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Abstract 

Background:  Benefits to agricultural yield improvement, soil degradation prevention, and climate mitigation are 
central to the synergies of soil organic carbon (SOC) build-up. However, the contributions of small-scale farmers, the 
main target of recent agricultural and rural development policies, to SOC enhancement are understudied. Here, we 
present a global analysis of small-scale farmers’ contributions to the potential of additional SOC stocks and the associ-
ated increase in crop production.

Methods:  We applied random forest machine learning models to global gridded datasets on crop yield (wheat, 
maize, rice, soybean, sorghum and millet), soil, climate and agronomic management practices from the 2000s 
(n = 1808 to 8123). Using the established crop-specific SOC-yield relationships, the potentials of additional SOC build-
up and crop production increase were simulated. The estimated SOC increase was converted into global decadal 
mean temperature change using the temperature sensitivity to cumulative total anthropogenic CO2 emissions from 
preindustrial levels. The amount of inorganic nitrogen (N) input that would result in the same yield outcome as the 
SOC build-up was derived from the crop-specific N-yield relationships.

Results:  SOC contributes to yields in addition to management and climatic factors. Additional SOC sums up to 12.78 
GtC (11.55–14.05 GtC) of global SOC stock, which earns 38.24 Mt (22.88–57.48 Mt) of additional crop production and 
prevents warming by 0.030 °C (0.019–0.041 °C). This production increase equates to what would be achieved by an 
inorganic N input of 5.82 Mt N (3.89–7.14 Mt N). Small-scale farmers account for 28% (26–30%) of the additional SOC 
build-up and 17% (15–20%) of the production increase. Key crops and regions in terms of small-scale farmers’ contri-
butions include Sub-Saharan African maize and rice, Latin American and Caribbean soybean and maize, and South 
Asian rice and wheat.

Conclusions:  The contribution of small-scale farmers to the potential increase in SOC stock and crop production is 
sizable, which in theory further leads to saving inorganic N input. These findings emphasize the importance of linking 
soil management to sustainable land and climate mitigation with institutions and policy for small-scale farmers. Such 
a joint policy would assist multiple development goals.

Keywords:  Climate change, Climate mitigation, Crop yield, Nitrogen application, Soil organic carbon, Sustainable 
land management
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Introduction
The co-benefits of crop yield improvement, soil degrada-
tion prevention, and climate mitigation from carbon (C) 
sequestration into agricultural land have been well recog-
nized (Lal 2004; Bossio et al. 2020). Recently, the benefits 
of soil organic carbon (SOC) enhancement to climate 
mitigation and food security have been emphasized in 
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the 4 per mil initiative (Minasny et al. 2017), which sets 
an ambitious goal for the global SOC stock over land to 
increase by 0.4% per year in the 0–40 cm soil depth over 
20 years. While the feasibility of the goal is under debate 
(Lal 2016; van Groenigen et al. 2017; Poulton et al. 2018; 
Schlesinger and Amundson 2019; Rumpel et  al. 2020), 
identifying the world’s agricultural land suitable for the 
additional build-up of SOC in terms of synergies between 
multiple development goals is pivotal. Although not an 
exhaustive list, such synergies between SOC enhance-
ment and food production include the reduction of 
inorganic nitrogen (N) application and fertilizer costs 
(Kanter et  al. 2015; Cui et  al. 2018); the protection of 
drinking water quality and fisheries resources by avoiding 
eutrophication of waters (Vitousek et al. 2009); ecological 
intensification and pest control through the maintenance 
of soil biodiversity (Garratt et al. 2018). Improvement in 
drought tolerance (Iizumi and Wagai 2019), yield stability 
(Zhang et al. 2016; Knapp and van der Heijden 2018), and 
higher on-farm income also occurs.

Yield improvement is a primary benefit of SOC man-
agement (Lal 2010; Henryson et al. 2018; Soussana et al. 
2019). However, further research is needed to fully uti-
lize this potential benefit for the following three reasons. 
First, recent meta-analyses (Oldfield et al. 2019; Sun et al. 
2020) indicate that the effect of increasing SOC on yield 
for a spatial domain greater than the experimental plot 
scale is elusive; thus, global-scale SOC-yield relationships 
are uncertain. Second, varying SOC-yield relationships 
reported in earlier studies indicate that factors other than 
SOC, such as thermal and moisture regimes and man-
agement practices adopted by farmers, also contribute to 
yield. It is therefore imperative to quantify the size of the 
SOC effect on yield relative to other contributing factors 
before adding increasing SOC as an effective option for 
land management for the targets in the 2030 Agenda for 
Sustainable Development. Last, the SOC-induced yield 
benefit needs to be linked with small-scale farmers, the 
main target in recent agricultural and rural development 
(Cui et  al. 2018; Ricciardi et  al. 2018), to maximize the 
synergies between multiple development goals related to 
food security, sustainable land, climate mitigation, and 
even safe water.

When investments in improved SOC management 
practices take place, a high priority of resource-poor 
small-scale farmers who live on C-poor cropland in many 
cases is anticipated. Small-scale farmers in develop-
ing countries, in many cases, do not have the necessary 
resources, including N, which is an integral part of soil 
organic matter together with C (typical C:N mass ratio 
is 10–15). Crop residues are often used for animal feed, 
bedding or as a source of energy by direct combustion 
or for ethanol production (Lal 2004; Poulton et al. 2018). 

Better institutional interventions to motivate small-scale 
farmers for SOC build-up via effective use of crop resi-
dues and better access to education and technology for 
improved SOC management are necessary (Zhao et  al. 
2018).

The main question we address in this study is: how 
much increase in crop production could small-scale 
farmers worldwide achieve by enhancing SOC? First, we 
estimate the yield responses of major crops to soil, cli-
mate, and management factors estimated by applying a 
machine learning technique to global gridded agricultural 
and environmental datasets. A simulation experiment 
was conducted to identify farming types (irrigated, high-
input, low-input and subsistence), crops, and regions 
in which yield increases are anticipated through SOC 
management. Then we assessed the relative contribu-
tions of small-scale farmers (with low-input and subsist-
ence farming types together) to the estimated potential 
of additional SOC stock and associated crop production 
increase. We examined six major crops (wheat, maize, 
rice, soybean, sorghum and millet) that together occupy 
half of the global cropland area. Findings from such an 
assessment would be useful for investment institutions to 
explore synergetic interventions to simultaneously pro-
ceed with multiple development goals.

Methods
Datasets
Table 1 summarizes the global gridded datasets used for 
this study. All of the datasets represent agricultural and 
environmental conditions between 1994 and 2015. The 
spatial resolution varied by dataset from the 30 arc sec-
ond (approximately 1 km or 0.009°) to the 30 arc minute 
(56  km or 0.5°). Spatial aggregation of the datasets to a 
grid size of 0.5° was conducted. The crop-specific har-
vested areas were considered in the spatial aggregation. 
Then, random forest (RF) models were built for each of 
the crops with yield as the response variable and soil, 
climate, and management factors as the explanatory 
variables. The following subsections elaborate on each 
variable.

Yield
Two different yield datasets were used to consider uncer-
tainties of the SOC-yield relationship associated with the 
use of different yield datasets (Table 1). One was the M3 
dataset (Monfreda et  al. 2008) solely based on national 
and subnational censuses. The other was the Spatial 
Production Allocation Model (SPAM) 2005 version 3.2 
(Wood-Sichra et  al. 2016), a hybrid dataset derived by 
inputting agricultural censuses and satellite land cover 
maps into the optimization model. The M3 yields mostly 
represent the average of the years between 1997 and 
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2003, whereas the SPAM2005 yields represent the aver-
age for the 2004–2006 period. Although SPAM2000 (You 
et  al. 2009) is closer to the M3 dataset in terms of the 
data-collected year, millet yield is not available. Therefore, 
pearl millet and small millet available in SPAM2005 were 
combined (by averaging with the harvested areas of the 
SPAM2005 dataset as the weights) and used. The spatial 
resolution is the same between the M3 and SPAM2005 
datasets (5 arc minutes), and these were aggregated using 
the harvested areas of the M3 dataset as the weights.

Soil
We used the topsoil organic carbon content and avail-
able water storage capacity as the soil variables (Table 1). 
These data were obtained from the Regridded Harmo-
nized World Soil Database (HWSD) version 1.2 (Wieder 
et al. 2014). The regridded data have a grid size of 3 arc 
minutes and were aggregated from the 30 arc second 
resolution data originally compiled by the Food and Agri-
culture Organization of the United Nations (FAO) and 
collaborative organizations (FAO et al. 2012). We further 
aggregated the data to the 5 arc minute resolution using 
the inverse distance-weighted averaging method to have 
a common resolution with the harvested area maps of the 
M3 dataset. The area-weighted average over the six crops 
considered here was calculated to represent the average 
soil condition over the cropland distributed within a 0.5° 
grid cell (Fig. 1a).

We also used the Global Soil Organic Carbon (GSOC) 
map compiled by FAO and the Intergovernmental Tech-
nical Panel on Soils (ITPS) (FAO and ITPS 2018) as 
another and latest global SOC dataset. The 30 arc sec-
ond resolution GSOC dataset was aggregated in a similar 
manner as the HWSD dataset (Fig.  1b). The differences 
between the HWSD and GSOC datasets are nonneg-
ligible if we focus on the geographical distributions of 
C-poor (SOC < 3  kg C m–2) and C-rich (SOC > 9  kg C 

m–2) cropland areas (Fig.  1c, d) and are expected to be 
an important source of uncertainties in the SOC-yield 
relationship. The HWSD-based available water storage 
capacity data were used throughout the analysis since 
this variable was not available in the GSOC dataset.

Climate
The climatic factors considered here included grow-
ing season temperature and the water balance index 
(Table 1). For the former, the average temperature from 
emergence to harvesting was computed for each crop, 
cropping season (rainfed and irrigated seasons) and year 
using the daily 2-m air temperature obtained from the 
0.5°-resolution global retrospective meteorological forc-
ing dataset (S14FD; Iizumi et al. 2017b). Emergence and 
harvesting were defined as the first date at which the 
fraction between the accumulated growing degree days 
(GDD) and crop total GDD requirement reached 0.1 
and 1.0, respectively. The average temperatures calcu-
lated for these seasons were averaged using the rainfed 
and irrigated areas available in the Monthly Irrigated and 
Rainfed Crop Areas dataset for the years around 2000 
(MIRCA; Portmann et al. 2010) as the weights. This was 
done to account for the possibility that crop calendars are 
different between the seasons (e.g., rice in Asia). Then, 
the multiyear average over the 1998–2002 period was 
calculated and used for analysis.

The calculation of the total crop GDD requirement was 
based on daily mean temperature, planting and harvest-
ing dates, and crop-specific temperature thresholds. The 
middle day of planting and harvesting months available 
in the MIRCA were aggregated from the 5 arc minute 
resolution by extracting the data value of a finer grid cell 
within a coarser grid cell that has the largest harvested 
area for crop and season of interest. The base tempera-
ture and upper-temperature limit values used here are 
available in Additional file 1: Table S1.

Table 1  The variables used for the random forest models

Category Variable Unit Dataset and source

Yield Average yield (wheat, maize, rice, soybean, sor-
ghum, millet)

t ha–1 M3, Monfreda et al. (2008)

SPAM2005, Wood-Sichra et al. (2016)

Soil Topsoil (0–30 cm) organic carbon content kg C m–2 GSOC, FAO and ITPS (2018)

mm per m of the soil unit HWSD, Wieder et al. (2014)Available water storage capacity

Climate Season temperature °C S14FD, Iizumi et al. (2017b)

Season water balance index mm season–1

Management Nitrogen application rate kg N ha–1 year–1 Mueller et al. (2012)

Pesticide application rate kg ha–1 year–1 PEST-CHEMGRIDS, Maggi et al. (2019)

Irrigation intensity Fraction to harvested area MIRCA, Portmann et al. (2010)

Farm field size Category Fritz et al. (2015)

Agricultural knowledge stock Billion USD Iizumi et al. (2017a)
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For the water balance index, we first calculated the aver-
age precipitation between rainfed and irrigated seasons 
in a similar manner as the temperature. Then, the stand-
ard deviation (SD) of the seasonal precipitation for the 

1998–2002 period and the multiyear average were calcu-
lated. A measure of season water balance was computed as:

(1)WB = P − 1.28× σP − CWN ,

Fig. 1  Geospatial patterns of (a, b) the current SOC levels, (c, d) current SOC categories, (e, f) maximum attainable SOC levels (SOCmax), (g) climate 
bins, and (g) differences in the SOCmax value between the HWSD and GSOC datasets
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where WB is the water balance index (mm season–1), P 
is the average season precipitation over the 5-year period 
(mm season–1), σP is the SD of the season precipitation 
for the same period (mm season–1), and CWN is the 
crop-specific water needs (mm season–1) (Additional 
file 1: Table S1). The combined term, P − 1.28× σP , indi-
cates the water supply by precipitation in a 1-in-10 dry 
year when a normal distribution was assumed for the 
season precipitation. The CWN values used here cor-
responded to the upper end of the reported range; for 
instance, the range for maize reported by Brouwer and 
Heibloem (1986) is from 500 to 800  mm season–1. A 
WB value of zero indicates that crop water needs under 
rainfed conditions can be met, even after the considera-
tion of farmers’ risk averse attitude that relatively higher 
water-consuming cultivars (e.g., long season cultivars) 
are grown under drier-than-normal conditions. Negative 
and positive WB values indicate that crops are exposed to 
water deficits and water surpluses, respectively.

Management
The variables used to characterize management level 
included the N application rate, pesticide application 
rate, irrigation intensity, farm field size, and agricultural 
knowledge stock (Table 1). As management information 
at the farm level is hardly accessible, the variables used 
here are indicators for the average management level at 
the landscape to country levels.

Crop-specific average N application rates between 1994 
and 2001 (Mueller et al. 2012) were spatially aggregated, 
as was done for the yield data. The top 20 crop-specific 
pesticide application rates in 2015 available in the PEST-
CHEMGRIDS v1.01 dataset (Maggi et  al. 2019) were 
averaged across the pesticide types and then spatially 
aggregated. The average irrigation intensity between 1998 
and 2002 (the irrigation-equipped area divided by the 
harvested area) was calculated from the MIRCA data-
set. The original grid size of these three datasets is 5 arc 
minutes.

The farm field size category data from approxi-
mately 2005 (Fritz et  al. 2015; 1 = very small, 2 = small, 
3 = medium, and 4 = large) offer a satellite-derived indi-
cation of the average physical size of farm fields located 
within a 30 arc second grid cell. The data were aggregated 
by counting the number of appearances of each category, 
and a single category that most frequently appeared was 
selected as the typical farm field size for each 0.5° grid 
cell.

Last, the country agricultural knowledge stock (Iizumi 
et  al. 2017a)—the sum of the annual governmental 
expenditures for agricultural research and development 
since 1961 with a certain obsolescence rate—was used to 

consider the yield improvement from management prac-
tices other than those considered above (e.g., adoption of 
high-yielding varieties). The average between 1998 and 
2002 was used. We assumed that the knowledge stock 
level is the same across grid cells within a country.

Farming types
The crop- and farming type-specific harvested areas 
(the average between 2009 and 2011) were obtained 
from SPAM2010 version 1.1 (Yu et  al. 2020) and used 
after spatial aggregation. Four farming types, irrigated, 
high-input, low-input, and subsistence, are available. 
We assumed that the low-input and subsistence farm-
ing types together represent resource-poor, small-scale 
farmers, although other factors, such as the extent of cul-
tivated area and on-farm income, are also used to define 
small-scale farmers (Lowder et al. 2016; FAO 2018). The 
5 arc minute data were aggregated and used for the sum-
mation of potential changes in SOC stock, crop produc-
tion and inorganic N input estimated at the 0.5° grid cell 
level to those at the regional and global levels. Although 
the harvested areas for these farming types for 2005 are 
available in SPAM2005 (Wood-Sichra et  al. 2016), we 
used SPAM2010 to set the baseline time point as recent 
as possible.

Random forest models
We employed the RF model (Breiman 2001), a machine 
learning technique. The RF model is a nonparametric 
classification and regression tree analysis method and 
has increasingly been applied to address nonlinear cli-
mate-yield relationships (Jeong et al. 2016; Hoffman et al. 
2018; Mann et al. 2019; Laborde et al. 2020). The model 
fitting was conducted using the randomForest function 
in the statistical package R (R Core Team 2021) with the 
following settings (ntree = 500, mtry = 3, nodesize = 5). 
These values for the number of trees to grow (ntree), the 
number of explanatory variables randomly sampled as 
candidates at each split (mtry), and the minimum size of 
terminal nodes (nodesize) were set to be the default used 
in the function according to the literature (Liaw and Wie-
ner 2002; Jeong et al. 2016). We consider that the setting 
used shows of the lower bound on achievable accuracy 
under the default setting although an extensive explora-
tion might increase model accuracy further. The relative 
importance of the individual variables considered here 
in explaining the global yield patterns in the 2000s was 
also estimated within the function. The RF model was 
separately fitted to each of the crops. For a given crop, 
model fitting was conducted for each of the four dataset 
combinations consisting of two yield datasets (M3 and 
SPAM2005) and two SOC datasets (HWSD and GSOC), 
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with the data sources for the remaining variables kept the 
same to examine the uncertainties in estimated SOC-
yield and N-yield relationships. Although the sample 
size used for the model fitting varied by crop and dataset 
combinations, it strongly depended on the extent of the 
global harvested area for a crop of interest and ranged 
from 1808 for millet to 8,123 for maize. These relation-
ships, both specific to crop and dataset combinations, 
were used in the simulation experiment described in the 
subsequent section.

Simulation experiment
Using the RF-derived SOC-yield relationships, we cal-
culated potential increases in SOC stock and associated 
increases in yields. The increases in yields are converted 
into decreases in inorganic N input equivalent to those 
yield increases using the RF-derived N-yield relation-
ships. The detailed procedure is explained below:

1.	 The difference in SOC between the current and max-
imum attainable levels is calculated for each loca-
tion (Fig.  2a). The maximum attainable SOC level 
(SOCmax) was set by climate bin since climate is a 
main determinant of geospatial SOC patterns (Lam-
ichhane et  al. 2019). The climate bins are based on 
the average annual GDD and average aridity index 
(annual potential evapotranspiration of the refer-
ence crop divided by annual precipitation) for the 
1996–2005 period (Fig. 1g; Iizumi and Wagai 2019). 
For each of the 100 climate bins consisting of 10 ther-
mal regimes and 10 moisture regimes, we gathered 
current SOC values from the cropland grid cells that 
had the same climate bin with that of interest and 
selected the 95% tile value as the SOCmax value. The 
SOCmax values were determined for each SOC data-
set (Fig. 1e, f ).

2. 	The increase in yield corresponding to the increase in 
SOC between the current and maximum attainable 
levels is derived crop by crop using the SOC-yield 
relationships (Fig.  2a). The yield increases are con-
verted into increases in production by multiplying 
the harvested areas of the M3 dataset.

3. 	The change in the N application rate that gives the 
same magnitude of yield change as that calculated in 
the former step is computed for each crop using the 
N-yield relationships (Fig. 2b).

4. 	The N application rate that would achieve the current 
yield level under the SOCmax level calculated in the 
former step is compared with the current N applica-
tion rate to derive the amount of inorganic N input 
potentially saved through that SOC increase (Fig. 2b). 
The decreases in the N application rate are multiplied 
by the harvested areas of the M3 dataset to derive 
the total amount of inorganic N input saved for the 
crops.

Then, the calculated changes in SOC stock, crop pro-
duction and inorganic N input were aggregated for each 
crop, farming type and region. These calculations were 
conducted for each dataset combination since the SOC- 
and N-yield relationships are different between the four 
dataset combinations (M3-HWSD, M3-GSOC, SPAM-
HWSD and SPAM-GSOC).

We simulated only when the current SOC level for a 
given cropland grid cell falls within the effective range 
of the SOC-yield relationships (approximately 3 to 9 kg 
C m–2, with some variations between the crops and 
dataset combinations, as shown in “Results”). Although 
an increase in SOC in C-poor cropland (< 3 kg C m–2; 
Fig.  1c, d) should be beneficial for yield improve-
ment, the RF-derived SOC-yield relationships in that 
area were highly uncertain due to the lack of samples. 
The RF-derived SOC-yield relationships in the C-rich 

Fig. 2  Schematic illustrating the simulation experiment using (a) the SOC-yield relationship and (b) the N-yield relationship
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cropland (> 9 kg C m–2; Fig. 1c, d) were uncertain too, 
and the yield change through improved soil manage-
ment in the C-rich cropland is expected to be small 
and will not motivate farmers in that area to further 
increase SOC. For these reasons, we limited our simu-
lation only to croplands with intermediate SCC levels.

Climate mitigation by additional SOC stock
The estimated potential of additional SOC stock over 
the global cropland was converted into a global dec-
adal mean surface temperature change. The Intergov-
ernmental Panel on Climate Change (IPCC) Working 
Group I Fifth Assessment Report (IPCC 2013) illus-
trates, in Figure SPM.10, a linear relationship between 
cumulative total anthropogenic CO2 emissions from 
1870 and global decadal mean surface temperature 
change relative to 1861–1880. We recalculated this 
relationship using the bias-corrected daily mean 2-m 
air temperature data of eight atmosphere–ocean cou-
pled general circulation models (GCMs) (Iizumi et  al. 
2017b) used in the Coupled Model Intercomparison 
Project phase 5 (CMIP5; Taylor et  al. 2012) to derive 
a global decadal mean surface temperature change 
relative to 1850–1900 per 1 GtCO2 change. See Sup-
plementary Figure S10 and Supplementary Table  S2 
of Iizumi and Wagai (2019) for more details. The tem-
perature sensitivity used here spans from 4.482 × 10−4 
to 7.898 × 10−4 °C (GtCO2)−1, consisting of eight GCMs 
and four representative concentration pathways (RCPs; 
van Vuuren et al. 2011).

Results
Relative importance of soil, climate and management 
factors
The RF models were successfully fitted to the data, ena-
bling us to infer the relative contribution to yield from 
individual factors. A predominant portion of the geospa-
tial yield patterns in the 2000s was explained by soil, cli-
mate and management factors, with explained variances 
of 71.5% to 93.5% and root-mean-square errors (RMSEs) 
of 15% to 34% relative to the average actual yields (Addi-
tional file  1: Fig. S1). The fitting performance of the RF 
models for millet was notably different between the two 
yield datasets. For the SPAM dataset, we used total mil-
let yields calculated from pearl and small millet, but it is 
unclear whether this is the reason for the discrepancy.

The RF models revealed that pesticide application rate, 
agricultural knowledge stock, and N application rate are 
leading management factors in explaining the yields on 
a crop- and multidataset-average basis (the gray bars in 
Fig. 3). Climatic factors (the seasonal temperature in par-
ticular), the remaining management factors (irrigation 
intensity and farm field size), and SOC were determined 
to be important in addition to the leading management 
factors. The soil water holding capacity factors were pre-
sumed to be important in addition to these factors. How-
ever, the estimated importance of SOC varied depending 
on which SOC dataset was analyzed. This tendency was 
prominent for wheat and millet, and SOC was ranked as 
the fourth most important factor for these crops when 
the GSOC dataset was used (Fig.  3). The uncertainty of 
the estimated importance of SOC associated with the use 
of different datasets was small for maize, rice, soybean 
and sorghum.

Fig. 3  The relative importance of soil, climate and management factors in explaining global yield patterns. The importance index values computed 
based on the permutation method within the RF models are scaled crop by crop to have the value with the highest importance to be one so that 
we can compare different crops and different dataset combinations. The gray bars indicate the multicrop and multidataset averages of importance 
index values
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Yield response patterns to individual factors
If the M3-HWSD dataset combination was taken as the 
example for explanatory purposes, on a multicrop-aver-
age basis, the RF models revealed the following yield 
response patterns for the individual factors. The yield 
increased with an increase in the pesticide application 
rate and levels off (Fig. 4a). A similar pattern as that for 
the pesticide application rate was found for the agricul-
tural knowledge stock and N application rate (Fig.  4b, 
c). The yield response to climate factors is nonlinear; 
the yield starts decreasing when the season temperature 

exceeds approximately 10 °C (Fig. 4d); the yield increases 
along with the reduction in water deficits, while water 
surplus no longer elevates yield and even decreases 
(Fig. 2g). The yields almost linearly responded to increas-
ing irrigation intensity and farm field size (Fig. 2e, f ). The 
yield steeply increases with an increase in SOC (Fig. 2h), 
whereas the yield weakly increases with an increase in 
soil available water storage capacity (Fig. 2i).

The estimated yield responses for the other datasets 
(Additional file  1: Figs. S2–S4) are qualitatively similar 
to those for the M3-HWSD. However, some quantitative 

Fig. 4  Yield responses to soil, climate and management factors. The partial dependence plots derived using the RF models fitted to the M3-HWSD 
dataset combination are presented. The variables are sorted by the multicrop- and multidataset-average importance from high (a) to low (i). The 
y-axis indicates the yield change relative to the crop-specific, non-area-weighted global mean yield. The colored solid lines indicate the relationship 
between the yield and individual factors that fall within the 90% probability interval of the samples, while the colored dotted lines indicate the 
relationship that falls within either of the lower 5% or upper 5% intervals. The bold black lines indicate the multicrop-average relationship for the 
90%-probability intervals
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differences are notable. For instance, the yield response 
to SOC for SPAM-GSOC (Additional file 1: Fig. S4h) is 
relatively moderate compared to that for M3-HWSD 
(Fig.  2h), M3-GSOC (Additional file  1: Fig. S2h) and 
SPAM-HWSD (Additional file  1: Fig. S3h). The yield 
response to soil available water storage capacity varied in 
magnitude according to the dataset used (Fig.  2i versus 
Additional file 1: Fig. S3i, for instance).

Established SOC‑ and N‑yield relationships
When SOC increases, yield also increases. This tendency 
appeared in the estimated SOC-yield relationships irre-
spective of crops and datasets (Fig. 5). However, the esti-
mated yield response to increasing SOC was different 
between the crops, with relatively larger responses for 
wheat, sorghum and millet (Fig. 5a, e, f ) than for maize, 
rice and soybean (Fig.  5b, c, d). In addition, the mag-
nitude of the response varies by the dataset used. For 
wheat, the increase in yield for change in SOC between 
3 and 9 kg C m–2 estimated using the GSOC dataset was 
remarkably greater than that estimated using the HWSD 
dataset (Fig.  5a). Another example was rice: when the 
HWSD dataset was used, the yield increased as SOC 
increased, but when the GSOC dataset was used, the 
yield did not change much with increasing SOC (Fig. 5c). 

The use of different SOC datasets played a greater role 
than the use of different yield datasets as the source of 
uncertainties in the estimated SOC-yield relationships.

In contrast, for any crop, the estimated N-yield rela-
tionships were not sensitive to the choice of yield and 
SOC datasets. A tendency for yields to increase with 
increasing N application rate was detected in all crops 
considered here except soybean, with some variations by 
crop (Fig.  6). For instance, the estimated yield response 
for rice to an increase in the N application rate between 
0 and 200  kg  N  ha–1  year–1 (Fig.  6c) was smaller than 
that for wheat and maize (Fig. 6a, b). The estimated yield 
response for soybean that was less sensitive to changes in 
the N application rate was reasonable since soybean is a 
legume, and yield is less sensitive to soil N content than 
cereals due to nitrogen fixation.

Additional SOC stock and resulting synergies
The simulation experiment revealed that the additional 
SOC stock aimed at increasing the SOC-controlled 
yield over the global cropland accounted for 12.78 GtC 
(Fig. 7a, b) with the minimum–maximum range between 
the four dataset combinations from 11.55 to 14.05 GtC 
(Table  2). The agricultural C sequestration presented 
above equated to 46.9 GtCO2 (42.4–51.6 GtCO2), which 

Fig. 5  The global SOC-yield relationships for major crops. The data derived using the different datasets are presented as an indication of 
uncertainty in that relationship. Only the relationships that fall within the 90% probability interval of the samples are shown. The y-axis indicates the 
yield change relative to the crop-specific, non-area-weighted global mean yield
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Fig. 6  Same as Fig. 5 but for the global N-yield relationships for major crops

Fig. 7  Global and regional potentials of agricultural C sequestration, crop production and inorganic N input savings. a Additional SOC stock by 
region, farming type, and crop. b Global and regional increases in SOC stock and crop production as well as inorganic N input savings. The numbers 
in pink just below each circle indicate the share of small-scale farmers (the low-input and subsistence farming types together)
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is 1.4-fold of the global annual CO2 emissions in 2018 
(33.5 GtCO2) and was estimated to contribute to pre-
venting global decadal mean temperature warming by 
0.030 °C (0.019–0.041 °C). The increase in crop produc-
tion through SOC management was estimated to reach 
38.24 Mt (22.88–57.48 Mt) globally for the six crops 
together (Fig.  7b; Table  2), with relatively large uncer-
tainty in the estimates in East Asia (China) and South 
Asia (India) (the right panels of Additional file  1: Figs. 
S5–S8). In absolute terms, this equals the average annual 
production of wheat in France in the 2010s (38 Mt). This 
production increase was presumed to be equal to what 
would be achieved by an inorganic N input of 5.82 Mt N 
(3.89–7.14 Mt N) (Additional file 1: Fig. S9), which equals 
5.5% of the global N input in the 2010s. Basically, the 
production increase and inorganic N input savings were 
both proportional to the size of the additional SOC stock 
(Additional file 1: Fig. S10).

The aggregated simulation results by farming type 
showed that, at the global scale, the contributions of 
small-scale farmers (the low-input and subsistence farm-
ing types together) accounted for 28% (26–30%) of the 
additional SOC stock and 17% (15–20%) of the crop 
production increase, respectively (Fig.  7b; Table  2). The 
key crops and regions in terms of the small-scale farm-
ers’ contributions include maize and rice in Sub-Saharan 
Africa, soybean and maize in Latin America and the Car-
ibbean, rice and wheat in South Asia and Southeast Asia 
and Oceania, wheat in Eastern Europe and Central Asia, 
and so on (Fig. 7a).

This uncertainty in the estimated global and regional 
potentials of additional SOC stocks stems from the dif-
ferent geospatial patterns (the left panels of Additional 
file 1: Figs. S5–S8). The uncertainty was especially large in 
East Asia and South Asia (Table 2). The different geospa-
tial patterns of C-poor and C-rich areas (Fig. 1c, d) and 

Table 2  Global and regional potentials of additional SOC stock, crop production increase and inorganic N-input equivalent to that 
production increase, and the small-scale farmers’ contributions

The averages and minimum–maximum ranges of the estimates between the four dataset combinations are presented

Region Additional 
SOC stock 
(GtC)

Crop 
production 
increase (Mt)

Inorganic 
N input 
equivalent 
to crop 
production 
increase (Mt N)

Ave Min–max Ave Min–max Ave Min–max

Global

12.78 (28%) 11.55 (26%) 14.05 
(30%)

38.25 (17%) 22.88 (15%) 57.48 (20%) 5.82 (19%) 3.89 (17%) 7.14 (21%)

North America

1.76 (0%) 1.62 (0%) 1.90 (0%) 6.28 (0%) 2.14 (0%) 12.07 (0%) 0.82 (0%) 0.42 (0%) 1.34 (0%)

Latin America and Caribbean

2.16 (55%) 1.95 (54%) 2.36 (56%) 4.49 (54%) 1.22 (42%) 9.74 (56%) 0.73 (54%) 0.17 (43%) 1.41 (56%)

Western Europe

0.49 (4%) 0.41 (3%) 0.59 (4%) 2.79 (3%) 0.98 (2%) 5.02 (3%) 0.33 (3%) 0.14 (2%) 0.54 (5%)

Eastern Europe and Central Asia

0.75 (29%) 0.62 (23%) 0.89 (34%) 2.32 (19%) 0.51 (16%) 4.19 (44%) 0.20 (13%) 0.01 (11%) 0.42 (30%)

Middle East and North Africa

0.34 (52%) 0.23 (51%) 0.45 (54%) 1.00 (50%) 0.53 (49%) 1.54 (52%) 0.18 (56%) 0.12 (51%) 0.23 (61%)

Sub-Saharan Africa

1.09
(84%)

0.93 (83%) 1.24 (84%) 1.29 (80%) 0.76 (79%) 1.81 (80%) 0.18 (71%) 0.10 (67%) 0.24 (80%)

South Asia

1.89
(35%)

0.71 (34%) 3.08 (42%) 3.84 (33%) 1.23 (30%) 7.33 (48%) 1.12 (32%) 0.28 (30%) 2.11 (46%)

Southeast Asia and Oceania

1.52 (23%) 1.39 (22%) 1.66 (23%) 3.06 (23%) 1.98 (19%) 4.67 (31%) 0.51 (16%) 0.41 (11%) 0.68 (22%)

East Asia

2.62 (1%) 2.10 (1%) 3.14 (1%) 12.78 (1%) 6.38 (1%) 19.44 (1%) 1.70 (1%) 0.90 (1%) 2.58 (2%)
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SOCmax (Fig.  1h) between the HWSD and GSOC data-
sets largely contributed to this uncertainty. The variation 
in the SOC-yield relationships resulted from the choice 
of the dataset (Fig. 5). The different geospatial patterns of 
harvested areas between the crops (Additional file 1: Figs. 
S5–S8) also contributed to the uncertainty as the second-
ary factor. The uncertainty in the estimated small-scale 
farmers’ contributions was relatively large for South Asia 
and Eastern Europe and Central Asia but small for the 
remaining regions (Table 2).

Discussion
Here, we first discuss the validity of the estimated SOC-
yield relationships. Then, the estimated potentials of 
additional SOC stock are compared with earlier studies. 
Finally, we discussed the possible implications and limi-
tations of this study. The validity of the estimated yield 
responses to factors other than SOC is discussed in the 
Additional file 1.

SOC‑yield relationships
The yield response to SOC estimated in the present 
study was generally consistent with the literature. The 
estimated yield response to SOC was smaller for soy-
bean than for the other crops (Fig. 5). This tendency is in 
accord with the study reporting a weaker yield response 
to crop residue application for soybean than for maize 
(Wilhelm et al. 1986). By reviewing the studies conducted 
in China and India, Lal (2010) showed that the yield 
response to SOC was higher for wheat than for maize and 
rice when crops grown in the same location were com-
pared. Our results are in line with these observations.

The estimated yield response in relatively C-rich soil 
conditions was less sensitive to further increases in SOC 
regardless of crops (Fig.  5). This “yield plateau” pattern 
is qualitatively consistent with the literature reporting 
yield decline along with SOC increase under well-ferti-
lized conditions in India (Benbi and Chand 2007). The 
yield plateau is also reported for cooler regions in China 
(Pan et al. 2009) and maize-producing areas on soils with 
SOC > 2–3% worldwide (Oldfield et al. 2019).

However, the threshold SOC level leading to the yield 
plateau varies between earlier literature and this study. 
Zhang et al. (2016) showed that the threshold SOC level 
for the yield plateau in China ranged from 2.2 to 4.6 kg C 
m–2, which is lower than our result of approximately 6 kg 
C m–2 (Fig. 5). Their analysis indicated that the threshold 
was more strongly controlled by geographic region (tem-
perate versus subtropical) than crop (maize versus wheat) 
(Zhang et  al. 2010). This observation in part supports 
our use of the SOCmax values specific to climate bins, 
although there is room for improvement by accounting 
for edaphic factors (e.g., texture, mineralogy, aggregate 

structure) that may also be linked with the inherent 
capacity of soil to store organic carbon (Gulde et al. 2008; 
Singh et al. 2017; Six et al. 2002).

Comparisons with earlier studies
Estimation of the soil C sequestration potential in agri-
cultural land has rarely been conducted at a global scale. 
A notable exception is Lal (2016), which claims that the 
world’s cropland soils could sequester as much as 62 
t ha–1 (6.2  kg C m–2) over the next 50–75  years, with a 
total C sink capacity of ~ 88 GtC on 1420 Mha; how-
ever, Lal (2016) also states that the actual or attainable 
potential may also be only one-third to one-half of the 
capacity (i.e., 29 to 44 GtC). Our estimate of 12.78 GtC 
(11.55–14.05 GtC) is quite close to the earlier estimates 
of 14.5 to 22 GtC, the values obtained by multiplying 29 
to 44 GtC of Lal (2016) by 0.5, given that the six crops 
(779 Mha) used in this study occupy 50% of the global 
cropland area. Notably, the additional SOC build-up 
estimated in this study can be achieved in one to three 
decades if socioeconomic constraints are resolved, given 
the global technical potential for a C sequestration rate 
of 0.4–1.4 GtC year–1 reported in the literature (Sommer 
and Bossio 2014 (0.4 to 0.7 GtC year–1); Smith 2016 (0.7 
GtC year–1); Fuss et al. 2018 (1.4 GtC year–1)).

Implications and limitations
The SOC effects to increase yields are estimated to be 
smaller than the effects from the management and cli-
matic factors with some variations by crop. This is 
thought to be reasonable, given that improved varieties 
explain one-fourth to half of the past yield increase, and 
improved management (the increased use of synthetic 
fertilizers, irrigation, chemicals and machinery, and 
improved input-use efficiency) are the reasons for the 
remaining portion of the yield increase (Herdt and Cap-
ule 1983; Jones 2013). And there is a growing body of evi-
dence that seasonal climate conditions explain one-third 
to two-third of yield variability (Iizumi et  al. 2013; Ray 
et al. 2015; Heino et al. 2018). Although these explained 
variance values of yield trend and variability do not nec-
essarily sum up to a 100%, it is evident that management 
and climatic factors together explain a predominant por-
tion of variations in yield in space and time. Nevertheless, 
SOC effect deserves high attention because SOC build-
up can be achieved through traditional farming prac-
tices (manure application, reduced or no tillage, cover 
cropping etc.) even when farmer’s access to agricultural 
chemicals, synthetic fertilizer and seeds of modern varie-
ties are limited (FAO and ITPS 2021). While the reduc-
tion in agricultural chemicals and inorganic N input 
would have certain environmental benefits, enhancing 
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SOC has well-known and more wide-ranging co-benefits 
than controlling other management factors.

Soil management practices need to be fine-tuned for 
farming types and crops specific to the region of imple-
mentation in addition to the physical and chemical char-
acteristics of the soils (Amelung et  al. 2020). While the 
feasibility of increasing the C sequestration rate in global 
cropland and achieving the 4 per mille goal is under 
debate, even smaller SOC build-up can have robust co-
benefits on yield, soil fertility, drought tolerance and 
water quality, as mentioned earlier. Small-scale farmers 
have been a linchpin in recent policymaking (Cui et  al. 
2018; Ricciardi et  al. 2018; Lesiv et  al. 2019), and their 
contribution to the potential of global SOC build-up 
and crop production increase is estimated to be sizeable. 
Therefore, it is critical that institutions and policies pro-
moting soil management for sustainable land and climate 
mitigation will be aligned with and embedded within 
agricultural and rural development policies in which 
small-scale farmers are the main target.

We excluded C-poor croplands with SOC < 3 kg C m–2 
from our simulation, most of which are located in arid 
and semiarid regions of the world, although such areas 
should have a certain potential of additional SOC stock 
and co-benefits to dryland agriculture (Plaza-Bonilla 
et al. 2015). The SOC enhancement in these areas is likely 
affected by the availability of irrigation, as indicated by 
the finding from field irrigation experiments across the 
different climate zones that reports the positive effect 
of irrigation on SOC build-up, particularly in arid and 
semiarid areas with low initial SOC (Trost et  al. 2013; 
Zhou et al. 2016). Future research needs to address this 
limitation.

Other limitations in the current approach included the 
uncertainty associated with the significant discrepancy 
between the two global SOC datasets discussed above. 
Even the estimates of current global SOC stocks are sub-
stantially different between existing global soil datasets 
(FAO and ITPS 2018). Improvement in the global SOC 
dataset is essential to obtain more accurate estimates of 
the additional SOC build-up in global cropland. Simula-
tions using process-based crop models coupled with soil 
biogeochemical models are awaited to estimate the time 
required to build up the SOC presented in this study as 
well as the amount of required input to the soils. The 
relationships used in our simulation indicated the yield 
response to SOC and N application rate when the other 
explanatory variables considered remain unchanged. 
This assumption may not be realistic for some regions 
and crops since the SOC build-up rate itself is influenced 
by management and climatic conditions. Process-based 
models are capable of assessing multiple factors that 

correlate with one another. Such interactions are, how-
ever, difficult to address by statistical models.

Conclusions
This study presents the potential synergy between crop 
production and climate mitigation from additional 
SOC build-up over global cropland via improved soil 
management. Estimating the amount of inorganic N 
input required to achieve the crop production increase 
expected from the SOC build-up presented in this 
study would be a useful starting point to explore fur-
ther synergies through saving N fertilizer input and 
costs and maintaining drinking water quality. Impor-
tantly, the contributions of small-scale farmers to the 
potential of additional SOC stock and crop produc-
tion increase are sizable. Our findings emphasize the 
importance of linking institutions and policy between 
agricultural and rural development, sustainable land 
management and climate mitigation to simultaneously 
pursue multiple development goals.
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