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Abstract 

Background:  Understanding the mechanisms, activated and inhibited pathways as well as other molecular targets 
involved in existing and emerging disease conditions provides useful insights into their proper diagnosis and treat-
ment and aids drug discovery, development and production. G protein-coupled receptors (GPCRs) are one of the 
most important classes of targets for small-molecule drug discovery. Of all drug targets, GPCRs are the most studied, 
undoubtedly because of their pharmacological tractability and role in the pathophysiology as well as the pathogen-
esis of human diseases.

Main body of the abstract:  GPCRs are regarded as the largest target class of the “druggable genome” representing 
approximately 19% of the currently available drug targets. They have long played a prominent role in drug discovery, 
such that as of this writing, 481 drugs (about 34% of all FDA-approved drugs) act on GPCRs. More than 320 therapeu-
tic agents are currently under clinical trials, of which a significant percentage targets novel GPCRs. GPCRs are impli-
cated in a wide variety of diseases including CNS disorders, inflammatory diseases such as rheumatoid arthritis and 
Crohn’s disease, as well as metabolic disease and cancer. The non-olfactory human GPCRs yet to be clinically explored 
or tried are endowed with perhaps a huge untapped potential drug discovery especially in the field of immunology 
and genetics.

Short conclusion:  This review discusses the recent advances in the molecular pharmacology and future opportuni-
ties for targeting GPCRs with a view to drug development.
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Background
Since medicine is an ever changing field, newer technolo-
gies when applied change our understanding and it is 
imperative that existing knowledge be updated. It is on 
this premise that this article is conceived. This review 
aims to provide an update on the receptor pharmacol-
ogy, highlighting the untapped drug discovery potentials 

of the G protein-coupled receptors (GPCRs). It considers 
and prioritizes recently (within the last decade) published 
articles on the advances on the structural biology of the 
human GPCRs as well as the application of different bio-
technological approaches focusing on GPCRs as drug 
targets. These include recently introduced molecular 
docking algorithms, protein modelling, biased agonism 
and application of bioinformatics in computer-aided drug 
design. The review brings to fore the emerging trend and 
future therapeutic potentials of the orphan GPCRs.
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Main text
G protein-coupled receptors (Fig.  1) are the most stud-
ied membrane receptors in humans as well as numerous 
other species [1]. As reported by Oprea and colleagues 
[2], there are more than 800 human GPCRs of which 
more than 400 are non-olfactory. They are not surpris-
ingly the largest family of membrane receptors utilized as 
drug targets both for approved and novel drugs alike [3]. 
This is chiefly because of their ability to regulate numer-
ous and diverse physiological processes [4] including reg-
ulation of appetite, taste, smell, inflammation amongst 
others. Additionally, GPCRs are endowed with immense 
druggable sites that are easily accessed by xenobiotics at 
the cell surface. Within the last two decades, there have 
been significant insights and understanding of G protein-
coupled receptors [5]. Distortion in the signalling path-
ways or mutations in GPCRs have also been implicated in 
many diseases [6]. According to Hauser et al. [4], “recent 
advances in receptor pharmacology, breakthroughs in 
structural biology and innovations in biotechnology” 
have all potentiated newer avenues for GPCR drug dis-
covery. Currently, numerous diseases involving the endo-
crine, cardiovascular, neural and immune systems have 
been effectively treated or managed through the pharma-
cological modulation of the GPCRs.

Characteristic features of GPCRs
The G protein-coupled receptors are a large family of 
integral membrane proteins with seven transmembrane 
helices. Based on evolutionary homology the GPCR 

superfamily has been divided into classes and families 
[7]. The GRAFS classification has five families namely: 
glutamate, rhodopsin, adhesion, frizzled and secretin [8]. 
The GPCRs are characterized by amino- or N-terminal 
domain linked to 7 α-helical transmembrane domains 
(TMDs) and carboxyl or C-terminal domain. The N-ter-
minal segment and C-terminal segment are, respectively, 
located in the extracellular and intracellular spaces. 
When stimulated, an extracellular signal induces recep-
tor conformational changes transmitting such signal to 
the cell interior and then to the intracellular messengers 
(G proteins, etc.) [9], arrestins [10] and others [11]. The 
transmembrane helical bundle (particularly the 3rd, 5th, 
6th and 7th) are rearranged during receptor activation 
[12]. GPCRs interact with various intracellular partners 
including endogenous peptidergic ligands that trigger the 
downstream signalling cascade. These feats make them 
super promising category of drug targets to investigate 
[13].

GPCRs as targets for computer‑aided drug design
Molecular docking is a procedure often used in com-
puter-aided drug design (CADD). Usually, it is applied at 
different stages of CADD so as to: “(1) predict the bind-
ing mode of already known ligands, (2) identify novel 
and potent ligands and (3) as a binding affinity predictive 
tool” [14]. Molecular docking is performed using a num-
ber of algorithms such as AutoDock [15], AutoDock Vina 
[16], Glide [17], GOLD [18], amongst others. This field 
has witnessed a number of improvements and innovative 

Fig. 1  Schematic Representation of GPCRs showing the 7 Helices, the connecting loops and some conserved amino acid motifs
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applications such that molecular dynamics is now used as 
a docking tool [19]. Protein–protein docking has become 
an even more established method for predicting GPCR 
dimers. These innovative developments and improve-
ments allow more sophisticated in silico studies with 
better understanding of the mechanisms involved as an 
outcome.

Recently introduced GPCR docking algorithms
Novel methods are usually ranked during dock com-
petitions. As such, the CSAR 2014 Exercise included 
GPCR docking to a number of X-ray structures [20]. As 
reported by earlier studies [21, 22], recent breakthroughs 
such as X-ray crystallography and cryo-electron micros-
copy (cryo-EM) have been very pivotal to the deter-
mination of more than ten GPCR–G protein complex 
structures. However, many of the novel algorithms are 
yet to be ranked in any competition. One of such recently 
released algorithms though not tested on GPCRs is Yada 
[23]. It is a genetic algorithm designed to perform well in 
blind docking. Without a doubt, these new algorithms 
improve the quality of peptide docking.

Bioinformatics of GPCR–G protein interactions
In recent years, better insight into the sequences, struc-
tures and signalling networks of GPCRs and G proteins 
is in the public domain. Useful bioinformatics and soft-
ware tools for exploring GPCR–G protein interactions 
are available (Table  1). These include the protein data 
bank (PDB), the GPCRdb, gpDB and human gpDB. For 
instance, the GPCRdb database houses essential details 
about the structures, known mutations, homologues, 
ligands as well as phylogenetic relationships of GPCRs. 
Also, it identifies ligand binding sites as well as generates 
GPCR models for virtual screening. This explains why 

GPCRdb is widely used for studying GPCRs. Certainly, 
the systematic analysis of data from the GPCRdb could 
give further insight into GPCRs and the interactions with 
their endogenous ligands (G proteins).

Antibodies as GPCR therapeutics
Prior to now, GPCRs were not drug targets for antibod-
ies. This is so because GPCRs are predominantly targeted 
by small molecules. Additionally, the unique pharmacoki-
netic and pharmacodynamic profiles of antibodies made 
them compelling alternatives to small-molecule drugs. 
For instance, they do not readily gain entrance into the 
central nervous system, allowing for selective targeting of 
peripheral receptors. However, this has changed as cur-
rent trends in drug discovery now produces therapeutic 
antibodies that targets GPCRs with large substrate-bind-
ing extracellular domains, with the extracellular domains 
functioning as binding site for the antibody [1]. The role 
of GPCRs in diverse physiological and pathophysiological 
processes has aided the identification of therapeutic areas 
in which GPCRs could be exploited as suitable as targets 
for antibody-based drugs (Fig. 2). Out of the more than 
400 non-olfactory GPCRs, 88 have been strongly impli-
cated in disease pathogenesis and as suitable targets for 
therapeutic antibodies.

Biased agonism in the GPCR
This is a ligand-based signalling approach that is seen 
when multiple signal pathways coexist in a signalling 
process. From its inception in the field of biological sci-
ence, the study of biased agonism focuses on the GPCRs, 
particularly the G protein and β-arrestin classical signal 
pathways [24] (Fig. 3).

Conventionally, if a receptor- and/or ligand-activated 
molecule has the inherent ability of interacting with 

Table 1  Databases and software tools for GPCR–G protein modelling

Database/software Description

CHARMM-GUI This is a web-based graphical user software that prepares biomolecular 
entities such as GPCRs and G proteins for dynamics/molecular simulations. 
http://​www.​charmm-​gui.​org/

Human gpDB This is a database with information about 36 human G proteins, 99 human 
effectors and 713 GPCRs. http://​www.​bioin​forma​tics.​biol.​uoa.​gr/​human_​
gpdb/

OMP It is a database with information about the structural classification of 
membrane proteins, spatial positions in the lipid bilayer and intracellular 
localization. http://​www.​opm.​phar.​umich.​edu/

PDB A repository that contains experimental dataset of structures of biological 
macromolecules. http://​www.​resb.​org/

gpPDB This is a database that contains information about GPCRs, their effectors 
and known interactions. http://​www.​bioin​forma​tics.​biol.​uoa.​gr/​gpDB/

GPCRdb This database houses the structures, diagrams and web tools of GPCRs. 
http://​www.​gpcrdb.​org/

http://www.charmm-gui.org/
http://www.bioinformatics.biol.uoa.gr/human_gpdb/
http://www.bioinformatics.biol.uoa.gr/human_gpdb/
http://www.opm.phar.umich.edu/
http://www.resb.org/
http://www.bioinformatics.biol.uoa.gr/gpDB/
http://www.gpcrdb.org/
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multiple downstream endogenous ligand [25] but directs 
the downstream signal based on biased ligand binding, 
only then is the concept of biased agonism applicable 
to such signalling pathways (Fig. 4). Using biased ligand 
agonism, many GPCRs-targeted drugs have been devel-
oped exploiting the templates provided by the crystal 
structures of 43 unique receptors and 196 ligand com-
plexes [26].

Emerging trends and therapeutic opportunities for orphan 
GPCRs
It has been estimated that more than half of the non-
olfactory GPCRs encoded for the human genome have 
not been exploited as drug targets. Orphan GPCRs are 
GPCRs that were identified through their sequence but 
currently do not have an identified ligand. Efforts to 
identify the natural ligands for these orphan receptors 

are without certain success. However, these receptors 
are potential drug targets and have been linked to many 
pathological conditions including metabolic disorders, 
inflammation, psychiatric disorders and cancers amongst 
others [4]. Development of therapeutic and functional 
antibodies should exploit these orphan receptors as such 
can provide useful insight into their role in pharma-
cotherapy of various diseases. In the field of metabolic 
disorder, especially diabetes and obesity, new GPCR-tar-
geted drugs exploit the cell specificity of receptor expres-
sion to achieve activation of pancreatic beta cells, gut 
endocrine cells and neurons involved in the suppression 
of appetite. These drugs trick the body giving a false-pos-
itive response as though food was just consumed, thus 
stimulating the secretion of glucose-dependent insulin 
with a resultant inhibition of the hunger centres. The 
incretin receptors (GLP1R, GIPR) and bile acid receptor 
(GPBAR1) are amongst the widely exploited GPCRs in 
drug therapy for diabetes [27].

Conclusions
The G protein-coupled receptors are the extensively stud-
ied family of drug targets. These receptors interact selec-
tively with various endogenous partners with different 
downstream signalling and pharmacological effects as an 
outcome. The recent advances in computational simula-
tions and software have not only deepen our understand-
ing of the GPCR activation process as well as specificity 
and tractability, but have overhaul structure-based drug 
discovery, and as a result, numerous GPCRs are now in 
clinical trials with interesting and promising outcomes.

Fig. 2  Pathological conditions with GPCRs as suitable targets for 
therapeutic antibodies

Fig. 3  Classical biased signalling for G protein and β-arrestin pathways in G protein-coupled receptors (GPCRs)
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