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Abstract 

Background  Actinomycetes isolated from marine habitats are known to have the potential for novel enzymes that 
are beneficial in the industry. In-depth knowledge is necessary given the variety of this bacterial group in Indonesia 
and the lack of published research. Actinomycetes isolates (BLH 5-14) obtained from marine sediments of Sarena 
Kecil, Bitung, North Sulawesi, Indonesia, showed an ability to produce pectinase and xylanase that have equal or even 
higher potential for pectic-oligosaccharides (POS) and xylooligosaccharides (XOS) production from raw biomass than 
from commercial substrates. This study’s objective was to characterize both enzymes to learn more for future research 
and development.

Results  Pectinase had the highest activity on the 6th day (1.44±0.08 U/mL) at the optimum pH of 8.0 and optimum 
temperature of 50 °C. Xylanase had the maximum activity on the 6th day (4.33±0.03 U/mL) at optimum pH 6.0 and 
optimum temperature 60 °C. Hydrolysis and thin layer chromatography also showed that pectinase was able to 
produce monosaccharides such as galacturonic acid (P1), and xylanase was able to yield oligosaccharides such as 
xylotriose (X3), xylotetraose (X4), and xylopentaose (X5). BLH 5–14 identified as the genus Streptomyces based on the 
16S rDNA sequences and the closely related species Streptomyces tendae (99,78%).

Conclusions  In the eco-friendly paper bleaching industry, Streptomyces tendae has demonstrated the potential 
to create enzymes with properties that can be active in a wide range of pH levels. The oligosaccharides have the 
potential as prebiotics or dietary supplements with anti-cancer properties. Further research is needed to optimize 
the production, purification, and development of the application of pectinase and xylanase enzymes produced by 
Actinomycetes isolates.
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Background
Oligosaccharides are short carbohydrate polymer chains 
composed of 2 to 10 monosaccharides. As nutrients for the 
growth of beneficial microbes in the intestines, oligosac-
charides are typically found in the fiber structure of plants 
and have the potential to serve as prebiotics. Because these 
oligosaccharides generally cannot be broken down by 
human enzymes, they can pass through the gut intact. The 
prevention of harmful bacterial growth, improved mineral 
absorption, and enhanced gut immunity are a few benefits 
for humans. Malto-oligosaccharides from starch, fructo-
oligosaccharides from sucrose, pectic-oligosaccharides 
from pectin, and xylo-oligosaccharides from xylan are a 
few examples of oligosaccharides. These latter two are 
promising targets for potential prebiotic sources [1, 2].

Oligosaccharides produced by the partial hydrolysis of 
pectin are known as pectic-oligosaccharides (POS). The 
hydrolysis process can result in smaller units with dif-
ferent polymerization stages that come from the com-
plex structure of the backbone sides of galacturonic acid 
and the chain sides of rhamnose and neutral sugars. 
Because of their anti-cancer, anti-bacterial, and antioxi-
dant characteristics, pectin and POS are utilized in the 
biomedical sector as dietary fiber and treatments for 
conditions including ulcers, colon cancer, and diarrhea 
[3–5]. Research by Wilkowska et  al. in 2019 [6] shows 
the effect of larger-size POS on the growth of the human 
gut microbiota and inhibition of pathogen growth. POS 
function as a modulator for immunometabolism in mac-
rophages was studied by Hu et al. in 2021 [7].

On the other side, the hydrolysis reaction of xylan can 
yield xylo-oligosaccharides (XOS), which are known to 
be stable in acidic environments. Since 1990, xylo-oligo-
saccharides have been developed and sold as a food sup-
plement in Japan due to their health benefits, such as 
anti-tumor and anti-inflammation [8, 9]. One of the new-
est reports by Abdo et al. in 2021 [10] shows XOS ability to 
improve gut health in hamsters by reducing plasma choles-
terol levels and changing sterols composition. The positive 
impact of XOS consumption and nutrition as a prebiotic 
was also demonstrated on human intestinal health through 
the growth of lactic acid bacteria and Bifidobacterium spp. 
in studies by Lin et al. [11] and Alvarez et al. [12].

The production methodology of oligosaccharides can be 
chemical by heat and acid treatment or enzymatic, employ-
ing pectinase and xylanase enzymes to degrade the product. 
There has been an investigation regarding pectinase and 
xylanase enzymes from marine Actinomycetes. Endo-β-
1,4-xylanases from Kitasatospora sp. and Streptomyces vari-
abilis are used in studies by Rahmani et al. [13, 14] to show 
that they may produce xylooligosaccharides from sugarcane 
bagasse and beechwood substrate, respectively. Screening 
results of marine Actinomycetes from Visakhapatnam coast, 

India, carried out by Yugandhar et al. [15] against 52 isolates, 
succeeded in obtaining one potential isolate in producing 
the optimal pectinase enzyme at pH 6.0 media. However, 
there has not been a research report prior on combined pec-
tinase and xylanase enzymes from marine Actinomycetes 
isolates. Publications on microorganisms that can produce 
both enzymes, including the bacteria Bacillus amylolique-
faciens, Bacillus pumilus, Streptomyces sp. from terrestrial 
habitats, and the fungus Mucor sp. [16–19].

The lack of research is a significant factor with the 
increasing need for a mixture of pectinase and xylanase, 
especially for utilizing waste biomass and industrial 
base materials containing xylan and pectin substrates. 
Beyond the benefit of oligosaccharide production, there 
are many other applications for these two enzymes. The 
capacity to substitute chemicals in the paper-bleaching 
process, enhance the extraction and clarification of fruit 
juices containing hemicellulose and pectin, such as apple 
and pineapple, and hemp fiber preparation for use in the 
textile industry are some of these few examples [16, 17, 
20–22].

Based on the results of previous research in 2021, screen-
ing of 21 Actinomycetes isolates from marine sediments 
and sponges at Sulawesi and Lampung marine ecosystems 
in Indonesia. One candidate of Actinomycetes (BLH 5-14) 
originated from the marine sediments of Sarena Kecil, 
Bitung City, North Sulawesi, was chosen, and shows poten-
tial as a producer of pectinase and xylanase enzymes, with 
clear zones of 3.6 cm and 3.2 cm on double-layered agar 
media, respectively. Therefore, further research is needed 
to explore the potential utilization and characterization of 
pectinase and xylanase enzymes from Indonesian marine 
sediments Actinomycetes isolates (BLH 5-14) and their 
oligosaccharides production using raw biomass.

Methods
Microorganism, materials, and chemicals
Actinomycetes (BLH 5-14) are isolated from the marine 
sediments of Sarena Kecil, Bitung,  North Sulawesi, 
Indonesia. The primary materials used in this research 
include yeast-malt culture medium with the addition of 
artificial seawater and pectin from citrus peel [Sigma-
Aldrich; St. Louis, MO, USA] or xylan from beechwood 
[Himedia; Kennett Square, PA, USA] as the glucose 
substitute. The experiment uses the highest quality and 
grade of reagents, chemicals, and standards.

Enzyme production
The enzyme production was carried out based on the 
method by Rahmani et  al. [14], using the marine yeast-
malt medium, with the addition of 3% (w/v) Marine ART 
SF-1, 2% (w/v) commercial pectin substrate from orange 
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peel for pectinase culture, and 2% (w/v) commercial xylan 
substrate from beechwood for xylanase culture. The pro-
duction stages consist of the rejuvenation process of BLH 
5-14 isolates on a yeast-malt agar medium and cultivation 
on the 4th day at 28 °C, followed by the pre-culture pro-
cess on a liquid marine yeast-malt medium that incubates 
for three days at 28 °C, 190 rpm, and the culture process 
on liquid marine yeast-malt medium without glucose with 
the addition of pectin or xylan substrate, that incubates at 
28 °C, 190 rpm, for seven days. Samples were taken once 
every 24 h, and the results were separated by centrifuga-
tion at 4 °C for 20 min, 12,000 rpm. The supernatant was 
stored at 4 °C for further analysis, while the cell pellets 
were freeze-dried for three days to constant weight.

Enzyme activity, protein concentration and growth curve
The growth curve was made by measuring the enzyme 
activity according to the method by Miller [23] and 
Rahmani et  al. [24] on the results of crude enzymes 
from 0 to 168 h of enzyme production with 3 replica-
tions each. The protein concentration during the enzyme 
production process was carried out according to the 
BCA Protein Assay Kit [Pierce] protocol, with a standard 
curve made using bovine serum albumin (BSA) at a con-
centration of 0.0 - 2.0 mg/mL. The dry weight measure-
ment of pure cells was obtained from freeze-dry results.

Enzyme activity assay
The enzymatic reaction was based on the method by Rahm-
ani et al. [24], which was carried out by mixing 250 μL of 
substrate solution with 250 μL of crude enzyme solution at 
30 °C for 15 min. Another test tube containing a mixture 
of 250 μL of the substrate and 250 μL of milli-Q was also 
reacted as a control at the same time with a blank tube con-
taining 500 μL of the buffer. Dinitrosalicylic acid (DNS) 
solution of 750 μL was added, and the reaction was heated 
at 100 °C for 10 min. The reaction tube was then cooled in 
ice water for 10 min before the optical density (OD) could 
be measured using a spectrophotometer at a wavelength of 
540 nm. The quantity of enzyme needed to produce 1 μmol 
of reducing sugar every minute under the reaction variables 
was referred to as an enzyme activity unit (U/mL).

Enzyme characterization
Enzyme characterization was carried out to calculate 
optimum pH, optimum temperature, and the influence of 
metal ions and chemical compounds on enzyme activity. 
Enzyme activity was measured according to the method 
by Miller et al. [23]. The combination of pH tested con-
sisted of 50 mM sodium citrate buffer (pH 3.0 - 5.0), 50 
mM sodium acetate buffer (pH 4.0 - 6.0), 50 mM sodium 
phosphate buffer (pH 6.0 - 8.0), 50 mM Tris-HCl buffer 

(pH 7.0 - 9.0), and 50 mM Glycine-NaOH buffer (pH 
8.0 - 10.0). The temperatures were tested from 30 °C 
to 90 °C. The metal ions solution includes KCl, CaCl2, 
MnCl2.4H2O, ZnCl2, FeSO4.7H2O, MgSO4.7H2O, CuSO4, 
dan HgCl2 (5 mM) [Sigma-Aldrich; St. Louis, MO, USA], 
while the chemical compound includes Triton X-100 
[Merck; Jakarta, Indonesia], EDTA [Sigma-Aldrich; St. 
Louis, MO, USA], PEG-6000 [Merck; Jakarta, Indonesia], 
methanol [Emsure, ACS; Darmstadt, Germany], ethanol 
[Emsure, ACS; Darmstadt, Germany], sodium dodecyl 
sulfate (SDS) [Sigma-Aldrich; St. Louis, MO, USA], and 
isopropanol [Emsure, ACS; Darmstadt, Germany] (5%).

Molecular weight analysis with SDS PAGE and zymogram
Running gel and stacking gel were made according to 
the method of Laemmli [25] and Yopi et  al. [26]. Sam-
ple preparation consisted of a mixture of 10 μL crude 
enzyme and 10 μL loading buffer. SDS PAGE and zymo-
gram settings are 200 W, 120 V, and 50 mA for 100 min. 
SDS PAGE staining using coomassie brilliant blue G250 
solution for one night and de-staining for 1 h. Staining 
of the zymogram was carried out in stages using Triton 
X-100 (2.5%), milli-Q, incubation in a 50 mM buffer with 
optimum pH and optimum temperature, Lugol dye for 
pectin and congo red dye for xylan, and de-staining with 
1M NaCl solution and 0.5% (v/v) acetic acid solution.

Thin layer chromatography on hydrolysis products 
of pectinase and xylanase
The hydrolysis reaction was done based on the method by 
Rahmani et  al. [27] by mixing 1% (w/v) pectin and xylan 
substrates in a 50 mM buffer at optimum pH with crude 
pectinase and xylanase enzymes (1:1). The substrates used 
for pectinase include commercial substrates of pectin from 
apples and orange peels, as well as biomass substrates of 
apple peels, orange peels, and cacao peel. The substrates 
used for xylanase include commercial substrates of xylan 
from beechwood, bagasse biomass, palm kernel cake, and 
xylan extracts from corn cobs and tobacco plants. The entire 
substrate mixture was then incubated at 40 °C with reaction 
sampling carried out at 0, 1, 4, 24, 48, and 72 h. The samples 
were heated at 90 °C for 10 min. The results were separated 
by centrifugation for 20 min at 4 °C, 12,000 rpm. Thin layer 
chromatography (TLC) was performed on silica gel paper 
(20x10 cm) with a mixture of butanol, acetic acid glacial, 
and milli-Q (2:1:1) as the liquid phase, and diphenylamine 
acetone phosphoric acid (DAP) as spray solution.

Molecular identification of isolate BLH 5‑14
The DNA extraction steps were carried out according to 
the protocol on the Wizard Genomic DNA Purification 
Kit [Promega]. The DNA extraction results then entered 
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Fig. 1  Production curve of pectinase (A) and xylanase (B) for 7 days culture production. Sampling was done every 24 h. Enzyme activity, protein 
concentration, and dry cell weight was calculated

Fig. 2  Effect of different buffers, pH (A-B), and temperatures (C) on pectinase and xylanase activity. A Effect of buffers and pH on pectinase. B Effect 
of buffers and pH on xylanase. The reaction for optimum pH characterization was done under the same condition reactions at 30°C for 15 min, 
while the reaction for optimum temperature characterization was done using optimum pH for 15 min reaction time
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the PCR stage using the EmeraldAmp GT PCR Mas-
ter Mix with a total volume of 100 μL. The primers used 
were 9F (5’ AGR​GTT​TGATCMTGG​CTC​AG 3’) and 
1510R (5’ TAC​GGY​TAC​CTT​GTT​AYG​ACTT 3’) with 
cycles according to the method by Hayat et  al. [28]. The 
sequencing process was carried out with the assistance of 
the Apical Scientific Laboratory, Selangor, Malaysia, and 
mediated by PT. Genetics Science, Tangerang, Banten, 
Indonesia. The sequences were then analyzed using the 
FinchTV application, DNA Baser Assembler, Bioedit, and 
NCBI DNA Blast. The phylogenetic tree was created using 
MEGA X.

Results
Enzyme production, protein concentration and growth 
curve
Fig. 1 shows that enzyme activity, protein concentration, 
and total dry weight of cells in pectinase and xylanase 
production cultures continued to increase until day 6th 
and decreased on day 7th. The highest pectinase enzyme 
activity was 1.44±0.08 U/mL, the protein was 0.33 mg/
mL, and dry cell weight was 0.0567 g, while the optimum 
xylanase enzyme activity was 4.33±0.03 U/mL, protein of 
0.32 mg/mL, and dry cell weight of 0.1147 g.

Enzyme characterization
The results of enzyme characterization for optimum pH 
of pectinase and xylanase are in Fig. 2A and B. The pec-
tinase enzyme showed the highest activity in sodium 
phosphate buffer pH 8.0 at 5.08±0.17 U/mL, and xyla-
nase enzyme showed the highest activity at sodium ace-
tate buffer pH 6.0 at 3.58±0.01 U/mL. The activity of 
the pectinase enzyme in Fig. 2C increased to a temper-
ature of 50 °C by 5.08±0.17 U/mL and then decreased 
to a temperature of 90 °C. At the same time, the activity 
of the xylanase enzyme still increased to a temperature 
of 60 °C by 6.22±0.04 U/mL.

The results in Table  1 show that pectinase and xyla-
nase have a drastic decrease in activity by Hg2+ ions with 
activity values of 0.00±0.08 U/mL (0%) and 0.65±0.13 U/
mL (11%), respectively. On the other hand, the addition 
of K+, Mn2+, and Fe2+ ions result in increased activity. 
The pectinase enzyme activity values for K+, Mn2+, and 
Fe2+ ions were 6.70±0.01 U/mL (132%), 7.57±0.27 U/mL 
(149%), and 10.62±0.09 U/mL (209%), while in xylanase 
it was 8.39±0.12 U/mL (135%), 13.62±0.04 U/mL (219%), 
and 13.38±0.14 U/mL (215%), consecutively. Charac-
terization of chemical compounds showed the highest 
activity inhibition by SDS for both enzymes, followed by 
isopropanol, methanol, and ethanol.

Enzyme molecular weight analysis
SDS PAGE and zymogram analysis on the pectinase enzyme 
did not produce clear enzyme bands. In contrast, the SDS 
PAGE and zymogram on the xylanase enzyme in Fig. 3 show 
the separation of enzyme bands from xylanase culture sam-
ples, with the size between 34.8 and 25 kDa, respectively.

Thin layer chromatography hydrolysis product analysis
Based on Fig.  4 shows the oligosaccharide product of 
pectinase in the form of galacturonic acid (P1) from the 
biomass of apple peels and orange peels from the 1st 
hour. Fig. 5 shows the results of oligosaccharide products 
of xylanase in the form of xylotriose (X3), xylotetraose 
(X4), and xylopentaose (X5) on all substrates from the 1st 
hour, with xylotriose starting to become depleted at 48 
h. Production of XOS can be seen similarly between raw 
biomass and commercial substrates of beechwood xylan.

16S rDNA Molecular identification
Based on the results of sequence analysis using NCBI 
BLAST and the obtained phylogenetic tree in Fig. 6, the 
Actinomycetes isolate (BLH 5-14) belongs to the genus 
Streptomyces, with the closest species being Streptomyces 
tendae strain NBRC 12822 (99.78%).

Table 1  Influence of metal ions and chemical compounds on 
pectinase and xylanase enzymes

Metal ions/chemical Relative activity (%)

Pectinase Xylanase

Control 100±0.17 100±0.04

KCl 132±0.01 135±0.12

CaCl2 83±0.22 140±0.11

MnCl2.4H2O 149±0.27 219±0.04

ZnCl2 161±0.03 137±0.09

Fe2SO4.7H2O 209±0.09 215±0.14

MgSO4.7H2O 80±0.30 144±0.04

CuSO4 73±0.03 35±0.03

HgCl2 0±0.08 11±0.13

PEG-6000 83±0.05 130±0.07

Isopropanol 63±0.02 106±0.02

Methanol 56±0.02 104±0.03

Ethanol 52±0.01 99±0.02

Triton X-100 83±0.03 133±0.36

EDTA 106±0.02 60±0.04

SDS 0±0.00 0±0.01
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Discussion
Streptomyces tendae (Ettlinger et al., 1958) was 99.78% sim-
ilar to BLH-14 isolate. This species was first isolated from 
soil in Tendae, France. Its characteristics are known to grow 
in a wide pH range (pH 5.0-12.0) and NaCl concentration 
of 0-10% [29, 30]. Research by Abdulkhair & Aghuthaymi 

[31] demonstrated the ability of this species to produce 
pectinase enzymes and utilize xylose carbon sources.

The production and growth curves obtained from 
BLH-14 isolates showed similar results with other species 
of the genus Streptomyces in previous studies, namely 
Streptomyces coeliflavus GIAL86 from Meyghan Salt 

Fig. 3  SDS PAGE (A) and zymogram (B) of xylanase crude enzyme. M, molecular weight marker; lane 0-7: culture supernatant sampling of enzyme 
production day 0-7; K-, negative control

Fig. 4  TLC Analysis of hydrolysis products from various pectin commercial substrates and biomass (A-E). A Pectin from apple. B Pectin from citrus 
peel. C Biomass apple peel. D Biomass citrus peel. E Biomass cacao; M, Standards; P1, Galacturonic acid; P2, Digalacturonic acid; P3, Trigalacturonic 
acid
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Lake in Iran and Streptomyces actuosus A-151 in Taiwan 
[32, 33]. The optimum day range is generally found from 
day 5th to day 7th, with the highest value obtained at the 
beginning of the stationary phase. Proteins and enzymes 
produced in the culture process are known to be in the 
growth associate group, which will increase and decrease 
along with the metabolic rate of microorganisms in the 
culture [34].

The process of characterizing the optimum pH and 
temperature also showed results that followed previ-
ous studies by Kuhad et  al. [35] and Nascimento et  al. 
[36]. Both enzymes can remain active at a temperature 
of 30°C to 70°C (relative activity >50%) and a pH range 
of 3.0-10.0. These show the potential of BLH 5-14 iso-
late to be used in the paper bleaching process, replacing 
compounds such as chlorine and NaOH that can pollute 
the environment. Pectinase and xylanase enzymes are 

essential in cutting xylan bonds with polysaccharides, 
as well as the degradation of pectin on paper during the 
bleaching process at alkaline pH conditions [37, 38].

The influence of metal ions and chemical compounds 
on pectinase and xylanase enzymes tends to increase 
along with the higher concentration of compounds in 
the reaction solution [39]. Metal ion compounds can 
form interactions with carboxyl or sulfhydryl groups 
on proteins, causing disruption of protein structure 
or helping to increase reaction activity. The inhibitory 
nature of the Hg2+ ion is known to be the result of the 
interaction with the sulfhydryl group on pectinase and 
xylanase [40]. Sodium dodecyl sulfate (SDS) acts as a 
surfactant, causing the denaturation of protein struc-
tures along with the disruption of hydrophobic bonds in 
enzymes [41, 42].

Fig. 5  TLC Analysis of hydrolysis products from various xylan commercial substrates and biomass (A-E). A Xylan from Beechwood. B Bagasse. C 
Palm kernel cake. D Corn Cob. E Tobacco; M, Standards; X1, Xylose; X2, Xylobiose; X3, Xylotriose; X4, Xylotetraose; X5, Xylopentaose
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Xylanase enzyme from isolate BLH 5-14 showed 
decreased activity value due to the administration of the 
Ethylenediaminetetraacetic acid (EDTA) compound. This 
result indicates that this enzyme requires metal ions for 
the reaction process because EDTA acts as a chelating 
agent which tends to react and attract metal ion com-
pounds in solution [43]. On the other hand, xylanase 
usually does not respond significantly to the admin-
istration of organic alcohol solutions. According to 
Amobonye et al. [42], this may indicate the presence of a 
coil-like structure in a higher ratio of protein which tends 
to be stable in organic solutions, which can be beneficial 
in industries involving alcohol organic solutions. Some 
examples include the bioethanol production process, the 
production of alcoholic beverages, and the process of dis-
solving non-polar substrates [42, 44, 45].

The analysis of the enzyme molecular size using SDS 
PAGE and zymograms showed a difference between pec-
tinase and xylanase. Generally, the molecular weight of 
pectinase from Actinomycetes is in the 35-50 kDa range, 
with pectate lyase and polygalacturonase types from 
Actinomadura keratinilytica and Streptomyces coelicolor 

[46, 47]. The results of the xylanase molecular size are in 
the 20-50 kDa molecular weight size range of the Strep-
tomyces genus [14]. The presence of the two size enzyme 
molecules may indicate the presence of 2 types of a xyla-
nase enzyme family by Actinomycetes isolates (BLH 
5-14), namely GH11 that generally <30 kDa, and GH10 
that >30 kDa [14, 48, 49].

Xylanase enzymes from GH10 and GH11 tend to work 
synergistically, with GH11 producing large hydrolysis prod-
ucts, and with the help of GH10, can be degraded further 
into smaller xylan molecules. Results of larger-sized xylo-
oligosaccharide molecules produced as a result of this reac-
tion indicate the endo-type cleavage mechanism [48, 50]. 
On the other hand, pectinase produces monosaccharide 
products as the smallest unit, which implies that the pec-
tinase in this study has an Exo type of cleavage. In general, 
this product can benefit industries with a demand for the 
direct production of D-galacturonic acid [51, 52]. One 
example is a dietary supplement in the health industry that 
can reduce intestinal inflammation and prevent the devel-
opment of cancer-causing tumor cells [53].

Fig. 6  Neighbor-joining phylogenetic tree of genus Streptomyces and BLH 5-14 based on 16S rDNA analysis. Bootstrap values based on 1000 
replicates are shown at the branch nodes. Actinospica robiniae was used as an outgroup
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Conclusion
The results and data from a series of studies show that 
Actinomycetes isolates from marine sediments of Indo-
nesia identified as Streptomyces tendae can produce 
pectinase and xylanase enzymes. Both show proper-
ties susceptible to a wide range of pH and temperature, 
along with the distinct influence of chemical and metal 
ion compounds. In the storage process, this characteriza-
tion procedure can be utilized as a reference, particularly 
to maintain or even boost the anticipated enzyme activity 
in large-scale production. In addition to using waste and 
being cost-effective, oligosaccharide products made from 
biomass waste, such as galacturonic acid and xylooligo-
saccharides, are currently a market target due to their 
numerous applications in the biomedical industry. Sev-
eral studies regarding in vitro and in vivo assays, as well 
as purification methods to extract POS and XOS from 
the fermentation process, have been conducted in previ-
ous studies. As a result, there is a greater probability of 
developing this isolate to produce POS and XOS that will 
be beneficial and accessible to a larger community.
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