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Abstract 

Background  Hepatitis C Virus (HCV) infection is one of the causal agents of liver disease burden. Six multiple anti-
genic peptides were synthesized including (P315, P412, and P517) plus (P1771, P2121, and P2941) to induce humoral 
and cellular responses, respectively against HCV infection. Aim: This paper aimed to employ computational tools 
to evaluate the efficacy of each peptide individually and to determine the most effective one for better vaccine devel-
opment and/or immunotherapy.

Methods  VaxiJen web and AllerTOP servers were used for antigenicity and allergenicity prediction, respectively. The 
ToxinPred web server was used to investigate the peptide toxicity. Each peptide was docked with its corresponding 
receptors.

Results  No peptides were expected to be toxic. P315 and P2941 are predicted to have robust antigenic properties, 
lowest allergenicity, and minimal sOPEP energies. In turn, P315 (derived from gpE1) formed the highest hydropho-
bic bonds with the BCR and CD81 receptors that will elicit B cell function. P2941 (derived from NS5B) was shown 
to strongly bind to both CD4 and CD8 receptors that will elicit T cell function.

Conclusion  P315 successfully bound to B cell (BCR and CD81) receptors. Also, P2941 is strongly bound to T cell (CD4 
and CD8) receptors.

Keywords  HCV, Humoral response, Cellular responses, CD4, CD8, Toxicity, Antigenicity, Docking scores, Vaccine 
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Background
Hepatitis C Virus (HCV) infection was first known in 
1989 by researchers who recently won the Nobel Prize 
[1–3]. HCV is one of the causal agents of liver disease 
burden including chronic hepatitis, cirrhosis ending with 
hepatocellular carcinoma [4–6]. World Health Organiza-
tion recorded around more than seventy million infected 

patients worldwide with at least 400,000 cases of death 
annually [1]. HCV is a positive-strand RNA virus. Its 
enveloped genome counts around 96 kilobases. After viral 
cleavage, viral proteins including the capsid, two enve-
lope proteins (E1 and E2), and seven non-structural pro-
teins will be identified [7]. HCV infection treatment has 
successfully improved from poorly tolerated injectable 
therapy (pegylated interferon and ribavirin) to well-toler-
ated oral direct-acting antiviral therapy (DAAs) [8, 9]. The 
great virologic cure rate was attained through an improved 
understanding of the viral lifecycle and the recognition of 
its targets to be blocked by small molecules such as poly-
merase and protease inhibitors [10]. Vaccination would 

*Correspondence:
Ghada M. Salum
ghada.salum@gmail.com
1 Applied Biotechnology Program, Faculty of Science, Ain Shams 
University, Cairo 11566, Egypt
2 Department of Microbial Biotechnology, Genetic Engineering Division, 
National Research Centre, Dokki, P.O. 12622, Giza, Egypt

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43141-023-00583-w&domain=pdf
http://orcid.org/0000-0002-8837-2065


Page 2 of 9Muhammad et al. Journal of Genetic Engineering and Biotechnology          (2023) 21:117 

have a significant impact on efforts for eradicating HCV 
infection and aiding as a complementary strategy [11].

Several approaches are currently being used in the 
development of HCV vaccines such as recombinant 
proteins, peptide vaccines, DNA vaccines, virus-like 
particles (VLPs), and viral vectors expressing diverse 
antigens. It is interesting to note that VLPs are becom-
ing desirable candidates for the development of HCV 
vaccines due to their ability to strongly stimulate cellu-
lar and humoral immune responses [12]. However, more 
research is needed to determine how to trigger immune 
responses that are highly protective and long-lasting. 
The NS3, NS4, NS5, and core proteins, which are targets 
of CD8 + T cells, are typically the focus of vaccines that 
induce T cell-mediated immunity. The pre-clinical stud-
ies that simply looked at T-cell responses were unsuc-
cessful [13, 14].

A promising vaccine composed of NS proteins in chim-
panzee adenovirus (ChAd3-NS) was tested in human vol-
unteers and boosted with modified vaccinia Ankara virus 
(MVA-NS). Broadly HCV-specific memory CD4 + and 
CD8 + T cells were produced by this treatment [15]. The 
clinical trial of this vaccine, a phase 1/2 trial in PWIDs 
(ClinicalTrials.gov identifier NCT01436357), showed no 
protection in patients with chronic HCV infection.

The HCV glycoproteins E1, E2, or the E1E2 heterodi-
mer, which are the primary targets of protective broad-
spectrum neutralizing antibodies (bnAbs), are the 
basis for vaccines intended to elicit humoral immune 
responses. The most successful candidate for this strat-
egy to date is a pure recombinant E1E2 (rE1E2) protein 
based on the HCV genotype 1a. After a homologous 
challenge, this vaccination provided protection in chim-
panzees [16], while a heterologous challenge resulted in 
lower rates of persistence [17]. Humans were unharmed 
by the rE1E2 protein in an oil-in-water emulsion, and 
only three of 16 vaccinated people experienced bnAb 
response [18, 19]. Recently, Patra et al. (2023) examined 
the immunogenicity of the antigen mRNA-lipid nano-
particles (LNPs) expressing the soluble E1 and E2 in the 
mouse model [20]. They proved that the use of both E1 
and sE2F442NYT mutant can induce broad protec-
tive humoral and cellular immunity indicating that the 
mRNA-LNP platform can provide a good opportunity to 
be used as an efficient candidate vaccine.

Peptide vaccines are short amino acid sequences that 
depict a particular epitope of an antigen and are designed 
to trigger an immune response to that antigen. Since viral 
proteins contain epitopes as their antigenic determi-
nants, epitope-based peptide vaccines can elicit cellular 
and humoral responses without developing undesirable 
adverse reactions [21]. Peptide vaccines provide several 
advantages in comparison to traditional vaccines that 

include whole viral particles or large portions of viral 
proteins. The use of traditional vaccinations requires 
adding an extra antigenic load that mildly stimulates the 
immune system and results in allergic responses. Peptide 
vaccines, on the other hand, use small portions of the 
viral antigens, that are non-infectious on their own, to 
drive more targeted and effective immunogenic reactions 
and, as a result, prevent allergic ones [22].

The field of Bioinformatics provides a broad range of 
tools that make it easier and more efficient to produce 
peptide vaccines cheaply and rapidly. In the design of 
peptide vaccines, finding correct epitopes is a vital pro-
cess that necessarily involves sequence analysis to assess 
the amino acids in the pathogenic proteins and identify 
the proper motif [23, 24]. Immunogenicity is a crucial 
component of vaccines that helps to stimulate a powerful 
immune response, despite, low immunogenicity is one of 
the drawbacks of peptide vaccines [25, 26]. Accordingly, 
employing computational models to predict and deter-
mine the immunogenicity of the proposed peptides  is a 
fundamental step in vaccinology [22, 27, 28]. Safe vac-
cines must be non-allergic and non-toxic by nature. In 
order to predict the potential allergenicity and toxicity 
of the epitopes, several computational methods, includ-
ing alignment-based and -free methods, were developed 
[26, 29]. Finally, molecular docking is a widely used effec-
tive technique to predict and evaluate the interaction 
between the peptide and their targets [30, 31]. Despite 
significant developments in recent years, there is no com-
monly established framework for vaccine design in silico.

Firstly, the peptides were assessed for antigenicity, aller-
genicity, and toxicity to get proper information regarding 
their immunogenicity. Then, stable tertiary structures of 
these peptides were modeled and validated to be docked 
with their targeted receptors. Finally, docking scores as 
well as the chemical bonds involved in the peptide-pro-
tein interactions were reported to validate their ability in 
inducing immune responses upon injection.

Materials and methods
Peptides characterization
All six peptides, summarized in Table 1, were assessed for 
antigenicity, allergenicity, and toxicity using their amino 
acid sequence as input. For antigenicity prediction, the 
VaxiJen web server was used to employ models for pre-
dicting protein antigenicity from protein datasets with an 
alignment-free algorithm [32, 33]. For the evaluation of 
allergenicity, the AllerTOP v.2.0 server that predicts the 
allergenicity from the amino acid hydrophobicity, molec-
ular size, helix-forming propensity, the relative abun-
dance of amino acids, and β-strand forming propensity, 
was employed [34]. For toxicity prediction, the ToxinPred 
web server was used to investigate the peptides’ toxicity 
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by evaluating the toxicity for all potential variants of the 
input sequences using models based on machine learn-
ing techniques and quantitative matrices [35]. In addi-
tion, the prediction of the peptides’ hydrophobicity and 
half-life in blood was performed using the PlifePred web 
server utilizing 261 peptides with experimentally deter-
mined half-lives in the mammalian blood [36].

3D modeling and structure validation
The peptide sequences were modeled to a tertiary struc-
ture using the PEP-FOLD web server [37, 38]. The best 
3D models are determined based on their sOPEP (Opti-
mized Potential for Efficient structure Prediction) energy 
expressed as a sum of local, nonbonded, and hydrogen-
bond terms (Equation) [37, 39].

Molecular docking of the peptides with their 
corresponding receptors
The immune receptor structures were retrieved from 
RCSB PDB. The first three peptides (P315, P412, and 
P517) were docked against the B-cell receptor (BCR) 
(ID: 5DRX) and CD81 (ID: 3X0E), while the other three 
(P1771, P2121, and P2941) were docked with the T-cell 
receptors (CD4 and CD8 (IDs: 2NY1 and 3QZW)). 
The protein structures were cleaned by removing water 
molecules and unnecessary structures and optimized 
by energy minimization with SWISS-PDBViewer [40]. 

E = Elocal + Enonbonded + EH−bond

The docking simulations were performed with a hybrid 
method combining template-based modeling and ab ini-
tio-free docking using the HDOCK web server [41–43]. 
More stable complexes are obtained when the ligands 
(peptides in this study) form more chemical bonds with 
their receptors [44]. Accordingly, the structures were 
further analyzed using the Protein–Ligand Interaction 
Profiler (PLIP) web tool to report the amino acids as well 
as the chemical bonds involved in stabilizing the peptide-
protein complexes [45]. The results were visualized with 
PyMOL software [46].

Results
Peptide characterization and 3D modeling
In general, no peptides were expected to be harmful 
(Table 2). Regarding the immunogenicity, only P315 and 
P2941 are predicted to have both strong antigenic prop-
erties and low allergenicity. Furthermore, the low sOPEP 
energies of P315 and P2941 indicated that they have rea-
sonably stable structures. However, only peptide P2941 
has a relatively high half-life. Despite the predicted aller-
genicity of peptide P1771, it has a high antigenicity and a 
stable 3D structure. Ramachandran plots of the peptides 
showed that all amino acids formed torsional angles that 
cause no steric clashes between atoms except in peptide 
P2121 in which the distances between the atoms in three 
residues (ASP6, PRO15, and LYS16) are shorter than the 
sum of their van der Waals radii which is sterically not 
allowed for any amino acids except glycine [47] (Fig. 1).

Table 1  Sequence identity of the selected peptide epitopes as compared with corresponding regions derived from genotypes 2a 
(JFH1) and a chimeric 2a/4a virus (ED43/JFH1)

Peptide name Derived protein Amino acid position Peptide sequence

P315 E1 a.a. 315–326 GHRMAWDMMMNW

P412 E2 a.a. 412–423 QLINSNGSWHIN

P517 E3 a.a. 517–531 GTTDHVGVPTYDWGK

P1771 NS4B a.a. 1771–1790 GIQYLAGLSTLPGNPAIASL

P2121 NS5A a.a. 2121–2140 FFTEVDGIRLHRHAPKCKPL

P2941 NS5B a.a. 2941–2960 CGIYLFNWAVKTKLKLTP

Table 2  The predicted characteristics of the peptides

Peptide VaxiJen Score Antigen? Allergen? Toxic? Half-life (seconds) sOPEP
(kcal/mol)

P315 0.4426 Yes No No 841.01 -27.04

P412 0.3778 No No No 864.01 -13.01

P517  − 0.0809 No Yes No 785.11 -15.47

P1771 0.4573 Yes Yes No 973.61 -25.73

P2121 0.0810 No No No 1100.11 -23.89

P2941 0.9524 Yes No No 1198.51 -27.83
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Molecular docking of the peptides with their 
corresponding receptors
Docking simulations revealed that peptide P315 estab-
lished the most stable complexes with both targeted 
receptors, BCR and CD81 (Table  2). The binding of 
P315 with BCR, shown in Fig.  2, involved 8 hydrogen 
bonds and 4 hydrophobic interactions. Besides that, 6 
hydrophobic and 2 hydrogen bonds contributed to the 
stability of the P315–CD81 complex along with 2 pi-
stacked interactions, shown as green dashes in Fig.  3, 
formed from the ring of residue PHE-150. On the other 
hand, Peptide P2941 formed the most stable structures 
for T-cell receptors. The stable complex between P2941 
and CD4 is due to the formation of 7 hydrogen bonds 
and a salt bridge, shown as yellow dashes, with ARG-
1131 (Fig.  4). For the CD8 receptor, the interaction 
involved 4 hydrogen bonds and 8 hydrophobic interac-
tions with P2941 (Fig. 5).

Discussion
Since 2013, DAAs, a highly effective treatment has 
offered the best sustained virological response (SVR) 
ever for HCV infection [48, 49]. The SVR rates remained 

comparably high during the COVID pandemic (96.9% vs. 
pre-COVID, 98.1%), despite the widespread of intrave-
nous drug and alcohol addiction during these challenging 
times [50]. Despite the achieved SVR [50, 51], the remain-
ing greater portion of problem patients, as relapsers, and 
human immunodeficiency (HIV) co-infected patients are 
still waiting for therapy and could not be disregarded. 
Moreover, a scarce data is published on the long-term 
impact of DAAs on chronic kidney disease [52]. Up to 
date and according to the Centers for Disease Control and 
Cancer Prevention, there is no available vaccine for avoid-
ing the occurrence of new HCV infections [53].

A considerable number of peptide vaccines are under 
development for HCV (using gpE2 epitope), other infec-
tious viral diseases, and many cancers [54]. Also, wet-lab 
experiments generated nAb against peptides containing 
epitopes derived from the gpE1 and gpE2 glycoprotein 
[55, 56]. Recent in silico study designed a multi-epitope 
peptide-based vaccine against Schistosoma mansoni to 
skip the restrictions for culture maintenance of the tar-
geted parasite. Via immunoinformatics, the Schisto-
soma multi-epitope vaccine was predicted as a stable, 
non-allergenic molecule and was hypothesized to trigger 

Fig. 1  Ramachandran plots for the peptides
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B-cell and IFN-γ-based immunity [11]. An earlier study 
proved the accuracy of docking to predict the binding of 
the stalk region of influenza hemagglutinin as an antigen 
with two different antibodies [57].

Herein, a set of computational methods was employed 
to demonstrate the efficacy of the individual peptides 
used in the six HCVP6-MAP cocktails to achieve the 
desired immunogenicity against HCV infection. As toxic-
ity is one of the major parameters in selecting the ideal 
vaccine [58], Our results revealed that all tested peptides 
didn’t have any toxicity. Moreover, for humoral and cel-
lular responses, P315 and P2941 are predicted to have 
robust antigenic properties, lowest allergenicity, and 
minimal sOPEP energies. All these parameters conferred 
the stability of the tested peptides. Regarding the stabil-
ity in blood, the P2941, in addition and relative to other 
peptides, has the longest half-life time. While the peptide 
P1771 had antigenic power, considerable half-life time, 
and low sOPEP energy with a stable 3D structure.

By using HDOCK, a server for protein–protein dock-
ing strategy, several combinations of different receptors 
with the six studied peptides were explored to estimate 
the docking performance in all potential scenarios. 
Regarding B cell receptors, the docking results showed 
that P315 formed the highest hydrophobic bonds with 
the CD81 receptor. As with many tetraspanins, CD81 is 
the mediator for HCV entry via binding to cholesterol 
in a cavity formed by its transmembrane domains. The 
latter receptor participates not only in HCV cell-surface 
assembly but also in Plasmodium sporozoites, HIV, and 
influenza A virus. Upon mutating the hydrogen bonds 
between cholesterol and CD81, HCV entry showed a 50% 
reduction [59]. Furthermore, the strength of hydrogen 

bonds submerged in the protein interior is reported to be 
as high as 7 kJ/mol per bond [60]. P412 peptide showed 
a stable complex with the BCR (7 hydrogen bonds) and 
modest energy (− 230), while P315 conferred the lowest 
energy (− 233) with 8 hydrogen bonds for the same recep-
tor. Moreover, the latter peptide contains amino acid res-
idues (as L413, G418, W420, G523, P525, Y527, W529, 
and G530) involved in CD81 blockade by improving nAb 
epitope exposure via inhibiting E2-CD81 receptor inter-
actions [55, 61]. Conversely, with CD81 receptors, P517 
exhibited the minimum number of hydrogen bonds and 
has minimal hydrophobicity (Table 3).

The current in silico study employed a set of com-
putational tools to evaluate and characterize the 
antigenicity and receptor-binding for each peptide 
individually to determine the most effective structural 
and non-structural peptides in terms of triggering the 
humoral and cellular responses. the current in silico 
study employed a set of computational tools to evalu-
ate and characterize the antigenicity and receptor-
binding for each peptide individually to determine the 
most effective structural and non-structural peptides in 
terms of triggering the humoral and cellular responses. 
the current in silico study employed a set of computa-
tional tools to evaluate and characterize the antigenic-
ity and receptor-binding for each peptide individually 
to determine the most effective structural and non-
structural peptides in terms of triggering the humoral 
and cellular responses. the current in silico study 
employed a set of computational tools to evaluate and 
characterize the antigenicity and receptor-binding for 
each peptide individually to determine the most effec-
tive structural and non-structural peptides in terms of 

Fig. 2  The P315-BCR docked complex shown as a whole in cartoon/surface (a) and in more detail in sticks view to show the chemical bonds 
involved in the interaction (b). The blue lines indicate Hydrogen bonds while the hydrophobic interactions are shown in gray dashes
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triggering the humoral and cellular responses. the cur-
rent in silico study employed a set of computational 
tools to evaluate and characterize the antigenicity and 
receptor-binding for each peptide individually to deter-
mine the most effective structural and non-structural 

peptides in terms of triggering the humoral and cel-
lular responses. the current in silico study employed a 
set of computational tools to evaluate and characterize 
the antigenicity and receptor-binding for each peptide 
individually to determine the most effective structural 

Fig. 3  The P315-CD81 docked complex shown as a whole in cartoon/surface (a) and in more detail in sticks view to show the chemical bonds 
involved in the interaction (b). The blue lines indicate Hydrogen bonds while the hydrophobic interactions are shown in gray dashes. (pi 
interactions are shown as green dashes)

Fig. 4  The P2941-CD4 docked complex shown as a whole in cartoon/surface (a) and in more detail in sticks view to show the chemical bonds 
involved in the interaction (b). The blue lines indicate Hydrogen bonds while the hydrophobic interactions are shown in gray dashes. (salt bridges 
are shown as yellow dashes)
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and non-structural peptides in terms of triggering the 
humoral and cellular responses. the current in silico 
study employed a set of computational tools to evalu-
ate and characterize the antigenicity and receptor-
binding for each peptide individually to determine the 
most effective structural and non-structural peptides in 
terms of triggering the humoral and cellular responses.

Conclusion
Taken together, the strongest antigenicity and the lowest 
allergenicity were shown by P315. In turn, P315 (derived 
from gpE1) was shown to strongly bind to the BCR and 

CD81 receptors that will elicit B cell function. In our 
results, P2941 (derived from NS5B), that are known to 
stimulate a CD4 + T cell response specific to HCV was 
shown to strongly bind to both CD4 and CD8 receptors. 
No doubt that the 3D designs of human immunogenic 
targets make it possible to find new drugs and vaccines, 
while their crystallization and purification continue to be 
rate-determining processes. But further research on pep-
tide vaccines could lead to the production of safe, effec-
tive HCV vaccines for use in clinical trials.
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