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Abstract 

Background  The present review envisages the role of nanovaccines to combat the global challenges of antimi-
crobial resistance. Nanovaccines are a novel formulation comprised of nanomaterials coupled with an immuno-
genic component to elicit the immune response and provide protection against the desired infectious disease. The 
nanovaccines with unique physicochemical properties can be more efficient against targeting the desired tissues 
in the body, aids in prolong circulation to promote antigen-presenting cells to act upon the target antigens.

Main content  The present review envisages the development of nanovaccines against antimicrobial-resistant 
pathogens. The use of nanovaccines can exhibit potent antigenicity with prolonged retention and controlled release 
to induce both cell- and antibody-mediated responses. Nanovaccines usage is still in the early stages and can be 
next-generation immunisation for prophylactic and therapeutic efficiency. The future development of nanovac-
cines against multi-drug-resistant pathogens can explore new avenues. Based on these facts, the present review 
is designed from the previously reported scientific studies and compiled with the fact that nanovaccines can revolu-
tionise vaccine strategies. The articles were extracted from reputed databases like PubMed, Scopus, and ESCI. The size 
and conjugating chemistry of nanomaterials can be beneficial in developing novel multi-nanovaccine formulations 
that can target pools of antimicrobial resistance mechanisms.

Conclusion  Overall, the nanovaccines can form one of the best effective modes of targeting multi-drug-resistant 
pathogens. The nanovaccines can stimulate the innate immune response and generate effective immune-therapeutic 
novel formulation against infectious pathogens. Based on these facts and considerations, the present article makes 
an alarming call to develop nanovaccines to counter multi-drug resistance.
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Background
There is growing evidence to confront the problem 
associated with antimicrobial resistance worldwide [1]. 
According to World Health Organization (WHO), by 
2050 the menace of drug resistance is expected to mag-
nify and cause highest mortality and morbidity rates [2]. 
The development of drug resistance has conquered all 
spheres of ecology by affecting both humans and other 
living species [3]. In the near future, it can have a huge 
impact and cause imbalances in the socio-economic sec-
tor. The impact is higher in developing and low-income 
countries owing to inadequate healthcare systems and 
poor sanitary facilities [4]. Drug-resistant pathogens can 
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master their metabolism and physiology to escape the 
efficacy of most of the available antibiotics [5]. Hence, 
there is growing interest in combating the situation of 
drug resistance, which has been recognised as one of the 
top priorities for research among the scientific communi-
ties [6]. There are different drivers that are responsible for 
expanding drug resistance, for instance, unnecessary pre-
scription of antibiotics for conditions such as viral infec-
tions [7]. In most cases, the patient stops the prescribed 
antibiotics as the symptoms disappear which leads to 
antimicrobial resistance to the antibiotics. The misuse or 
overuse of antibiotics in poultry and animal husbandry 
increases drug resistance [8]. The consumption of under-
cooked food can lead to food poisoning which is caused 
by the pathogenic micro-organisms. Faecal contamina-
tion from infected individuals can be one of the major 
sources of transmission of antimicrobial resistance when 
it enters the ecosystem [9]. The unhygienic medical con-
ditions can lead to nosocomial infections, and some-
times, these pathogens cause secondary infection which 
often be life-threatening [10]. In order to curb these situ-
ations, management strategies such as antibiotic stew-
ardship, usage of antibiotics in livestock, and cluster 
sites of nosocomial infections are implemented and are 
under the radar of governmental agencies. Yet, antimi-
crobial resistance is continually growing [11]. There is 
pool of gene exchanges among the pathogenic micro-
organisms which accelerates the resistance especially 
among zoonotic and aquatic organisms [8]. To overcome 
these situations, a large amount of funding support is 
offered to develop a new wave of antimicrobial agents 
that can control the afflictions caused by drug resist-
ance [9]. In recent years, principles of nanotechnology 
have offered significant benefits to the medical sector in 
the form of developing rapid on-site diagnostic kits, tar-
geted drug delivery, drug designing, and nanomedicines 
and their usage as antimicrobial agents [10]. To achieve 
greater heights, researchers are also exploiting the con-
cept of nanotechnology to develop nanovaccines. It has 
been demonstrated that nanosized particles encapsulated 
within the carrier molecules are reported to initiate and 
enhance the immune response, which helps prevent the 
self-degradation of vaccines [11, 12]. Hence, with these 
facts and figures, the present mini-review summarises 
the possible quantification of developing a novel nano-
vaccine that can uplift the vaccination process. The con-
cept of vaccination can be traced to ancient times before 
scientific knowledge could evolve, when snake venom 
was used to initiate the immune response against snake 
bites by Buddhist monks [13]. It was the efforts of Edward 
Jenner that demonstrated the use of cow pox to prevent 
small pox in humans. Broadly, the term "vaccine" can be 
defined as a biological preparation of an attenuated form 

of an organism or their products that is formulated to 
enhance the immune response [14]. There are different 
ways to construct vaccines, which are presented in Fig. 2. 
Broadly, these vaccines can be grouped into prophylactic 
and therapeutic vaccines based on their mode of action. 
Vaccination is the process of stimulating the immune 
response and protecting the human body from targeted 
disease [15]. It can mimic the body’s immune response, 
which in turn triggers the immune cells and aids in the 
recognition and subduing of the disease-causing organ-
isms during later contact [16].

Main text
Nanovaccine
Nanovaccines are a novel formulation composed of 
nanoscale particles that can be solely or attached to 
microparticles for intentional stimulation of the immune 
response against a particular disease [17]. The nano-
vaccines are designed to harness the body’s ability to 
fight and suppress the desired disease. The use of nano-
vaccines could offer better advantages owing to their 
physicochemical properties like size, shape, inertness, 
functional moieties, and biodegradation, which can offer 
higher biocompatibility and bioavailability [18]. Nano-
vaccines can generate site-specific profiles and minimise 
the potential side effects. They can be used at low con-
centrations and tuned to trigger immune-stimulatory 
properties that generate antigenicity and activate the 
immune cells [19]. The size of the nanovaccines is simi-
lar to that of many cellular components, which can eas-
ily enter the cellular mechanism via a process called 
endocytosis. Also, they are designed to induce a robust 
and long-lasting response as the first line of defence [20]. 
Studies have also reported that nanovaccines can enter 
antigen-presenting cells via different modes, which is 
critical to generating an immune response to intracellu-
lar pathogens [21]. There are different modes via which 
nanovaccines can elicit immune response (Fig.  1). The 
process of developing nanovaccination requires minimal 
formulation, which can be more stable than conventional 
vaccines and offer long-term benefits. Furthermore, the 
processes of nanoemulsion and encapsulation can gener-
ate higher affinity rates [22]. The nanovaccines can also 
be conjugated with the desired antigen to mirror and 
trigger the B-cell response. It has been reported that 
during the development of nanovaccines, conjugated 
antigens create surface modifications that can offer sta-
bility and reach the desired location in the organs. These 
nanovaccines can be modified to enhance both humoral 
and cellular immune systems [23]. Hence, in order to 
develop nanovaccines, various parameters are accounted 
for, including the type of nanovaccine, mode of prepa-
ration, mode of action, properties, and stability of the 
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nanovaccines in comparison with conventional vaccines 
[24]. Furthermore, availability and reaching the masses at 
affordable rates are also important parameters to be con-
sidered. Hence, some of these considerations are briefly 
described in the present review.

Properties and mechanism of nanovaccines
The size-dependent properties of nanovaccines play an 
important role in immunomodulation and biodistribu-
tion within the body. In a recent study, nanosized par-
ticles measuring 146  nm in size generated a stronger 
response in mice as compared to 64-nm-sized particles. 
The nanovaccines generate antigenicity by triggering a 
specific immune response generated by B cells to pro-
duce antibodies [25]. These antibodies recognise both 
nanoscale particles and their conjugates as foreign par-
ticles and induce antibody production. The production 
of antibodies also depends on the type of composition 
of the nanovaccines, the surface coating, the uptake, and 
the processing by cells of the immune system [26]. Fur-
ther, the adjuvanticity of nanovaccines is a crucial factor 
in gaining the efficacy and effectiveness of vaccination. 
The exact mechanism of nanovaccines’ adjuvanticity is 

yet to be completely elucidated, but a perusal of stud-
ies has revealed that nanovaccines can stimulate the 
antigen-presenting cells to enhance the antigen uptake 
[27]. Interestingly, the size of the nanovaccines allows 
them to easily penetrate through cells and travel via 
lymphatic nodes [28]. Nanovaccines can be designed 
to target-specific immune cells or tissues. Modifying 
the nanocarrier surface with ligands or antibodies ena-
bles the binding of specific receptors on immune cells, 
increasing the efficiency of the vaccines. The size of the 
nanoparticles enhances tissue penetration and enables 
immune cell interaction and activation at the infected 
site [29]. The nanovaccines are usually designed to tar-
get dendritic cells and induce an inflammatory response, 
which involves the secretion of cytokines by effector 
immune cells to act on foreign bodies [30]. To initiate an 
inflammatory response, the physicochemical properties 
of nanoscale particles play a vital role. It has been dem-
onstrated that cationic-based nanovaccines are reported 
to induce more cytokine production than anionic nano-
vaccines. The functional groups and surface modifica-
tions of nanovaccines can influence the expression of 
dendritic cells [31]. The use of nanovaccines can be more 

Fig. 1  Possible mode of action of nanovaccines
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advantageous in comparison with conventional vaccines. 
The incorporation of the antigen into nanocarriers pro-
tects the components from degradation and can increase 
their shelf life. In contrast, conventional vaccines require 
strict temperature control and maintenance [11]. On a 
similar front, the dosage of vaccines also plays an impor-
tant role; in the case of conventional vaccines, the dosage 
depends on factors such as the target population, the spe-
cific vaccine, and the level of immune response [32]. In 
some cases, large or multiple dosages are required to pro-
tect against infections. Nanovaccines have a high surface 
area, which influences the dosage level by conjugating the 
nanoparticles with components like liposomes and viral 
vectors, which enhance the efficiency of the vaccines and 
minimise the administration of multiple dosages [33].

Types of nanovaccines
The different types of nanovaccines are grouped based 
on various parameters such as composition, type of con-
struction, shape, and their mode of action against desired 
diseases [33]. These nanomaterials are often small, rang-
ing in size from 1 to 200 nm, and have myriad shapes. In 
most cases, nanomaterials are used to act as carrier mol-
ecules to achieve the desired delivery system [34]. Some 
of the nanovaccines are discussed below:

Metal and metal oxide‑based nanomaterials
Metallic nanomaterials are regarded as one of the most 
diverse classes of nanomaterials, with a large number of 
useful properties [35]. The unique properties offer func-
tional possibilities for tuning their applications. Scientific 
studies have demonstrated that metallic nanoparticles, 
such as silver nanoparticles, are able to activate leuko-
cytes such as macrophages [36]. Similarly, gold nanopar-
ticles are reported to induce the secretion of cytokines 
and can efficiently penetrate cells and activate the first 
line of defence mechanisms by triggering antigen-pre-
senting cells [37]. Furthermore, aluminium-based nano-
materials are widely used as vaccine adjuvants and are 
regarded as one of the safest for human vaccination [38]. 
In recent years, mesoporous nanosilica rod has been 
employed in developing nanoformulations owing to its 
biocompatibility. It has been reported that these nano-
silica rods create a microenvironment in the host system 
that initiates the recruitment of dendritic cells and trig-
gers inflammatory signals [39].

Liposomes
Liposomes are composed of lipid bilayers with different 
sizes, usually ranging from 50 to 500  nm. The applica-
tions of liposomes are well demonstrated in biomedical 
sectors, especially in drug delivery systems [40]. They are 
also being employed in the formulation of nanovaccines 

as an adjuvant that has displayed prolonged stability 
and triggers the antigen-presenting cells to initiate the 
immune response. Liposomes are tailored with immune-
stimulating ligands to initiate more specific activity [41].

Exosomes
It is composed of a lipophilic bilayer composed of pro-
teins and genetic materials that are regarded as biocom-
patible and are being employed in the preparation of 
nanovaccines [42]. They are targeted against immuno-
suppressive conditions and cancer to improve the thera-
peutic index of both human and animal infections. The 
size of the exosomes usually varies from 50 to 100  nm 
and can induce an immune response at the targeted sites 
[43].

Proteosomes
Proteosomes are one of the most safe and biocompatible 
nanovaccines for human vaccination. They are hydro-
philic in nature, with sizes ranging from 10 to 50 nm, and 
can easily interact with the immune system by present-
ing the antigen to T cells. They are in practice in cancer 
immunisation and nasal drug delivery systems [44].

Nanobeads
The development of nanobeads for nanovaccination has 
great potential owing to their size and high surface ratio. 
The antigen can be loaded onto the surface of nanobe-
ads, which can be delivered at the targeted sites. They 
are reported to activate both humoral and cell-mediated 
immune responses. They are often used in cancer vac-
cinations. The size of the nanobeads can be prepared in 
accordance with the desired application [45].

Virosomes
It is composed of liposomes and viral proteins, which 
can easily penetrate through the cell and reach the tar-
get site. The hydrophobic property of the surface can ease 
the loading of the antigens. The size of the virosomes can 
vary from 20 to 50 nm in diameter and can be composed 
of glycoproteins from different viruses, such as influenza 
virus and herpes virus. In recent years, they have been 
used as a carrier molecule for desired antigens [46].

Bacterial spores
The bacterial spores are used in the nanovaccine formu-
lation to transport antigens. The spores secreted by Bacil-
lus subtilis can carry antigens on their surface, which can 
bind with proteins like Cot B and Cot C on the surface of 
the spores. They are considered to be cost-effective and 
highly reliable, especially for treating anthrax in humans 
and animals [47].
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Possible target of nanovaccines against microbial 
pathogens
In recent studies, nanoparticle-based vaccines have 
shown great potential in combating wide range of micro-
bial pathogens (Table  1). There is need to promote fur-
ther studies to optimise the important parameters. In 
the context of tuberculosis, chitosan-based nanoparticles 
have shown potential for vaccine delivery at targeted site 
[48–62]. Similarly, in case of anthrax the poly(D, L-lactic-
co-glycolic acid) nanospheres have been employed for 
vaccine development [49]. The use of lipo-peptide-based 
nanovaccines are being investigated to control the infec-
tion [50]. The medical benefit of gold nanoparticles is also 
evaluated for the development of nanovaccines against 
tetanus [51]. Chamydia infection has been targeted using 
vault nanoparticles which contains immunogenic pro-
teins to target different sites [52]. In case of development 
of viral vaccines, use of liposomes and gold nanoparticles 
has been explored [53–60]. Similarly, in order to com-
bat parasitic infections, α-helix self-assembling peptide 
nanoparticles have been studied as nanovaccines for 
toxoplasmosis [61]. Iron oxide nanoparticles have been 
explored as nanocarriers for malaria vaccines [62].

Vaccines for bacterial infections
Methicillin‑resistant staphylococcus aureus (MRSA)
It is recognised as a prolific pathogenic bacterium and is 
considered one of the major causes of nosocomial infec-
tion [20]. The strains of MRSA are capable of having a 
propensity to develop resistance to a different range of 
antibiotics, including the new chemically derived syn-
thetic variants of existing antibiotics [63]. The degree of 

the infection caused by MRSA can range from minor to 
severe bacteremia. Targeting the colonisation of MRSA 
and preventing the infection have been a major challenge 
due to the expansion of resistant strains. In recent years, 
the use of nanomaterials with bactericidal potential 
against MRSA has shown significant activity [64]. These 
nanomaterials can be used to develop nanovaccines by 
developing nanomaterials composed of target antigens 
like polysaccharides and toxoids. According to a study 
conducted by [65] Wang et al., a nanosponge-based vac-
cine was designed and developed that could target the 
membrane-disturbing mechanism caused by the pore-
forming toxins, which are recognised as virulent proteins 
of most bacterial pathogens. The nanosponge is com-
posed of hybrid nanomaterials coated with RBC mem-
brane, which can absorb different pore-forming toxins. 
Conventional vaccines are often not feasible as infections 
caused by MRSA colonise different niches in the body, 
and these may have different virulence factors. Hence, 
solely capsular-based vaccines are not able to generate 
an immune response sufficient to provide complete pro-
tection. Nanovaccination can provide a new platform 
to develop a universal vaccine formulation composed 
of different immunogenic components bearing specific 
activity.

Vibrio cholera
The enteric infections caused by Vibrio cholerae are con-
sidered to have one of the leading global health implica-
tions [66]. According to the WHO, half of the diarrheal 
infections are caused by the Vibrio cholerae strain, espe-
cially in children. According to the WHO, half of the 

Table 1  Different nanoparticles/nanovaccines against microbial infections

Disease Nanocarrier/Nanovaccine References

Bacterial infection

Tuberculosis Chitosan nanoparticle [48]

Anthrax Poly(D, L-lactic-co-glycolic acid) nanospheres [49]

GAS infection Lipopeptide-based [50]

Tetanus Gold nanoparticles [51]

Chlamydia Vault [52]

Viral infection

Influenza Liposomes, gold nanoparticles [53, 54]

HIV Gold nanoparticles, chitosan, and hyaluronic acid [55, 56]

Hepatitis B Poly(D, L-lactic-co-glycolic acid) nanospheres [57]

Dengue Liposomes [58]

Foot and mouth disease Gold nanoparticles [59]

Newcastle disease Chitosan nanoparticles [60]

Parasitic infection

Toxoplasmosis α-helix self-assembling peptide nanoparticles [61]

Malaria Iron oxide nanoparticles [62]
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diarrheal infections are caused by the Vibrio cholerae 
strain, especially in low-resource and underdeveloped 
countries. If untreated, the infection leads to the death of 
the individual due to the enterotoxins produced by Vibrio 
cholerae. The conventional vaccines used in the control 
of enteric infection caused by Vibrio cholerae strains are 
based on the toxoid, attenuated form of whole cell and 
outer membrane vesicles [67]. But most of these vaccines 
require cold storage facilities, which are rare in remote 
areas of low-income developing countries, which are at 
high risk of these enteric infections. As an alternative 
strategy, a vaccine based on nanomaterials can be devel-
oped, which can provide relief in providing the vaccina-
tion to the targeted population with minimal healthcare 
facilities. Further, chitosan-based nanomaterials contain-
ing cholera toxin (Ctx) formulation was developed to 
entrap the antigen protein responsible for the cause of 
infections. The formulations were prescribed to BALB/c 
mouse groups in three different batches, such as oral, 
injection, and oral injection groups. The results displayed 
neutralisation of Ctx toxin in the immunised mice, and 
the study concluded with the fact that chitosan nanopar-
ticles can improve immune responses and can be imple-
mented for vaccine delivery and development [68].

Drug‑resistant Escherichia coli (E. coli)
Escherichia coli is one of the most prevalent bacte-
rial species that inhabits normal microbial flora and, in 
severe conditions, becomes an opportunistic patho-
gen [69]. They are reported to cause deleterious health 
effects such as urinary tract infections and sepsis in the 
blood. Zoonotic organisms are considered to be one of 
the major reservoirs [70]. The increase in drug-resistant 
E. coli strains has created a huge impact with a limited 
choice of drug treatment. There are different virulence 
factors, such as EspA, EspB, and EspD, which contribute 
to the resistance mechanisms. Hence, in order to control 
this expansion of drug-resistant E. coli strains, nanovac-
cines are being developed as alternatives. According to 
Khanifar et  al., 2019, a nanovaccine against Enterohe-
morragic E. coli (EHEC) infections was developed by 
encapsulating eEIT onto chitosan nanoparticles The mice 
immunised orally with hybrid nanomaterials were capa-
ble of strong humoral and mucosal immune responses 
and reduced the infections caused by EHEC [71]. In a 
recent study, SinH, a gene-coding protein responsible 
for the bacteremia and urinary tract infections, was bar-
coded. In order to elicit the immune response, a recombi-
nant SinH-based vaccine was developed and immunised 
a murine host [72]. The administration resulted in pro-
tection against various strains responsible for causing 
severe infections. The immunised cohorts were able to 
protect themselves with the production of high levels of 

serum IgG and urinary IgG and IgA. Such studies can 
be one of the bases for the development of nanovaccines 
and enhance the protection level with minimal dosages 
[73]. Studies have also revealed that administering hybrid 
nanomaterials orally to mice causes strong immunologi-
cal reactions, including humoral (antibody) and mucosal 
immunity. As a result, the infections caused by EHEC are 
significantly reduced [74].

Vaccines against viral infections
Hepatitis
Infections caused by the hepatitis virus are often severe 
owing to the fact that they target immune-compromised 
patients and have various health implications [75]. Con-
ventional vaccines are never feasible to target secondary 
infections. Hence, based on these considerations, the 
recent development of nanovaccines composed of nano-
particles conjugated with an attenuated form of a viral 
component can provide protection by producing anti-
bodies [76]. These nanovaccines can offer a better cure 
against hepatitis infections without the use of any needle 
vaccination process by using nanoemulsions, which can 
be immunised via nasal vaccination [77]. According to 
Gregory et  al. [78], modified nanoparticles of poly(D,L-
lactic-co-glycolic acid) encapsulated with viral envelope 
protein would elicit an immune response by triggering 
the cells to secrete pro-inflammatory cytokines [78]. The 
nanoparticles, owing to their physicochemical properties, 
can also participate in the generation of a strong immune 
response against the encephalitis in the mouse model 
[79]. Furthermore, a chitosan nanoparticle-based nano-
vaccine formulation was designed and composed of hep-
atitis B surface antigen, which was coated with sodium 
alginate. The developed nanovaccine was administered 
to mice, which resulted in an enhanced immune response 
[80].

Influenza
Influenza viruses are one of the most common causes of 
respiratory illness [81]. The degree of infection is asso-
ciated with the economic crisis in the healthcare sector 
owing to the fact that these pathogens undergo antigenic 
drift [82]. These drifts give rise to different variants of 
strains. Hence, there is great interest in developing uni-
versal novel vaccines for influenza infections [83]. To pro-
vide cross-strain protection, nanoparticle-based vaccines 
are being developed. The nanovaccines containing cap-
sid and hemagglutinin proteins were developed to pro-
vide humoral and cellular responses by activating B-cells 
along with CD4 and CD8 T cells [84, 85]. The seasonal 
influenza vaccines provide minimal coverage against 
influenza strains causing pandemic infections. In a recent 
study, mRNA-based lipid nanoparticle-based vaccines 
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were developed that encode the hemagglutinin antigens 
from all 20 different reported subtypes of the influenza 
A and B lineages. This multivalent vaccine could produce 
antibodies against all 20 encoded antigens. The study 
concluded with the fact that mRNA–lipid nanoparticle-
based vaccines provided protection against multiple anti-
genically variant strains of influenza viruses [86].

Human immunodeficiency virus (HIV)
The burden posed by the epidemic of HIV drastically 
influences the socio-economic status of countries, espe-
cially the developing countries [87]. Several prevention 
measures have been implemented in the recent past, 
but it is still striving to be one of the most deadly infec-
tions to mankind based on the fact that it deteriorates 
the immune system, making it vulnerable to secondary 
infections [88]. According to the review proposed by 
Barouch [89], attempts at developing conventional vac-
cines have failed owing to myriad facts such as the lack 
of an appropriate animal host to conduct the research tri-
als, extensive viral clade and sequence diversity, the fact 
that attenuated forms of viruses are unsafe for human tri-
als, and the fact that antibody responses are type-specific 
[89]. Based on these facts, developing effective vaccines 
against HIV is still a large and difficult task. In recent 
attempts, the development of nanovaccines has gained 
momentum to design a nanomaterial-based vaccination. 
According to Vela Ramirez et  al. [90], biofunctionalised 
polymeric nanoparticles with ligands were able to target 
the receptors on immune cells. These ligands bind to the 
specific receptors on immune cells and mimic the pro-
cesses of immune response, such as activation of antigen-
presenting cells, immunomodulation, and stabilisation of 
protein antigens. The study aimed to develop positively 
charged polyanhydride nanoparticles functionalised with 
carbohydrate, which were efficiently taken up by den-
dritic cells and activated CD40 and CD206 to secrete 
cytokines. The study provides a basis for developing a 
biofunctionalised nanoparticle-based vaccine against 
HIV [90].

Vaccines against fungal infections
Fungal infections are affecting human populations in 
a vast geographical area of the globe, and yet scanty 
reports are available on research pertaining to develop-
ing vaccines against these infections [91]. The scientific 
literature envisions major obstacles to developing potent 
vaccines against targeted fungal infections, for instance, 
biocompatible hosts, quality of vaccine formulations, 
stability, and immunogenicity. Some of the serious fun-
gal infections, which are considered to be the major 
contribution of drug resistance, are briefly described in 

the following section, along with possible strategies to 
develop nanovaccines.

Candida
The incidence and prevalence of infections caused by 
Candida species have a devastating impact on the quality 
of living organisms across the globe. The drug-resistant 
species of Candida are reported to have components like 
capsules, resistant enzymes, and adhesins that mediate 
the degree of fungal infection [92]. The vaccines, which 
are reported to be under clinical trials against Candida 
infections, are based on the secretory aspartyl protein-
ase (SAP) enzyme, which is reported to provide protec-
tion by neutralising SAP antibodies [93]. Furthermore, 
the agglutinin-like sequence (Als3) vaccine is composed 
of alum as an adjuvant with the N-terminal portion of 
recombinant Als3 [94]. This vaccine provides protection 
by initiating Th1 and Th17 cells along with B cells. The 
use of nanoparticles as adjuvants can enhance stability, 
cellular uptake, and immunogenicity. Also, biodistribu-
tion at different sites with controlled release can also be 
possible with nanoparticles [95].

Aspergillus spp.
The infections caused by Aspergillus species have been 
mounting in recent years. It is reported that aspergil-
losis infections are one of the major causes of increased 
mortality in hospital-acquired infections [96]. Targeting 
the population for vaccination against aspergillosis is 
often difficult owing to the fact that it is associated with 
immune-compromised patients. They are often associ-
ated with candidiasis and weaken the immune system. 
Recently, a panfungal vaccine composed of β-glucan and 
a crude extract preparation of Aspergillus Asp. f3 could 
generate protection against A. fumigatus. Furthermore, 
protein-conjugated vaccines consisting of glucan can be 
effective against all fungi that contain glucan in their cell 
walls [97].

Cryptococcus spp.
Similar to Aspergillosis, developing a vaccine against 
Cryptococcus infection is a difficult task as it infects 
patients with absent or defective T-cell generation. 
Attempts have been made to develop vaccines using cap-
sule components of C. neoformans glucuronoxyloman-
nan (GMX), which induce an immune response. Also, 
engineered strains of C. neoformans were produced 
and injected into mice to secrete IFN-g cytokines in the 
absence of T cells [98]. In order to make the nanovaccine 
a successful candidate, myriad factors play pivotal roles. 
Some of these essential components are discussed in the 
following sections; one such priority includes the mode of 
administration. There are several ways of administering 
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nanovaccines, including oral and injectable, which are 
the most frequent, as well as transdermal, transmucosal, 
ophthalmic, pulmonary, and implantation. Furthermore, 
other particles are being investigated, including PLGA, 
PGA, PCL, and PEO [99–101].

Administration of nanovaccines
There are several ways of administering nanovaccines, 
including oral and injectable, which are the most fre-
quent, as well as transdermal, transmucosal, ophthal-
mic, pulmonary, and implantation (Fig. 2). These modes 
are one of the established routes of administration [102]. 
Intradermal administration involves injecting the vac-
cine into the epidermis, or outer layer of skin, where it is 
absorbed slowly, producing a sustained effect [103]. This 
method is often combined with adjuvants, such as oil 
emulsions or saponins, to enhance the immune response 
[104]. There are various scientific studies that support 
the importance of the intradermal vaccination process 
against viral infections like influenza and hepatitis B. 
One notable advantage of this mode of vaccination is the 

dose-sparing effect, where small vaccine doses can easily 
enhance the immune responses. The use of microneedles 
and patches as modes of delivery can be convenient and 
self-administrative [100]. In the case of nanovaccines, the 
intradermal will be handy for prolonging the duration 
of the immune response for effective treatment against 
targeted pathogens [12]. Intramuscular injection deliv-
ers the vaccine directly to muscle tissue, but this method 
may produce a modest immune response [32]. The intra-
muscular mode of vaccination is one of the established 
routes for administering vaccines. It offers great advan-
tages in terms of generating immunogenicity, vaccine 
delivery, ease of administration, and many more. In this 
type of process, it stimulates the immune cells present in 
the muscle, which leads to robust and effective immune 
responses [105]. In a recent study, the nanovaccine deliv-
ered intramuscularly generated strong humoral and 
cellular immune responses in mice, making it a good 
option for single-dose antigen delivery via the intra-
muscular route [30]. The study concluded the impor-
tance of nanovaccines against Hepatitis B treatments 

Fig. 2  Mode of administration of nanovaccines
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that require repeated administration and booster doses 
in conventional mode administration [106]. Subcutane-
ous injection, or injecting the vaccine just under the skin, 
can be enhanced by using PEGylated liposomes, which 
help stabilise the vaccine and increase its uptake in the 
lymph nodes [107]. The subcutaneous mode of vaccine 
administration offers several advantages in stimulating 
the immune response, as this is one of the most conveni-
ent modes and the vaccines are delivered to a site that is 
rich in immune cells, which results in the production of 
antibodies in higher concentrations. This mode serves 
as one of the reservoirs and allows the sustained release 
of vaccines. A large number of vaccines are widely used 
in the practice of using this mode of administration pro-
cess [105], oral administration requires a high concentra-
tion of the vaccine due to the dilution that occurs in the 
gastrointestinal tract [108]. Oral administration offers 
advantages such as ease of administration, stimulation of 
mucosal immune responses, enhanced stability, and the 
potential for wider acceptance with a needle-free vac-
cination process. In some cases, the vaccines are more 
stable in their oral formulation [109]. Nasal administra-
tion can be done using a needle-free method, such as a 
nasal spray, but this method can be challenging in terms 
of accurately delivering the vaccine to the entire mucosal 
area of the nose [110]. Mucosal administration has been 
investigated as a route for administering nanovaccines, 
and it has been demonstrated to shield mucosal sur-
faces against most diseases. Administration through the 
mucosa, targeted antigen delivery, enhanced antigen 
presentation, and prolonged antigen release are only a 
few of the nanovaccine techniques that have been shown 
to improve the immunogenicity of antigens [109]. Topical 
administration involves using patches to deliver the vac-
cine through the skin, which has the advantage of being 
non-invasive and producing localised effects with fewer 
side effects [111]. This mode of administration has advan-
tages wherein the immune system can mount a response 
by accelerating antibody production: it is also a needling-
free process of administration. There are various types of 
vaccines that hold promise via this mode of administra-
tion, for instance, influenza, measles, polio, etc. [112]. 
However, this method may be limited in terms of size 
and the number of uses. Administering a vaccine through 
the vaginal route has several benefits, including a high 
level of permeability, a large surface area, and the ability 
to bypass the first pass of metabolism [113]. The vagi-
nal route also has a rich blood supply, making it a good 
option for vaccination, especially against pathogens that 
can infect this area [114]. The vaginal route is considered 
advantageous as it may induce local mucosal immunity, 
providing protection at the site of potential pathogen 
entry. Furthermore, this mode of administration might 

increase vaccine accessibility for women in regions with 
limited access to health care and may offer an alterna-
tive to traditional needle-based vaccinations. The vaginal 
route of vaccine administration involves delivering vac-
cines directly into the vagina for the purpose of eliciting 
an immune response in the female reproductive tract. 
This method is being explored for specific vaccines, such 
as those targeting sexually transmitted infections like the 
human papillomavirus and herpes simplex virus [115]. A 
vaccine for the human papillomavirus was administered 
using a mucoadhesive delivery system, which improved 
the production of antibodies against the virus [116]. The 
mucoadhesive delivery systems allow the adherence of 
vaccine formulations to mucosal surfaces. This type of 
route has a prolonged immune response and is target-
specific; studies show the stimulation of both local and 
systemic immune responses. It is used to broaden immu-
nisation strategies; for instance, it prevents the entry of 
pathogens through mucosal surfaces [115]. The vaccine, 
which was composed of virus-like particles, induced a 
local and systemic immune response and helped con-
trol the entry of associated pathogens. Vaccines can be 
administered through the mucous membrane lining the 
eye as a way to protect against infections [117]. However, 
this method has some challenges, such as the high rate at 
which tears are produced, the risk of the vaccine being 
absorbed into the body, and the limited ability of the cor-
nea to drain and metabolise the vaccine [118]. Despite 
these limitations, eye drops have been used to vaccinate 
against influenza H1N1, and vaccination against herpes 
simplex virus type 1 was tried on mice using an ocular 
approach that included iron nanoparticles, glutamic 
acid, and a DNA vaccine for herpes stromal keratitis to 
generate protection [119]. Overall, researchers are seek-
ing ways to improve the effectiveness of vaccine delivery 
and enhance the immune system’s response to specific 
antigens.

Physicochemical properties of nanoparticles 
for nanovaccines
In recent decades, the physicochemical properties of 
nanoparticles have been studied to evaluate their appli-
cative properties [120]. In developing nanovaccines, 
these properties play an important role in attenuating 
the activity. The size of the nanoparticles constitutes one 
of the important aspects of nanovaccines. The studies 
have demonstrated the role of the diameter of the nano-
vaccines and their immunogenicity [121]. Nanovaccines 
with smaller particle sizes may readily pass through epi-
thelia and other biological barriers, but particles with 
diameters ranging from 20 to 50  nm are more likely to 
drain to lymphatic arteries and collect in lymph nodes 
[122]. Similarly, the shape of the nanovaccine influences 
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the immune response; a spherical shape tends to deliver 
the most effective immune response in comparison with 
other shapes of nanoparticles [123]. Studies report that 
shape of nanoparticles affects the reciprocity between 
nanoparticles and immune cells. According to Kumar 
et  al. Ovalbumin, with a sphere-shaped small particle 
diameter of 193  nm, induced a primary immune reac-
tion as compared to the rod-shaped particle of 1530 nm 
[124]. The hydrophobicity of the nanoparticles can influ-
ence the immune response in several ways. The hydro-
phobic nanoparticles may be more efficiently taken up by 
certain immune cells, for instance, the memory cells in 
the Peyer’s patches, which can facilitate their interaction 
with immune cells and potentially enhance the immune 
response [125]. Studies have also proven the hydropho-
bicity of the nanoparticles can affect the cell membranes, 
which in turn triggers an immune response [126]. In con-
trast, hydrophilic nanoparticles may be less efficiently 
taken up by immune cells and may cause less damage to 
cell membranes, leading to a weaker immune response 
[127]. The surface charge of a nanoparticle can influence 
its ability to interact with cells and the immune response. 
The negatively charged nanoparticles may be more 
efficiently taken up by macrophages, while positively 
charged nanoparticles may be more efficiently taken up 
by dendritic cells [128]. It has been demonstrated that the 
positive surface charge of nanoparticles is one of the fac-
tors influencing their concentration in the blood. When 
compared to nanoparticles with neutral or negative sur-
face charges, it causes haemolysis and platelet aggrega-
tion [129]. The surface charge of a nanoparticle can also 
affect its ability to interact with extracellular matrix pro-
teins and other components of the microenvironment, 
which can influence its uptake and distribution within 
the body. Studies suggest that the positively charged 
nanoparticle causes an inflammatory reaction and acti-
vates complementary systems [130]. When studies were 
conducted on negatively charged gold nanoparticles, 
they were capable of inducing a higher immunological 
response. It has also been found that nanoparticles with 
positive surface charges accumulate in the bloodstream. 
It induces haemolysis and platelet aggregation compared 
to the neutral or negative surface charge of nanoparticles 
[131].

Perspective and conclusion
The extensive research on nanotechnology has harnessed 
potential in various sectors. Nanoparticle-based diag-
nostic tools and novel formulation are under the clinical 
trails for the approvals. The nanoparticle-based vaccines 
have generated immense potential owing to the facts that 
these nanobased vaccines can elicit the immune response 
with minimal dosages [132]. The nanovaccines exhibits 

potent antigenicity with prolonged retention process 
and targeted site to induce cell-mediated and antibody-
mediated immune responses. This characteristic mini-
mises the usage of booster dosages. Hence development 
of nanovaccines hold promise for both prophylactic and 
therapeutic applications. However, in order to attenuate 
commercialised process, nanovaccines should addresses 
the issues like the toxicity studies, scalability, stabil-
ity and meet the regulatory guidelines [19]. In case of 
antimicrobial resistance, the use of nanovaccines can 
offer promising strategies to neutralise the pathogenic 
micro-organisms and their toxic elements. The nanovac-
cines can stimulate immune response against particular 
pathogens and suppress their colonisation within the 
body [133]. The conventional vaccination for antimi-
crobial resistance has been hampered by various limita-
tions, for instance, weak immunogenicity, targeting the 
normal commensal members, durability, and economic 
feasibility [134]. Hence, recent scientific advancements 
in nanotechnology and improvements in vaccine tech-
nology have resulted in the development of nanovac-
cines that can act efficiently and reduce the burden of 
antimicrobial resistance [135]. The size and functional 
conjugating chemistry of nanomaterials can benefit the 
development of novel multi-nanovaccines that can tar-
get a pool of antimicrobial-resistant organisms by gen-
erating an immune response based on the conserved 
virulence factors of pathogens, which are not found in 
normal bacteria [136]. This can aid in eradicating the 
pathogenic micro-organisms which have gained resistant 
to last resort antimicrobial agents by exerting the counter 
selection [137]. Ideally, these nanovaccines can minimise 
the colonisation of the pathogens by targeting the site of 
pathogen transmission, which is not always possible with 
conventional vaccines. In cases like MRSA strains and 
the lineage of S. aureus, developing conventional vac-
cination is difficult due to multiple virulent factors and 
the lack of an ideal animal model to test the efficacy of 
vaccines [138]. Also, a diverse class of polysaccharides, 
which forms virulent factors in drug resistance, is difficult 
to target. Furthermore, developing vaccine against tuber-
culosis and viruses like HIV, is yet to gain the success to 
reach the mass eradication. These facts make nanovac-
cines which can be developed based on the multi-viru-
lent factors. The nanovaccines can also aid in controlling 
drug resistance among farm animals, which are reported 
to be one of the major reservoirs of antimicrobial resist-
ance and can transmit easily. The nanovaccines, owing 
to their unique and extraordinary properties, can also 
add synergistic effects along with antibiotics or with the 
conserved components of pathogens, which can elicit 
the immune response by targeting the efflux pump cas-
sette [133, 139]. This can help in eradicating the health 
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care-associated infections that reflect the burden posed 
by antimicrobial resistance. The nanovaccination can 
eventually reduce the transmission of resistant organ-
isms and minimise the use of antibiotics in the targeted 
population. Further, research policies, clinical trials, and 
funding resources are likely to play an important role in 
the successful development of nanovaccines and their 
commercialisation to reach the masses and the targeted 
population [140].
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