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Abstract 

Background:  Oxidative stress is among the most common risk factors in the pathogenesis of acute myocardial 
infarction (AMI). Glutathione peroxidase 1 enzyme coded by the GPX1 gene plays an essential role in reducing 
oxidative stress. Previous studies correlated the GPX1 (Pro200Leu) single nucleotide polymorphism (SNP) with AMI 
incidence. Elevated homocysteine (Hcy) levels induce oxidative stress and are considered an independent risk factor 
for AMI. Evidence showed a complex relationship between Hcy and GPx-1 activity. This study examined the associa‑
tion of the common (Pro200Leu) SNP in GPX1 with AMI incidence in an Egyptian population. This study is the first to 
check this association in an Egyptian population. Moreover, the association between serum Hcy and the incidence of 
AMI was checked, and the novelty was to statistically correlate GPX1 Pro200Leu genotypes with serum Hcy levels in 
patients and control subjects. Hundred control subjects and hundred and twenty AMI patients were genotyped using 
PCR-RFLP analysis. An ELISA was used to measure serum Hcy levels.

Results:  The GPX1 (Pro200Leu) genotype distribution and allele frequency were not significantly different between 
patients and control subjects (P = 0.60 and P = 0.62, respectively). Serum levels of Hcy were significantly elevated in 
patients compared to control subjects (P ≤ 0.0001). However, no significant difference was observed in serum Hcy 
levels among different GPX1 genotypes in neither patients nor control subjects.

Conclusions:  The minor T allele of GPX1 Pro200Leu is not associated with AMI risk in this Egyptian population. How‑
ever, high homocysteine serum levels might contribute independently to the risk of AMI. Finally, Hcy levels were not 
significantly different in homozygous minor TT compared to homozygous wild CC.
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Background
Cardiovascular diseases (CVDs) are the pre-eminent 
cause of death globally. They are significant health prob-
lems, not only due to high incidence but also due to the 

socioeconomic burden associated with them. Acute 
myocardial infarction (AMI) is one of the most common 
CVDs that cause death worldwide [1]. The initial trig-
ger of AMI is mainly irreversible myocardial necrosis 
that is secondary to prolonged ischemia. The disparity 
between the myocardial blood supply and demand leads 
to ischemia [2]. Previous studies showed the involvement 
of oxidative stress-mediated by reactive oxygen species 
(ROS) in the pathogenesis of AMI. The exact mecha-
nism by which ROS contributes to AMI is still uncertain; 
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however, the most common hypothesized mechanism 
is that ROS, mainly hydrogen peroxide (H2O2), leads to 
nitric oxide (NO) insufficiency by converting it to inac-
tive peroxynitrite. NO is the most potent vasodilator. NO 
also alters the adherence of the platelets and leukocytes 
to the endothelial membrane and improves the barrier 
function of the endothelium [3].

The glutathione peroxidase (GPx) family are the fun-
damental antioxidant enzymes in humans [4]. The GPx 
family consists of eight isoforms named from GPx-1 to 
GPx-8; each isoform has distinct subcellular localization. 
The principal role of these enzymes is to convert hydro-
gen and lipid peroxides to their reduced form, water 
(H2O) and alcohol (LOH), respectively. Glutathione 
peroxidase 1 (GPx-1) is the most abundant intracellular 
isoform [4–6]. The cardioprotective role of GPx-1 is man-
ifested by preventing oxidative stress-induced atheroscle-
rosis [7, 8]. This is attained by reducing the availability 
of ROS, so low-density lipoprotein (LDL) becomes less 
prone to be oxidized to oxidized LDL (Ox-LDL), which is 
the fundamental component of the atherosclerotic plaque 
and the necrotic core [8, 9]. Furthermore, it regulates NO 
bioavailability by decreasing the levels of hydrogen and 
lipid peroxides, hence decreasing the susceptibility of NO 
inactivation to peroxynitrite [10]. The GPX1 gene maps 
chromosome 3p21. The Pro200Leu single nucleotide 
polymorphism (SNP) (rs1050450) is a missense mutation 
that occurs on exon two where the wild allele C is sub-
stituted by the T allele (NM_000581.4:c.599C>T) result-
ing in the amino acid change of Pro to Leu [6, 11] that 
impairs the enzyme activity [12, 13]. This SNP was pre-
viously associated with CVD risk in various ethnicities 
[14–17].

Homocysteine (Hcy) is a non-essential amino acid. 
It shows structural homology to cysteine amino acid 
yet with an additional methylene bridge (-CH2-) [18]. 
The physiological role of Hcy is debatable and not well 
known, unlike its toxicity which is mainly due to the 
covalent interaction between Hcy and the proteins 
which alter their functions [19]. Elevated Hcy levels are 
known as hyperhomocysteinemia (HHcy) [20]. Several 
studies showed a correlation between HHcy and oxida-
tive stress [19, 21]. HHcy-induced oxidative stress can 
be classified into direct and indirect mechanisms. The 
direct mechanism involves Hcy being auto-oxidized 
to homocysteine, releasing H2O2 as a by-product [22], 
while the indirect mechanisms involve HHcy inducing 
ROS generation in several ways. HHcy leads to uncou-
pling of eNOS and increases xanthine oxidase and 
NADPH oxidase activity [23–25]; all lead to an increase 
in superoxide anion generation. The indirect mechanism 
also involves HHcy downregulating several antioxidant 
enzymes, mainly GPx-1, as well as depleting its substrate 

glutathione [10, 26, 27], hence decreasing the antioxi-
dant effect and increasing the oxidative stress. Several 
experimental and clinical evidence has demonstrated 
a unique and complex relationship between Hcy and 
GPx-1 activity. Extreme HHcy inhibited GPx-1 activity 
in both in vivo and in vitro [28] by a mechanism involv-
ing downregulation of translation, which may contribute 
to the proatherogenic and prothrombic effects of Hcy 
[26]. Also, individuals with high GPx-1 activity are less 
susceptible to Hcy damaging effects [29].

Given the above findings, this study examined the asso-
ciation between GPX1 Pro200Leu common SNP and the 
risk of AMI in an Egyptian population, besides the cor-
relation between serum Hcy levels and the risk of AMI, 
in addition to statistically correlating GPX1 Pro200Leu 
different genotypes with the levels of Hcy in control sub-
jects and AMI patients.

Methods
Study subjects
Hundred and twenty AMI patients were recruited for this 
study. The blood samples were collected from patients 
admitted to the intensive care unit of the National Heart 
Institute, Imbaba, Giza; El Demerdash Hospital, Cairo, 
Egypt. All recruited patients were unrelated. Patients 
were only included if they have been diagnosed with AMI 
for the first time, confirmed by electrocardiogram and 
elevated cardiac markers. The samples were drawn within 
the first 6 h from the myocardial infarction episode. The 
patients were divided into fifty-five females with an age 
range of 46–60 years and sixty-five males with an age 
range of 44–60 years.

For the control subjects, hundred healthy individuals 
were included in this study. All individuals were unre-
lated, and the samples were collected from  the blood 
bank of 57357 Hospital, Cairo, Egypt.  The individuals 
included forty females with an age range of 41–57 years 
and sixty males with an age range of 42–58 years. Sub-
jects were only included in this study if they had no his-
tory of AMI or any other cardiovascular diseases besides 
having a controlled blood pressure of 120/70 mmHg.

The exclusion criteria included any other acute or 
chronic diseases such as diabetes mellitus, renal or 
hepatic diseases, cancer, or any other CVDs. This cri-
terion was applied to all study participants. The par-
ticipants filled out medical reports, which were used to 
obtain information regarding their family history and 
lifestyle.

All the procedures comply with the ethical standards 
of German University in Cairo ethics committee and the 
1964 Helsinki Declaration. Written consent was obtained 
from all study participants.
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Sample collection
Four milliliters of blood samples was collected. The sam-
ples were allowed to clot at room temperature for 30 min 
[30] followed by centrifugation at 2500 rpm for 10 min at 
4 °C to obtain the serum. The serum was then stored at 
−20° C for Hcy determination.

Whole blood was used for DNA extraction using 
DNA Blood GeneJET Mini Kits (Thermo Scientific). The 
extraction was carried out based on the manufacturer’s 
instructions. Briefly, proteinase K and lysis buffer were 
added to the blood sample to break down nuclear and 
cellular membranes, releasing the DNA. The released 
DNA was then allowed to bind specifically to the silica-
gel membrane of the GeneJET mini spin column while 
contaminants were washed through. The DNA was 
eluted via elution buffer provided with the kit. Then, the 
purity of the eluted DNA was assessed using Nanodrop 
and was quantified using Qubit. The extracted, pure 
DNA was used for genotyping the GPX1 Pro200Leu 
SNP using polymerase chain reaction-restriction frag-
ment length polymorphism (PCR-RFLP) [31].

The GPX1 Pro200Leu SNP genotyping by PCR‑RFLP
The forward primer used for the amplification of the 230-
bp fragment was 5′-TTA​TGA​CCG​ACC​CCA​AGC​TCA-
3′ while the reverse primer was 5′-ACA​GCA​GCA​CTG​
CAA​CTG​CC-3′ [32]. A 1 μl of Hae III restriction enzyme 
was used to digest the obtained PCR product. The PCR 
digests were then loaded on 3% agarose gel and visual-
ized under UV after staining with ethidium bromide. In 
the case of the minor allele T, 148 and 82bp band sizes 
are obtained while for the wild allele C, 88, 82, and 60bp 
bands are obtained as shown in Fig. 1.

Measuring serum Hcy concentrations
Serum Hcy levels were quantified using the human Hcy 
enzyme-linked immunosorbent assay (ELISA) kit pro-
vided by Axis-Shield, Dundee, UK.

Lipid profiling for study participants
The serum samples were also used to measure the levels 
of triglycerides (TG) and total cholesterol (TC) via an 
enzymatic colorimetric method using kits provided by 
Diamond diagnostics, Egypt.

Statistical analysis
All the statistical analyses were performed using Graph-
Pad Prism software (GraphPad Software, Inc). All con-
tinuous data were presented as median (IQR). The 
differences between the two study groups were assessed 
using either the nonparametric student t-test (Mann-
Whitney) or the nonparametric one-way ANOVA 
(Kruskal-Wallis). The odds ratio (OR) with 95% confi-
dence interval (CI) were used to check whether the minor 
allele T is associated with increased risk of AMI or not. 
A two-tailed P-value ≤ 0.05 was used as the significance 
threshold for all tests. However, P > 0.05 indicated no 
deviation from the Hardy-Weinberg equilibrium (HWE).

Results
Demographics of the study cohort
The demographics of the study cohort, serum TC, TG, 
and Hcy levels are shown in Table 1.

Genotyping of the Pro200Leu SNP
The pattern of the genotype distribution was not signifi-
cantly different between AMI patients and control sub-
jects (Mann-Whitney test, P = 0.60). Similarly, there was 

Fig. 1  The gel shows all the possible genotypes. The samples (50 ng) were loaded and ran against a 100-bp DNA ladder marker. In the case of 
homozygous wild CC as in lanes 5, 6, 7, and 11, 3 bands were obtained (88, 82, and 60bps). In the case of heterozygous CT as in lanes 2, 3, 4, and 8, 4 
bands were obtained (148, 88, 82, and 60bps), while for homozygous minor TT as in lanes 9 and 10, only 2 bands were obtained (148 and 82bps)
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no significant difference in the allele frequencies between 
the two groups (Mann-Whitney, P = 0.62). Carriers of 
the risk allele T allele (CT+TT) did not show a higher 
risk for incidence of AMI compared to wild CC genotype 
(OR = 0.8623; P = 0.5862), as illustrated in Table 2.

Levels of Hcy in serum
The AMI group had up to a 1.90-fold significant increase 
in median serum levels of Hcy compared to control sub-
jects (P ≤ 0.0001) as shown in Fig. 2.

Correlation of genotypes with serum Hcy levels in study 
groups
There was no significant correlation between different 
genotypes and median serum Hcy levels in neither AMI 
patients nor control subjects (P = 0.186 and P = 0.373, 
respectively) as shown in Fig. 3.

TG and TC levels between study groups
The AMI group had up to 1.38-fold significant increase 
in the median serum TG concentration compared to 
controls (P < 0.0001). Similarly, a significant (P < 0.0001) 
increase up to 1.27-fold was observed in the median 
serum TC concentration in the AMI group compared to 
controls.

Discussion
Correlation between GPX1 Pro200Leu SNP and risk of AMI
Under normal physiological conditions, GPx-1 reduces 
oxidative stress tremendously [5]. Cheng et  al. reported 
that patients with impaired GPx-1 activity are more 
prone to develop AMI [33]. As far as we know, this study 

is the first to clinically investigate the possible associa-
tion of GPX1 (Pro200Leu) SNP and the risk of AMI in an 
Egyptian population. The current study results showed 
no significant difference in neither the GPX1 genotype 
distribution nor the allele frequency between AMI and 
control groups suggesting that the GPX1 Pro200Leu 
SNP is not associated with the risk of AMI. Our results 
showed consistency with studies done on Chinese [14], 
Swedish [15], Indian [16], and Russian populations [17]. 
However, our results contrasted the one done on Japa-
nese [11].

A suggested explanation for the above significant cor-
relation between this SNP and AMI is that the Pro to 
Leu amino acid change could alter the activity of the 
enzyme [12] since the Leu variant was previously associ-
ated with a reduction in the enzyme activity [11, 34]. The 
GPx-1 enzyme is abundant in endothelial cells and mac-
rophages; therefore, the decreased activity is expected to 
increase the sensitivity of the vessels to oxidative stress 
and will be more prone to oxidative stress-induced ath-
erosclerosis [32]. The above conflicting findings may be 

Table 1  Demographics of the study participants

Categorical data are presented as number. Continuous data are presented as 
median (IQR)

Groups Control subjects AMI patients

Number (male/female) 100 (60/40) 120 (65/55)

Age range 41–58 44–60

Serum total cholesterol (mg/dL) 175 (23) 222 (59)

Serum triglycerides (mg/dL) 108 (44) 149 (67)

Serum homocysteine (μmole/L) 15 (5.5) 29 (9.5)

Table 2  Odds ratio (OR) with 95% confidence intervals (CI) for 
GPX1 Pro200Leu in study groups

GPX1 
Pro200Leu

AMI 
patients (n 
= 120)

Control 
subjects (n = 
100)

OR
(95% CI)

P-value

CT+TT 52 45 0.8623
(0.5058–1.470)

0.5862

CC 68 55

Fig. 2  The median serum Hcy levels in both study groups. 
***Significant difference from the control group at P≤ 0.0001
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attributed to the differences in ethnicities, trial numbers, 
different methods applied, sampling schemes, and the 
different environmental effects [26, 35].

Serum Hcy levels
Hcy is a non-essential amino acid with an extra sulfur; 
the main pathway for Hcy synthesis is methionine dem-
ethylation [18]. Hcy levels are maintained via two path-
ways, either remethylation or trans-sulfuration [36]. Hcy 
levels above 16 μmole/L are known as HHcy [37] and 
were previously shown to be independently a risk factor 
for various diseases, including CVDs [38–40].

In this study, the median Hcy concentration was sig-
nificantly higher in the AMI group compared to the con-
trol group (P ≤ 0.0001). This significant correlation can 
be due to several effects; Hcy triggers the endothelium 
to synthesize and release pro-coagulant factors [41]. It 
also enhances the auto-oxidation of LDL to Ox-LDL [42], 
promotes vascular thrombosis by reducing the activation 
of protein C, initiates the aggregation of the platelets, and 
stimulates smooth muscle cell proliferation [38, 43]. Our 
results were consistent with those observed in several 
other ethnicities [44–46].

Correlation between SNP and Hcy in study subjects
Experimental evidence showed that GPx-1 regulates 
Hcy-induced cardiovascular risk and that Hcy attenu-
ates the ability of the cell to detoxify hydrogen peroxide 
by inhibiting the intracellular activity of GPx-1 [29]. Hcy 
also downregulates translation [26]. Therefore, a possible 

correlation between the rs1050450 variant and serum 
Hcy levels was hypothesized.

In the current study, the GPX1 Pro200Leu SNP and 
the Hcy serum levels were correlated in neither the AMI 
(P = 0.186) nor the controls (P = 0.373). Our study was 
the first to correlate the SNP and Hcy serum levels in 
humans. However, our results were consistent with Dayal 
et al.’s findings in mice in which Hcy levels were not asso-
ciated with the GPX1 genotypes [47].

Conclusion
We can conclude from this study that GPX1 Pro200Leu 
SNP was not significantly associated with AMI in an 
Egyptian population. However, Hcy’s role in the inci-
dence of AMI was confirmed since AMI patients had 
significantly 1.90-fold higher median serum levels of 
Hcy compared to healthy control subjects, while the 
novel correlation between Hcy serum levels and the SNP 
showed no significant difference in neither healthy con-
trol subjects nor AMI patients.
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Fig. 3  The median serum Hcy concentrations among all genotypes in both control and AMI
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