-driven AE CNNs are implemented based on MatLab Software (Klee &

Allen, 2018) and GoogLeNet neural networks (Szegedy et al., 2015). As is shown in

Fig. 13, GoogLeNet has an increased depth including 144 layers and uses modulus

(namely inception in Fig. 14) to connect convolution layers with convolution kernels to

accelerate feature extractions at a different scale. The 1 × 1 convolutions kernel (in

Fig. 14-b) in front of larger-sized convolution kernels and the pooling layer are added

to reduce over-fitting. Global averaging pooling layers before the final fully connected

layer are set to reduce the number of parameters.

Each layer in the network architecture can be considered as a filter. The earlier layers

identify more common features of images, such as blobs, edges, and colors. The later

layers focus on more specific features in order to differentiate categories. To retrain

GoogLeNet for the binary AE signals identification, the last four layers of the network

are removed. The first of the last four layers, ‘pool5-drop_7x7_s1’ is a dropout layer. A

dropout layer randomly sets input elements to zero with a given probability. The drop-

out layer is used to help prevent over-fitting. The three remaining layers, ‘loss3-classi-

fier’, ‘prob’, and ‘output’, contain information on how to combine the features that the

network extracts into class probabilities and labels. The four new layers were added to

the layer graph for binary AE signals classification: a dropout layer with a probability of

60% dropout, a fully connected layer, a Softmax layer, and a classification output layer

(with labels “fracture” or “noise”).

The size of input scalogram image is 224 × 224 pixel resolution. The AE signals ob-

tained from Sensor 2# (1180 signals), Sensor 4# (1673 Signals) and Sensor 6# (921 sig-

nals), totally 3774 AE signals, are used for machine learning. Noted that 80% of data

sets are randomly selected for training, and the remainder is for validation. The basic

learning rate is assigned as 0.0001. The dropout rate is set as 0.6. In the LRN layer, the

hyper-parameters are assigned to 5, 0.001 and 0.75 respectively. SDGM strategies are

employed to train the CNN. The loss value is shown in every 10 iterations; validation is

performed every 252 iterations; the maximum number of iterations is 5040. The

Fig. 8 Load-time curve of the stay cable
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training results are summarized in Fig. 15. The total training loss is minimized and

tends to be stable under the iteration of 5040. Initially, the increase rate of training ac-

curacy is very fast. Afterwards, the training accuracy becomes steady and the final aver-

age verification accuracy reaches 99.05%.

4.2 Testing of trained binary CNN

The trained binary CNN is tested by 1890 AE Signals from Sensor 8 (R6I AST sensors).

If the binary CNN system identifies each signal with the correct label with “fracture or

noise”, the accuracy of this test will be set as 1.0. Otherwise, the accuracy of this

test will be set as 0.0. The accuracy of the binary CNN system is obtained by aver-

aging all 1890 prediction assessment numbers. High accuracy with 99.53% is

reached by classifying the other AE signals which are not used in the machine

Fig. 9 Energy-time curve of (a) Sensor 7 (R3I AST) and (b) Sensor 8 (R6I AST)
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learning. The accuracy is approximately identical to the validation accuracy. It indi-

cates that the recognition results could be used in the current fracture-driven AE

monitoring signals identification and has promising potentials in the AE status-

driven monitoring.

5 Conclusions
A non-destructive method to assess the service status and evaluate the remaining fa-

tigue behaviors of cables in large-span bridges is needed for bridge maintenance and

management. As a pilot study, this paper propose a novel binary AE signal classification

framework to identify the fracture within stay-cables, using a TL CNNs based on Goo-

gLeNet. A static tensile loading test of a stay-cable was performed in the laboratory.

The recorded AE signals were then transformed to the image data sets for training and

Fig. 10 Example of fracture AE signal

Fig. 11 Example of noise AE signal
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validating by CWT scalograms. The main conclusions from the pilot study are as

follows:

(1) Wire fracture inside a stay-cable can be detected with energy parameters captured

from recorded acoustic signals using approximate sensors. For the experiment

performed in this research, the R6I-AST type of sensors (100% wire break

detection) is more suitable to detect wire breaks inside a cable compared to the

R3I-AST type of sensors (62.5% wire break detection).

(2) The status-driven acoustic emission (AE) monitoring Convolutional neural

network (CNN) by combing wavelet analysis and transfer deep learning is a

promising approach. CNN is successfully used to construct the relationship

between AE signals’ scalograms and cable status. The trained CNN will be used to

Fig. 12 A pilot binary AE signals identification using TL CNNs

Fig. 13 Overall architecture of GoogLeNet for AE Monitoring (Klee & Allen, 2018; Szegedy et al., 2015)
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identify the in-situ monitored signals and evaluate the current status of cables in

the operational bridges.

(3) The proposed binary AE signals classification CNN is effectively implemented to

identify noise & fracture AE signals in static tests of a stay-cable. A high

accuracy (99.05%) is achieved. The performance of the trained model (99.53%

accuracy) is examined on the other AE signals which are not used in the

machine learning, indicating the promising recognition results and status-

driven monitoring potentials.

6 Future researches
The AE signal characteristics and residual fatigue life at each status of new cable will

be obtained via fatigue test of corroded (various levels) single wire. The status-driven

Fig. 14 Inception module (Szegedy et al., 2015)
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AE monitoring convolutional neural network (CNN) will be trained based on AE signal

scalograms and transfer deep learning. After that, the proposed status-driven AE CNN

method will provide valuable information about the current status of cables in the ser-

vable bridges.
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