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Abstract

Background: Somatic embryogenesis (SE) is an intricate molecular and biochemical process principally based on
cellular totipotency and a model in studying plant development. In this unique embryo-forming process, the
vegetative cells acquire embryogenic competence under cellular stress conditions. The stress caused by plant
growth regulators (PGRs), nutrient, oxygenic, or other signaling elements makes cellular reprogramming and
transforms vegetative cells into embryos through activation/deactivation of a myriad of genes and transcriptional
networks. Hundreds of genes have been directly linked to zygotic and somatic embryogeneses; some of them like
SOMATIC EMBRYOGENESIS LIKE RECEPTOR KINASE (SERK), LEAFY COTYLEDON (LEC), BABYBOOM (BBM), and AGAMOUS-
LIKE 15 (AGL15) are very important and are part of molecular network.

Main text (observation): This article reviews various genes/orthologs isolated from different plants; encoded
proteins and their possible role in regulating somatic embryogenesis of plants have been discussed. The role of
SERK in regulating embryogenesis is also summarized. Different SE-related proteins identified through LC–MS at
various stages of embryogenesis are also described; a few proteins like 14-3-3, chitinase, and LEA are used as
potential SE markers. These networks are interconnected in a complicated manner, posing challenges for their
complete elucidation.

Conclusions: The various gene networks and factors controlling somatic embryogenesis have been discussed and
presented. The roles of stress, PGRs, and other signaling elements have been discussed. In the last two-to-three
decades’ progress, the challenges ahead and its future applications in various fields of research have been
highlighted. The review also presents the need of high throughput, innovative techniques, and sensitive
instruments in unraveling the mystery of SE.

Keywords: Auxin and cytokinin signaling, Plant growth regulators, SERK gene, Stress, Somatic embryo-specific
proteins, Transcription factors

Background
Somatic embryogenesis (SE), the intricate multi-step
process nowadays holds prime importance in tissue cul-
ture methodology, made big leaps ever since its first re-
port in mid twentieth century [144]. This technique
unveils diverse areas where its application is indispensi-
ble and provides significant insights in pathways and
mechanisms underlying plant development. It is yet an-
other way of mass propagation of plants vegetatively [32,

42]. The regeneration of a complete plant from a single
or group of somatic cells is always remaining as the fun-
damental importance of SE [54]. The technique includes
plant regeneration from cells that are already differenti-
ated [62]. Hence, SE is a unique potentiality of plant
cells and is triggered with acquired embryonic potential
[75]. This paradigm shift occurs after reprogramming of
developmental processes, enabling the cells to attain em-
bryogenic competence [100]. The differentiated cells
under plant growth regulator (PGR) treatments undergo
several morphogenetic changes and attain embryogenic
competence [75, 101, 102]. Similarly, the pre-
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embryogenic determined cells (PEDC) present in explant
are committed to produce embryos and enter embryo-
genesis process under the influence of PGRs and other
favorable conditions [75].
The process of SE has various phases like initiation,

proliferation, maturation, and conversion [58]. Phase 0 is
suggested to have competent single cells giving rise to
embryogenic clusters under the influence of PGRs espe-
cially auxin [33, 150]. In this phase, different cell clusters
acquire the competence to develop embryos. The phase
1 starts by transferring embryogenic cell clusters to an
auxin-free medium, and the cell clumps proliferate
slowly and do not differentiate [33]. This phase is
followed by rapid cell division of cells, giving rise to
globular embryos referred to as Phase 2. Embryos of dif-
ferent shapes (heart, torpedo, and others) constitute
Phase 3 [33]. Drastic morphological, physiological, and
biochemical changes set in during meristem (shoot,
root) differentiation [135, 153]. The in vitro microenvir-
onment is very stressful, and this could be osmotic and
wounding and have micronutrient supply, desiccation,
and PGR stress; and these adverse stresses trigger repro-
gramming of cellular development [28]. The already dif-
ferentiated cells dedifferentiate or acquire embryogenic
competence, and the entire phenomenon is often gov-
erned by hundreds of genes [28, 56, 115]. At different
stages of SE, a distinct set of genes activate in developing
embryos [64], and these genes regulate steps in switch-
ing from one development stage to the other [123].
Chromatin reorganization, the activation and deactiva-
tion of one or more genes (Fig. 1), carry out a cascade of
activities and are perhaps the reason behind cellular
transition. Only a few of these genes have been exten-
sively studied while the other genes’ role in embryogen-
esis is still a mystery [28].
The embryogenic cell/cells transforming embryos

could histologically be distinguished from others by
some characteristics like cell wall with cellulose, denser
cytoplasm, fragmented vacuole, highly active nucleus
with large nucleolus, high nucleus-to-cytoplasm ratio,
and low level of heterochromatin [13, 147]. At molecular
level, the features of embryogenic tissues have not been
comprehensively distinguished because of the usage of
the whole explant in expression analysis [13, 147]. Ex-
plants possess a variety of cells arranged in a complex
fashion, posing problems in molecular marker-based
identification of embryogenic cells.
Various embryo stages are present in the process of

SE, named after the shape attained by the growing em-
bryo in the course of development (Fig. 1). These stages
are globular, heart, torpedo, and cotyledonary in most of
the dicot plants, while globular, scutellar, and coleoptilar
in monocots, and early immature, pre-cotyledonary,
early cotyledonary, and late cotyledonary embryos in

conifers [42, 103, 116]. Mikula et al. [98] reported three
different morphogenetic stages of somatic embryos in
fern—i.e., linear stage (spanning first cell division to
several-celled proembryo), early embryonic leaf stage
(until the emergence of first leaf), and late embryonic
leaf stage (showing the appearance of second leaf). SE is
induced either directly in explants or indirectly on callus
[157]. In the former, SE occurs without forming any
intervening callus, whereas indirect SE is always charac-
terized by the formation of callus. In direct SE, the cells
are determined to become embryos shortly after the re-
programming sets in without prior division of cells,
while in indirect SE, embryogenic competence is
attained comparatively later after formation of callus
[115]. In certain cases, the embryogenic competence is
often preceded by cell division, and induced embryo-
genic determined cells (IEDC) are formed by dedifferen-
tiation of differentiated cells which lead to embryogenic
development [141, 148]. Induction of SE is very difficult
in the older tissue, and it may be of direct or indirect
origin, but it is rather difficult to generate embryogenic
competent cells from aged tissue as older cells take time
to reprogram it [75]. This is perhaps the reason why de-
velopmentally older tissues take only the indirect route
of embryogenic development [9]. The embryos are in-
duced directly or indirectly on explants called primary
somatic embryogenesis, while the formation of embryo
on primary embryos is termed as secondary somatic em-
bryogenesis. In this phenomenon, the primary embryo
does not convert into a complete plantlet and instead
gives rise to many secondary embryos [104]. Somatic
embryos are bipolar structures and have no vascular
connections with the underlying plant, one of the fea-
tures distinguishing it from the other plant organs and
zygotic embryos [149]. The bipolar structure contains an
independent provascular system, and each of the pole
has its own meristem [24, 68].

Somatic embryogenesis incidences and various
networks
Embryogenesis and woody genera
In certain plant groups like woody genera, response is
poor in developing callus and embryogenic tissues; the
exudation of phenolics and similar other compounds ag-
gravate the problem further [18]. With the growing
knowledge and other technological advances, these prob-
lems were overcome in many plants, and consequently,
many woody plants are now cultured in vitro. But most
of the woody plants are still either completely reluctant
or respond poorly to treatments for embryogenesis [42].
With the current high demand for woody plants (due to
medicinal, aesthetic values, food, fiber, timber, fuel),
plant conservation concerns and climate change attract
researchers’ attention in unveiling new strategies for
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rapid, mass propagation of such plants. Marker-assisted
breeding, genetic transformation, etc. are also being tar-
geted to improve plant quality [42, 82, 95]. SE is one of
the methods being continuously upgraded and renovated
to suit plant propagation particularly for those plants
that have a long life cycle, produce less/no seeds, and do
not reproduce vegetatively. This technique is preferred
over the organogenesis because of bipolar embryo that
does not need separate treatment for root or shoot in-
duction [159]. The bipolar embryonal axis has both
shoot and root ends and is directly grown to complete
plants [24]. Various factors govern SE induction and em-
bryo numbers such as plant genotype, type of explants,
type and strength of stimulus, and age of tissue (e.g.,

juvenility) [113]. After acquisition of embryogenic com-
petence, embryo development may not always reach the
final stages of plantlet formation [164]. In plants, where
embryos developed, a similar developmental pattern was
observed for the attainment of other developmental
stages. Thus, SE is suitable for forest and other groups
of plant propagation, genetic engineering, and cryo-
preservation of elite germplasm [14, 95, 110].

Genes regulating vegetative to embryonic (early stage)
transition
LAFL network genes [LEAFY COTYLEDON1, LEC1/
LEC1-LIKE (L1L), ABSCISIC ACID INSENSITIVE 3
(ABI3), FUSCA3 (FUS3), and (LEC2)] are involved in the

Fig. 1 Two different pathways of SE in dicots (i.e., direct and indirect SE), different (i.e., globular, heart, torpedo and cotyledonary) stages of embryos,
factors affecting SE are kept at bottom in oval, and one central green oval shows some genes involved in SE. SERK1-5 (SOMATIC EMBRYO RECEPTOR
KINASE 1-5), LEC1, LEC2 (LEAFY COTYLEDON 1,2), BBM (BABY BOOM), FUS3 (FUSCA 3), ABI3(ABA INSENSITIVE 3), AGL15 (AGAMOUS LIKE 15), ASET1-3
(Alfalfa SE-specific transcripts), AtECP31 (Arabidopsis thaliana Embryogenic31), AtECP63 (Arabidopsis thaliana Embryogenic63 cell proteins), CaM genes
(Calmodulin genes), Cdc2MS (Cell division cycle), CEM1 (elongation factor-1α), CGS102, CGS103, CGS201 (Carrot glutamine synthetase), Dcarg1 (Daucas
carrotaauxin regulated gene), SAUR (small auxin up-regulated = Pjcw1, Top1 (topoisomerase1), DcECP31, DcECP40, DcECP63 (Daucus carota embryogenic
cell protein), H3-1, H3-11 (Histone 3), KYP/SUVH4 (Kryptonite), LBD29 (LATERAL ORGAN BOUNDARIES DOMAIN 29), PRC 1(POLYCOMB REPRESSIVE COMPLEX1)
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initial steps of direct SE which is not true for indirect SE
in BABYBOOM (BBM)-mediated LAFL [LEC1/LEC1-
LIKE (L1L), ABSCISIC ACID INSENSITIVE 3 (ABI3),
FUSCA3 (FUS3), and (LEC2)] gene expression [10].
Chromatin state of LAFL gene is one of the factors that
determine direct or indirect SE. LEC1/LEC1-LIKE (L1L)
and LEC2 induce direct SE when constitutively overex-
pressed, while LEC1 in particular is detected later after
embryo appears on the callus surface [44].

Role of plant growth regulators (PGRs) in embryogenesis
network
PGRs play a key role in both zygotic and somatic em-
bryogeneses. Among all PGRs, auxin is most effective in
the induction of SE [94, 112, 138]. Once SE is induced,
auxin concentration is either to be lowered or com-
pletely omitted [117]. Different PGRs, their concentra-
tions and combinations have different effects on the
process of SE depending on the plant species. In most
species, auxin, cytokinin, abscisic acid (ABA), and jasmo-
nic acid (JA) are the key factors triggering the embryo-
genic response as these have a regulatory effect on cell
cycle, division, and differentiation [29]. Auxin 2,4-
dichlorophenoxyacetic acid (2,4-D), either alone or in
combination with cytokinins, is used to induce somatic
embryo in many plant species using seeds or zygotic em-
bryos as explants [29, 61, 118]. Synthesis of jasmonic
acid and abscisic acid (stress-related PGRs) was reported
in Medicago sativa throughout the process of SE but dif-
ferentially biosynthesized in different phases of SE. Gib-
berellins (GAs), usually gibberellic acid (GA3), have a
repressive role on the induction of SE in some plants as
it significantly upregulates gibberellins 2-oxidase
(GA2ox6), repressing GA synthesis (Elhiti et al. 2010).
LEAFY COTYLEDON 1 (LEC1) is a key player in

abscisic acid (ABA)-mediated expression of YUCCA10
(YUC10) in seedlings [72]. YUC mutants (YUC genes are
involved in auxin biosynthesis) are less responsive to
secondary SE, suggesting that the endogenous auxin is
important for this process [151]. Adventitious shoot for-
mation is induced in short auxin exposure while somatic
embryo formation in long auxin exposure. This suggests
the developmental continuum in somatic embryo and
adventitious shoot formation, where critical threshold
auxin signaling is crucial in in vitro induction and main-
tenance of embryo identity [112]. Auxin-mediated plant
development involves changes in expression of auxin-
responsive genes, encoding a family of transcription fac-
tors, AUXIN RESPONSE FACTORs (ARFs). The ARFs
regulate the expression of target genes by binding to
AUXIN RESPONSE ELEMENT (AuxRE) TCTCTC
motif, present in promoters of auxin-responsive genes
[150]. The ARFs bind promoters via a B3-type DNA

binding domain, specific to plants. Molecular studies of
Arabidopsis thaliana identified about 22 ARF genes and
a pseudogene [86]. Among the different ARFs, ARF5,
ARF6, ARF7, ARF8, and ARF19 activate the target gene
expression, while ARF1, ARF2, ARF3, ARF4, and ARF9
repress the expression of target genes. Wójcikowska and
Gaj [150] observed upregulation of four ARFs (ARF5,
ARF6, ARF10, and ARF16) during the inductive phase of
SE in Arabidopsis, while two ARFs (ARF8 and ARF17)
were upregulated in advanced stages. A number of ARFs
are being identified in different plants, and intensive re-
search continues in this field to elucidate their role in
plant developmental processes.

Plant genotype, explants, and oxygenation determining
embryogenesis
The success in regenerating plant via SE is largely
dependent on the genotype of the plant species [27, 65].
Different plant parts respond differently, while cultured
in vitro or even different genotypes of a plant behave
uniquely/differently. Sané et al. [124] reported that
Ahmar and Amsekhsi cultivars were more callogenic
than Tijib and Amaside, exhibiting response differences
in primary callogenesis in different date palm cultivars.
Similarly, woody plants are more recalcitrant in showing
responses than the herbaceous groups of plants [18, 65].
Various types of explants are used for generating som-

atic embryos in different plants. The type and size of ex-
plant and plant species significantly influence the
process of SE [140]. Kocak and co-workers [79] demon-
strated that the leaves and petioles of Cyclamen persi-
cum were more responsive compared to the ovule and
ovary and took less time to induce callus; in carnation,
callus followed by somatic embryos were obtained from
petal explants in a number of cultivated varieties [76].
The dissolved oxygen concentration in culture flask

has significant influence on the development of somatic
embryos. It is observed that the concentration of oxygen
in suspension had ostensible effects on the maturation
process and the number of embryos [13, 22]. The 50%
dissolved oxygen (DO) levels in medium showed matu-
rated embryos with lower numbers, while at 80% DO
concentration, opposite response (i.e., higher embryo
numbers with less maturity) were noted in Coffea arab-
ica [13].

Somaclonal variation, SE, and genetic integrity
Somaclonal variation (SV) is a phenomenon whereby the
variations are manifested among the tissue culture-
raised plants, and these variations include both pheno-
typic and genotypic alterations [99]. The genetic
alterations occur spontaneously under stressed micro-
environment and can continue to remain for several
generations [20]. The changes are heritable and non-
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heritable containing point mutation, chromosomal dele-
tion, substitution, DNA breakage, and ploidy [97, 154].
The PGR-induced stress, nutrient, osmotic, humidity-
transpiration imbalances, oxidative stress, and light
stress are the forces generating these abnormalities [97].
Non-heritable genetic changes constitute some of the
epigenetic changes, which are less stable, remain for a
lesser period of time, and disappear on the cessation of
stress condition [69]. DNA methylation, hypo- and
hyperacetylation led some of the epigenetic changes oc-
curring in in vitro-cultivated plant cells [25, 142]. Poly-
comb protein group modifies histone, and these proteins
form conserve regulatory complexes that modify the
chromatin state and gene expression during cellular
transition from somatic to embryogenic cells. Two of
such conserved regulatory complexes are Polycomb re-
pressive complex 1 (PRC1) and PRC2. Trimethylation of
histone 3 (H3K27me3) lysine 27 through SET-domain
protein and subsequent binding of PRC1, which carry
out ubiquitination of 119 lysine residues of histone H2A,
improves compactness of the chromatin [109]. The state
of chromatin determines binding of regulatory protein
complexes and influences expression of genes.
In SV, the frequency of variations increases with the

age of cultures, number of subcultures, and duration of
stress [108]. The variations noted in plants regenerated
through SE have both advantages and disadvantages. SV
is a big problem where plants’ genetic and phenotypic
integrity and purity are aimed at. In such cases, the gen-
etic purity is ensured by taking the explants from au-
thenticated, registered sources while the SV is also
widely used in plant improvement programs [6]. The
easily available variations among the regenerated plants
could be profitable only when maintained stably for gen-
erations. The main problem of SV is the non-beneficial,
redundant, and unstable variations, restricting the pro-
gress of breeding, and most of the regenerated plants
showed poor agronomic performance [80, 81].

Carbohydrates and underlying mechanism of SE
The reprogramming of signaling and communication of
callus cells seem to be chemical in nature, and the ana-
lysis of callus exudates in the medium shows compounds
like sugars, growth regulators, low molecular weight
compounds, amino acids, and vitamins [16, 17]. Differ-
ent carbohydrates were used as energy source in various
media, of which sucrose and glucose are observed to be
the most efficient for better cultural growth. In some
plants, SE is absent until sucrose was added to the
media, confirming its importance in embryo induction
[75, 83]. For example, the expanded cotyledons of melon
were noted to induce somatic embryos only in the pres-
ence of sucrose [52]. Sucrose or glucose may be
substituted by other carbohydrates as carbon sources

depending upon the tissue, plant, and species from
which explants are taken [71]. Grzyb et al. [41] noted
many fold effects of increased soluble sucrose at devel-
opmental transition to SE expression phase. Species-
specific storage products are also accumulated during SE
process and are absent in other stages of development
[157].

Somatic Embryogenesis Receptor Kinase, SERK, and other
genes regulating SE
SERK is involved in embryogenic competence acquisi-
tion [152, 159]; the gene encodes protein and was iso-
lated initially from carrot, named as DcSERK. Later,
SERK homologues were also reported in many other
plants (Table 1). Structurally, SERK consists of serine–
proline-rich leucine zipper, kinase domain, signal pep-
tide, leucine-rich region, transmembrane domain, and
C-terminal region [152]. SERK, a cell surface receptor,
triggers a signal cascade after binding to the ligand
through the leucine-rich repeat (LRR) domain and with
the help of intracellular domains reaches to the nucleus.
This cascade alters gene expression pattern via chroma-
tin remodelling [159]. Activity of genes is often altered
either by repressing specific or selective genes and acti-
vating/changing the expression of others. SERK overex-
pression is observed during embryogenic induction till
the globular stage and together with other genes like
BBM and LEC promotes transition to embryogenic cells
from non-embryogenic tissues [132].
LEAFY COTYLEDON (LEC) is one among the most

important genes, playing a central role in both zygotic
and somatic embryogeneses. Loss of functional mutation
in LEC largely impaired the embryonic development
[56]. The LEC mutant shows significantly reduced or
total repression of embryogenic response as observed in
double and triple mutants in A. thaliana [34]. The im-
pairment is most ostensible in the maintenance of em-
bryonic cell fate and specification of cotyledon identity.
Overexpression of LEC2 affects several target genes in-
cluding the AGAMOUS-like 15 (AGL15) TF gene and
auxin pathway genes [151]. LEC2 mutants do not ac-
quire desiccation tolerance and do not accumulate stor-
age reserves in cotyledon tips [136]. Studies suggested
that FUSCA3 (FUS3), LEC1, and LEC2 do not play a
major role in the induction of SE, but during late stages
of embryogenesis, their function has a significant say
[56, 136]. Watery callus and root hairs are produced in
LEC1 single mutant, while LEC1 and FUS3 double and
triple mutants negatively affect the SE process. Embryo
identity and maturation are regulated by the network of
LAFL proteins LEC1/LEC1-LIKE (L1L), ABSCISIC
ACID INSENSITIVE 3 (ABI3), FUSCA3 (FUS3), and
(LEC2) where B9 and B3 domains are encoded by LEC1
and LEC2 genes, respectively [145]. B9 is a subunit of
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NUCLEAR factor Y (NF-Y-B9), and B3 is a domain
which contains transcription factor LEC2 [160] playing a
role in maintaining the morphology of suspensor, pro-
gression via maturation phase, cotyledon identity specifi-
cation, and suppressing premature germination [46].
Accumulation of storage macromolecules, desiccation
tolerance, and cotyledon development are defective in
zygotic embryos where loss of function mutation occurs
in LAFL genes. LAFL proteins regulate the expression of
BBM which gets reduced in case of LAFL mutant seeds
[55]. LEC2 have central role in maturation phase of SE;
LEC2 up regulates AGL15 which is involved in the for-
mation of somatic embryos from embryogenic tissues
like zygotic embryos. AGL15 and LEC2 are involved in
the activation of INDOLE-3-ACETIC ACID INDUCIBLE
30 (IAA30) which when mutated affects the AGL15-me-
diated SE that normally shows enhancement under its
effect [163]. Embryo development is switched on in the
vegetative cells that acquire embryogenic competence
under the influence of ectopic expression of LEC [29, 90,
137]. The LEC genes in turn seem to be regulated by
PICKLE by causing chromatin remodelling, repressing
the embryonic identity regulators during germination
[84, 121].
BABYBOOM (BBM) is a transcription factor of AINT

EGUMENTA-LIKE (AIL) APETALA2/ethylene-respon-
sive element (AP2/ERF) family, isolated from Brassica
napus embryos developed from pollen grains [11].
Ectopic expression of BBM in A. thaliana seedlings
induces somatic embryos without the exogenous stress
or growth regulator treatment. BBM along with other
AP2/ERF family of transcription factors help in main-
taining meristematic state of shoot and root meristems
[56, 57]. It regulates cell growth and identity and pro-
motes morphogenesis and cellular proliferation by
exploiting AIL and LAFL proteins while mediating em-
bryogenesis. Ectopic expression of BBM has an inductive
effect in the formation of “somatic embryo-like struc-
tures” in Arabidopsis. BBM in SE binds to YUCCA3
(YUC3), YUC8, and TRYPTOPHAN AMINOTRANSFER-
ASE OF ARABIDOPSIS1 (TAA1) and promotes auxin
biosynthesis, suggesting its role in endogenous auxin
synthesis [151, 161]. FUS3 and LEC1 mutants com-
pletely abolish BBM-induced SE, suggesting their crucial
role in BBM-induced SE pathway. Beside adventitious
root, shoot formation, and SE induction, neoplastic
growth (cell proliferation), deformed flowers, and leaves
are the pleiotropic phenotypes of BBM. In Theobroma
cacao, a higher level of TcBBM expression was noted
during somatic embryogenesis than during zygotic em-
bryogenesis time [30]. BBM also transcriptionally regu-
lates LEC, FUSCA3 (FUS3), and ABI 45 INSENSITIVE3
(ABI3) genes and induces cellular totipotency through
LAFL network during seed germination [56]. BBM

regulates the expression of AGL15 and LAFL by binding
to promoter of genes. This is evident from the observa-
tion where AGL15 and LEC2 mutants show reduced
BBM-mediated SE.
Other genes like LATE EMBRYO ABUNDANT (LEA)

are noted to be abundantly expressed during later phases
of embryogenesis [107]. The LEA proteins are hydro-
philic and are regulated by ABA [60]. The LEA proteins
influence the developmental processes of zygotic and
somatic embryogeneses and also to stress-related re-
sponses. In almost all instances, their expression is ob-
served in embryogenic tissue and not in vegetative cells.
In addition to LEA proteins, some other genes like
WUSCHEL are active during SE; WUS develops somatic
embryos indirectly, and ectopic expression of WUS also
produces somatic embryo directly and promotes organo-
genesis on exogenous auxin-amended or PGR-free cul-
tures as evidenced in WUS mutants [88]. The
emergence of shoots forming embryos similarly occurs
in ectopically expressed WUS explants in auxin-free and
CLAVATA (CLV) mutants in 2,4-D (auxin)–added
medium [164]. WUS and CLV normally function to
maintain stem cells and cell differentiation in shoot
meristem [166]. Cell differentiation is also regulated by
these genes in the shoot apical meristem (SAM) of CLV
mutants where somatic embryos are formed by some
non-committed cells [61, 166]. WOUND INDUCED
DEDIFFERENTIATION1 (WIND1) or RAP2-4 (Protein
RELATED to APETALA2 4) induces SE and play a role
in callus formation in tissue damage and wounding [63].
PLETHORA2 (PLT2) plays a major role in the induction
and specification of root pole in SE [11, 146]. Reverse
glycosylating protein (RGP-1), a membrane protein,
encourages plant cell wall development by facilitating
polysaccharide metabolism, and in early phases of
somatic embryogenesis, it is thought to participate in
structural reorganization [37]. AGAMOUS-like 15 (AGL
15) is isolated as a MADS-box gene, detected in many
plants (e.g., B. napus, Arabidopsis, Taraxacum), and in
alfalfa, it is detected in somatic embryos [60]. AGL15
regulates the expression of several genes during the
process of SE by encoding MADS-box family of tran-
scription factors. For example, AtGA2ox6 is encoded by
a gene, controlled by AGL15 [60]. Overexpression of
AGL15 induces SE in embryogenic tissue like zygotic
embryos and could not induce SE spontaneously in
Arabidopsis seedlings. Ectopic expression of AGL15
under CaMV35S promoter induces embryo formation in
seedling in which 2,4-D and AGL15 both regulate
expression [165].
Among the different RKD (RWP-RK domain-

containing) proteins, only RWP-RK DOMAIN-
CONTAINING 4 (RKD4) is noted to produce embryos;
RWP-RK DOMAIN-CONTAINING 4 (RKD4)/
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GROUNDED (GRD) also induces embryos and is
thought to be expressed in maximum in suspensors and
early stages of embryos [57]. On the overexpression of
RKD4, SE develops into seedlings by stimulating root
cells to proliferate; and in RKD4 mutants, embryo devel-
opment is arrested, and suspensor remains short [55].
Different genes/transcription factors (TFs) playing vari-
ous roles at different stages of embryogenesis are shown
in Fig. 2.
The mystery behind the SE is being gradually unfolded

by the use of molecular approach. Over 700 TFs and
genes are being extensively studied during the process of
SE in Arabidopsis thaliana and other plants, suggesting
the very significant role of TF in competence acquisition
via embryogenic reprogramming [40]. Some of the genes
and TFs having a role in SE are enlisted in Table 2. Stud-
ies suggest that the basic mechanism behind the somatic
and zygotic embryogenesis is the same, and the genes
regulating zygotic embryogenesis have very similar effect
on SE. Differentially expressed genes DEG1 and DEG2
associated with embryogenesis were identified in Dacty-
lis glomerata [3]; DEGs express in the embryogenic leaf

(not in non-embryogenic cells) and is noted in both dir-
ectly and indirectly induced cultures, while DEG2 ex-
pression is noted only in directly induced tissues. The
ectopic expression of various zygotic embryogenic genes
significantly increased the somatic embryo development
in several investigated plants. Similarly, the chromatin
remodeling determines spatial and temporal expression
of genes and influences the development of SE to a large
extent [4]. Indirect SE requires more extensive chroma-
tin modification than that of direct SE as was shown by
differential expression of chromatin modifiers after 2,4-
D–mediated callus formation [23]

SE-related proteins
Currently, a novel combination of techniques is being
utilized for the identification and quantification of
embryo-specific proteins, which cannot otherwise be
identified by conventional gel-based methodologies. Li-
quid chromatography–mass spectroscopy (LC–MS) is a
technique in which liquid chromatography and mass
spectroscopy operate together and in tandem. In this
technique, the protein sample is processed/digested into

Fig. 2 Different genes at different stages of SE pathway. Triangle 1 in yellow shows genes involved in dedifferentiation; triangle 2 shows genes involved
in acquisition of totipotency by the cells; and triangle 3 shows genes expressed in commitment of totipotent cells to embryogenic state. AUXIN
RESPONSE FACTOR 19 (ARF19), POLYCOMB REPRESSIVE COMPLEX 1 (PRC1), REVERSIBILY GLYCOSYLATED POLYPEPTIDE 1 (RGP1), HEAT SHOCK PROTEIN
17 (HSP17), SOMATIC EMBRYOGENESIS LIKE RECEPTOR KINASE (SERK1), LEAFY COTYLEDON1 (LEC1), GALACTOSIDASE BETA 1 (GLB1), WUSCHEL (WUS),
CURLY LEAF (CLF), CYCLIN DEPENDENT KINASE A1 (CDKA1), PROPORZ1 (PRZ1), SHOOT MERISTEMLESS (STM)
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small fragments and separated after loading in the LC
column; and subsequent analysis is made based on
mass/charge ratio (m/z). The technique is used for the
identification of proteins using different softwares like
SEQUEST, MASCOT, and Proteome discoverer. Helle-
boid [48] reported glucanases, chitinases, and osmotin-

like proteins (also called pathogen-related or PR pro-
teins) which accumulate during SE of Cichorium. These
and other similar proteins were isolated from different
plants including tobacco during the hypersensitive reac-
tions against the tobacco mosaic virus, classified into five
major groups PR1–PR5. Later, it was established that

Table 2 SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) gene regulating embryogenesis in different studied plant materials

Name of plant Common name SERK gene References

Adiantum capillus-veneris Maidenhair fern AcvSERK [87]

Ananas comosus Pineapple Ac SERK1–3 [91]

Arabidopsis thaliana Thale cress At SERK1–5 [47]

Citrus sinensis Orange Cs SERK [38]

Citrus unshiu Tangerine Cu SERK [131]

Cocos nucifera Coconut Cn SERK [114]

Cucurma alismatifolia Summer tulip CaSERK [139]

Cyclamen persicum Persian cyclamen Cp SERK1–2 [128]

Cyrtochilum loxense Not available Cl SERK [19]

Dactylis glomerata Orchard grass DgSERK [134]

Daucus carota Carrot Dc SERK [129]

Dimocarpus longan Longan Dl SERK [1]

Garcinia mangostana Magnosteen Mangosteen SERK [122]

Glycine max Soya bean Gm SERK1–2 [155]

Gossypium hirsutum Cotton Gh SERK1–3 [111]

Helianthus annuus Sunflower HaSERK [143]

Marchantia polymorpha Common liverwort Mp SERK [127]

Medicago truncatula Barrel clover Mt SERK1–6 [105]

Musa acuminata Banana MaSERK [59]

Nicotiana benthamiana Tobacco Nb SERK3A, Nb SERK3B [93]

Ocotea catharinensis Not available OcoteaSERK [125]

Oryza sativa Rice OsbiSERK, Os SERK, Os SERKlike1, Os SERKlike2 [66]

Physcomitrella patens Moss Pp SERK1–3 [1]

Poa pratensis Common meadow grass Poap SERKlike1–2 [2]

Populus trichocarpa Black cottonwood Pp SERK1-4 Aan den Toorn et al. [1]

Prunus persica Peach Persica SERK* [67]

Prunus salicina Japenese plum PsSERK [67]

Rosa canina Dog rose RcSERK x [78]

Rosa hybrid Hybrid tea rose RhSERK1–4 [158]

Selaginella moellendorffii Club moss Sm SERK1–4 [1]

Solanum lycopersicum Tomato Sl SERK1, Sl SERK3A, Sl SERK3B [93]

Solanum peruvianum Wild tomato Sp SERK [1]

Solanum tuberosum Potato St SERK [130]

Sorghum bicolor Sorghum Sb SERK1–3 [1]

Theobroma cacao Cocoa tree TcSERK [126]

Triticum aestivum Wheat Ta SERK1, Ta SERK2, Ta SERKlike3 Singla et al. [133]

Vitis vinifera Grape Vv SERK1–3 [92]

Zea mays Maize Zm SERK1–3 [8]

Modified and courtesy: [141]
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such proteins accumulate during stress conditions like
injury, heavy metals, plant hormones, and UV. Similarly,
other SE-related proteins were reported in different
plants [e.g., Zea mays [35], Araucaria angustifolia [31],
Coffea arabica [12], Picea asperata [70], Gossypium hir-
sutum [36], Larix principis-rupprechtii [162], Picea bal-
fouriana [85], Saccharum spp. [50], and Catharanthus
roseus [43]]. One class of 14-3-3 proteins play a signifi-
cant role in plant immunity, cell cycle control, metabol-
ism, stress responses, transcription, signal transduction,
programmed cell death protein trafficking, and SE [106].
These are acidic regulatory proteins, binding in a
phosphorylation-dependent manner to target proteins
like phosphothreonine and phosphoserine and thus have
a significant role in plant growth and development. Heat
shock proteins, peroxidase, catalase, superoxide dismut-
ase, etc. are some other proteins that are common in
many plants, accumulate in SE tissues, and are studied
via gel-free shotgun proteomics. Several proteins isolated
during SE are stress proteins suggesting that stressed
microenvironment is the driving force for SE induction.
Of these different proteins, several were identified as
proteomic markers. The most common proteins identi-
fied as potential markers of SE are listed in Table 3.

Conclusions
Since the first report of SE, this intricate process has
been studied extensively in a large number of plant gen-
era of dicots, monocots, gymnosperms, and fern. Various
stages of embryogenesis (i.e., embryo origin, develop-
ment, maturation, and germination into plantlets) have
also been unveiled. The factors controlling somatic em-
bryogenesis have also been identified; some of them are
plant genotype, explant, medium composition, carbohy-
drate type, oxygen concentration, PGRs, and various
stresses. Although the molecular mechanism is still not
well elucidated, chromatin remodeling, activation and
deactivation of genes, and complicated transcription net-
works are linked with somatic and zygotic embryogen-
esis processes. A number of genes or orthologs which
have important say in early cellular transition from som-
atic to embryogenic cells are AUXIN RESPONSE FAC-
TORs, POLYCOMB REPRESSIVE COMPLEX 1 (PRC1),
REVERSIBILY GLYCOSYLATED POLYPEPTIDE 1
(RGP1), and HEAT SHOCK PROTEIN 17 (HSP17),
SOMATIC EMBRYOGENESIS LIKE RECEPTOR KINA
SE (SERK1), LEAFY COTYLEDON1 (LEC1), WUSCHEL
(WUS), CURLY LEAF (CLF). The expression of SHOOT
MERISTEMLESS (STM) gene influences in other stages

Table 3 Plants and different SE related proteins, identified through LC-MS

Some important SE-related proteins Plant/species References

Alcohol dehydrogenase, allene oxide synthase, ATP synthase, glyceraldehyde-3-phosphate dehydrogenase, GH3 pro-
tein, glutathione-S transferases, heat shock proteins, indole-3-acetic acid-amidosynthetase, late embryogenesis abun-
dant, lipid transfer protein, peroxidase, photosystem II proteins, ribosomal proteins, ribulose-1,5 bisphosphate
carboxylase, superoxide dismutase, sucrose synthase

Gossypium
hirsutum

[36]

14-3-3 protein, 6-phosphogluconate dehydrogenase, actin, aldose 1-epimerase, annexin, ADP-ribosylation factor
GTPase-activating proteins, ATP synthase, calmodulin, catalase, chitinase, citrate synthase, clathrin, elongation factors,
eukaryotic initiation factors, glyceraldehyde-3-phosphate dehydrogenase, glycine-rich RNA-binding proteins, heat
shock cognate proteins, histones, heat shock proteins, importin, superoxide dismutase, triosephosphateisomerase,
tubulin, peroxidase, ubiquitin

Larix principis-
rupprechtii

[162]

14-3-3 protein, actin, aldose 1-epimerase, annexin, ATP synthase, ADP-ribosylation factor GTPase-activating proteins,
calmodulin, chitinase, citrate synthase, glycine-rich RNA-binding proteins, heat shock cognate proteins, heat shock
proteins, importin, peroxidase, triosephosphateisomerase, tubulin

Larix principis-
rupprechtii

[162]

Calmodulin, germin-like proteins, glutathione-S transferases, peroxidase, ribosomal proteins, superoxide dismutase Picea balfouriana [85]

Actin, aldolase, catalase, germin-like proteins, late embryogenesis abundant, secreted protein, tubulin Saccharum spp. [50]

14-3-3 proteins, actin, alcohol dehydrogenase, ATP synthase, chitinase, elongation factors, glyceraldehyde-3 phos-
phate dehydrogenase, glutathione-S transferases, histones, heat shock proteins, PIN-like protein, ribulose-1,5-bispho-
sphate carboxylase, ubiquitin

Araucaria
angustifolia

[31]

Aldolase, chitinase, glyceraldehyde-3-phosphate dehydrogenase, peroxidase Coffea arabica [12]

14-3-3 proteins, arabinogalactan proteins, glutathione-S transferases, heat shock proteins, indole-3-acetic acid-
amidosynthetase, late embryogenesis abundant, peroxidase, ubiquitin

Saccharum spp. [119]

Alcohol dehydrogenase, aldose 1-epimerase, allene oxide synthase, catalase, chitinase, glutathione-S transferases,
heat shock proteins, indole-3-acid-amidosynthetase, late embryogenesis abundant, peroxidase, photosystem II pro-
teins, ribosomal proteins, ribulose-1,5-bisphosphate carboxylase, sucrose synthase, tubulin

Picea asperata [70]

6-phosphogluconate dehydrogenase, annexin, clathrin, eIFs, histones, heat shock proteins, lipid transfer protein,
peroxidase, ribosomal proteins

Saccharum spp [51]

14-3-3 proteins, chitinase, GH3 protein, glutathione-S transferases, indole-3-acetic acid-amidosynthetase, peroxidase,
tubulin

Zea mays [35]

14-3-3 proteins, chitinase, GH3 protein, glutathione-S transferases, peroxidase, tubulin, annexin, clathrin, eIFs, histones,
heat shock proteins, late embryogenesis abundant, chitinase, PR proteins, importin, catalase, etc.

Catharanthus
roseus

[43]
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of somatic embryogenesis. Several proteins may act as
potential markers for the process of SE (e.g., 14-3-3 pro-
tein, chitinase, LEA, etc.). At the time of genetically uni-
form plant propagation, genetic transformation, artificial
seed production, plant regeneration from protoplast, and
in biodiversity conservation, the SE information will be
very indispensable. Flow cytometry, nano LC–MS, real-
time PCR, and other sensitive molecular techniques have
a scope in understanding the molecular mechanism
underlying SE. These may refine the process, scale up
the progress of research in SE, and may increase its ap-
plication in other novel fields.
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