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Phenolic‑rich fraction of green 
tea attenuates histamine‑mediated 
cardiopulmonary toxicity by inhibiting Cox‑2/
NF‑κB signaling pathway and regulating 
oxidant/antioxidant balance
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Abstract 

Background  Histamine (HIS) has a substantial impact on the development of numerous allergic disorders includ-
ing asthma. Antihistamines mostly target histamine receptor-1 alone, so it is not entirely effective in the treatment 
of allergic diseases. In the current investigation, we examine the growing evidence for novel therapeutic strategies 
that aim to treat histamine-mediated cardiopulmonary toxicity with the phenolic-rich fraction of green tea (PRFGT).

Results  Our findings demonstrated that weekly ingestion of HIS to rats induced oxidant/antioxidant imbal-
ance in both lung and heart homogenates. The histopathological examination demonstrated extensive intersti-
tial pneumonia with progressive alveolar and bronchial damage in HIS receiving groups. Heart sections showed 
severe myocardial necrosis and hemorrhage. All lesions were confirmed by the immunohistochemical staining 
that demonstrated strong caspase-3, cyclooxygenase-2 (Cox-2), and tumor necrosis factor-α (TNF-α) protein 
expressions along with upregulation of the pulmonary m-RNA expression of TNF-α, nuclear factor kappa-B (NF-κB), 
and interleukin-1β (IL-1β) genes and cardiac levels of many apoptotic genes. Otherwise, the pretreatment of rats 
with PRFGT had the ability to alleviate all the aforementioned toxicological parameters and return the microscopic 
picture of both lung and heart sections to normal histology.

Conclusions  We concluded that PRFGT’s powerful antioxidant, anti-inflammatory, and anti-apoptotic properties can 
reduce cardiopulmonary toxicity caused by HIS. We recommended daily intake of green tea as a beverage or adding it 
to foods containing elevated levels of HIS to prevent its possible toxicity.
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1 � Background
Anaphylaxis and other allergic illnesses are becoming 
more common everywhere, but especially in low- and 
middle-income nations [71]. Around 250 million indi-
viduals worldwide have food allergies, while 300 million 
people have asthma [70]. Additionally, several allergic 
disorders frequently occur in the same person at the 
same time. The main mediator of allergic diseases is his-
tamine, and it performs all its functions via four G recep-
tors but mostly via histamine 1 receptor (H1R) [52]. 
Histamine is widely formed in many foods and drinks 
such as wine, cheese, decomposed fish, and fermented 
cheese via decarboxylase enzyme [35, 60]. The develop-
ment of many allergy illnesses is significantly enhanced 
by histamine and its four receptors [87]. Histamine is 
widely distributed across all cells and is found in signifi-
cant amounts in the lungs, skin, and digestive tract [58]. 
Histamine is a strong inflammatory mediator that is fre-
quently linked to anaphylatoxins, cardiovascular altera-
tions, and potent inflammatory reactions [19].

All green plants contain polyphenols, usually in vary-
ing amounts.  In numerous experimental models, green 
tea extract (GTE) has a potent anti-inflammatory prop-
erty [74, 78, 79, 82], through inhibiting the gene levels 
of nuclear factor kappa-B (NF-κB) and interleukin-1β 
(IL-1β) [21, 50]. Another study showed that daily con-
sumption of green tea polyphenols over 12 weeks could 
enhance the blood flow and oxygen supply to the skin, 
protecting it from UV-damaging radiation and enhanc-
ing women’s overall skin quality [34]. Additionally, green 
tea polyphenols’ capacity to chelate transition metals and 
quench reactive oxygen species (ROS) has been found 
to have substantial antioxidant activity in vitro [49]. Fol-
lowing chronic cerebral hypoperfusion, green tea poly-
phenols at dose of 400 mg/kg per day increase the spatial 
cognition because of their antioxidant properties [98]. 
The majority of the results from research on humans 
showed that green tea has anti-inflammatory properties 
that are explained by its potent antioxidant effects that 
scavenge ROS and finally reduces NF-κB activity [64]. 
Another study explained the ability of GTE to reduce 
doxorubicin-induced cardiotoxicity by enhancing the 
heart’s antioxidant defenses and bringing lipid peroxida-
tion (LPO) levels back to normal level [46]. In osteoar-
thritis patients, GTE is used as an additional therapy to 
help manage pain and improve the physical function of 
the knee joints [28]. Besides the antioxidant and anti-
inflammatory effects of GTE, several in  vitro studies 
investigated its potent antiallergic effect in several cell 
lines via binding with immunoglobulin E (IgE) [29, 97]. 
Some fractions of green tea including epigallocatechin 
gallate and gallic acid have been investigated in several 
in vitro studies that demonstrating their ability to reduce 

IgE-mediated HIS release from mast cells and human 
basophiles [47, 86].

However, the in vivo study regarding the antihistaminic 
effect of GTE or its fraction is missed, but it is particu-
larly important to study the potential mechanism under-
lying those effects. Despite increasing the incidence of 
histamine toxicity worldwide, it is important to find 
available safe ways to reduce such toxicity. Therefore, our 
work aimed to investigate the possible protective prop-
erties of PRFGT against HIS-mediated cardiopulmonary 
toxicity.

2 � Methods
2.1 � Preparation of green tea phenolic‑rich fraction
Green tea (Camellia sinensis) was acquired from the local 
market. The identity and purity of the green tea were 
verified by Mrs. Therese Labib, consultant at Ministry of 
Agriculture and the former director of El-Orman Botanic 
Garden. For column chromatography, silica gel 60 (pore 
size 60 Å, 70–230 mesh, 63–200 μm, purchased from 
Fluka, Sigma-Aldrich Chemicals, Germany) was utilized. 
All experiments were performed at room temperature. 
The extract acquired from 1 kg of green tea was applied 
onto a silica gel column (5 × 100 cm) and then was eluted 
with 85:15 dichloromethane/ethanol (v/v) followed by 
elution with 100% ethanol. The ethanol eluate was rich 
in polyphenolic metabolites and was evaporated under 
vacuum at low temperature to dryness [51]. The residue 
was then kept at − 20 °C for further analysis and biologi-
cal activities.

2.2 � UPLC‑MS/MS identification of green tea phenolic‑rich 
fraction

The polyphenolic-rich fraction was dispersed in HPLC 
grade methanol at a concentration of 100 µg/ml, after 
which it was filtered through a membrane disk filter (0.2 
m) and subjected to LCMS analysis using a UPLC/ESI–
MS system with an ACQUITY UPLC—BEH C18 (1.7 
µm—2.1 × 50 mm) column from Waters Corporation. 10 
µl of the sample was injected. We used solvent of water 
(A) and acetonitrile (B), each containing 0.1% formic 
acid. Stepped mobile phase extraction was planned to 
start at 90% A/10% B for 2 min, increase to 70% A after 
5 min, 30% A after 15 min, and 10% A after 22 min, all 
of which were to be maintained for 3 min. After 26 min, 
100% B was reached and maintained for 3 min, and after 
32 min, flow rate: 0.2 ml/min., the process resumed to 
the original composition. The study was done in negative 
ionization mode using an XEVO TQD triple quadrupole 
mass spectrometer from Waters Corporation in Milford, 
Massachusetts. The mass spectrometer’s cone voltage is 
30 eV, the capillary voltage is 3 kV, the source tempera-
ture is 150 °C, the dissolving temperature is 440 °C, and 
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the flow rates for the cone gas and the desolvation gas are 
900 L/h and 50 L/h, respectively. The ESI can detect mass 
spectra between m/z 100 and 1000. Metabolites were 
potentially identified  by comparing the retention dura-
tions (Rt) and mass spectra of the peaks and spectra pro-
cessed using Masslynx 4.1 software with the counterparts 
published in databases and literature.

2.3 � Animals and experimental design
All treatments applied on rats were certified by the 
institutional animal care and use committee of Cairo 
University (IACUC) (approval number: 8032022402) 
and following the ARRIVE guidelines (PLoS Bio 8(6), 
e1000412, 2010).

30-Male Wistar albino rats, weighing 170 ± 10 g, were 
used in this study. Five rats were housed in plastic cages 
and received a consistent 12 h dark/light cycle for each 
animal in a well-ventilated environment. They had unre-
stricted access to tap water during the trial as well as dry 
commercial standard pellets to consume. They under-
went acclimatization two weeks prior to the trial’s start 
in order to protect their health. The rats were separated 
into 6 groups randomly, each group consisted of 5 rats, 
and all rats received various treatments by oral admin-
istration for 14 days. Group (1) received distilled water. 
Groups (2 and 3) received PRFGT at doses 100 and 200 
mg/kg BWT/day, respectively. Group (4) received HIS 
(98%, LOBA., India) at dose 1750 mg/kg BWT/week. 
Groups (5 and 6) received the identified of PRFGT + HIS 
as before. Both dosage levels of HIS and PRFGT were 
chosen according to the previous studies [13, 30, 44]

2.4 � Sampling
After 14 days of treatment, rats were anaesthetized by 
intramuscular injection of Ketamine (90 mg/kg BWT) 
and Xylazine (10 mg/kg BWT) and then euthanized by 
the cervical dislocation and samples were collected from 
the primary target organs (lung and heart). All samples 
were split into two portions: One of them was promptly 
preserved in 10% neutral buffered formalin for histology 
and immunohistochemistry, and the other was stored at 
-80°C until it was required for redox status assessments 
and molecular analysis.

2.5 � Measuring the tissue content of MDA, GSH, 
and catalase

Known weight samples from both pulmonary and car-
diac tissue were homogenized with PBS (pH 7.4) and 
centrifuged at ×4500g. For the purpose of performing 
certain oxidative and antioxidant indicators, the super-
natant was kept at − 80 °C. We assessed malondialdehyde 
(MDA), reduced glutathione (GSH), and catalase (CAT) 

in accordance with the guidelines provided by the manu-
facturer’s kits (Biodiagnostic Co., Cairo, Egypt).

2.6 � Histopathological examination
Following the method portrayed by Bancroft and Gam-
ble, [10], both pulmonary and cardiac tissue specimens 
were washed, managed using alcohol gradients and 
xylene, paraffinized, sectioned into 4.5 μm thick sec-
tions, and stained with hematoxylin and eosin (H&E). 
We used an Olympus BX43 light microscope to examine 
all stained sections and an Olympus DP27 camera con-
nected to CellSens dimension software to capture images.

A classical semiquantitative grading technique was 
employed following the procedures explained by Pass-
more et  al. [69] and Hassanen et  al. [32] to assess the 
distribution and severity of the pathological alterations 
within lung and heart tissues. The lung was investigated 
for any vascular, bronchial, alveolar, and interstitial 
lesions including cellular degeneration, inflammatory 
cells infiltration, edema, hemorrhage. Meanwhile, the 
heart was inspected for signs of hemorrhage, vascu-
lar congestion, interstitial edema, and muscle degen-
eration and necrosis. The following four-point grading 
scale was used to rank all the pathogenic parameters. 
Score (0) indicates normal histology without any micro-
scopic changes. Score (1) indicates slight changes (tissue 
damage (TD) less than 10%). Score (2) indicates minor 
changes (TD between 11 and 25%). Score (3) indicates 
moderate changes (TD between 26 and 50%), while (4) 
means severe changes (TD greater than 50%).

2.7 � Immunohistochemical staining
The apoptosis marker (caspase-3) and the inflammatory 
markers (Cox-2 and TNF-α) were detected in either lung 
or heart tissue. Briefly, the deparaffinized dehydrated tis-
sue sections were blocked using Peroxidase (Sakura BIO) 
and harvested with various primary antibodies (Abcam, 
Ltd.), followed by reagents involved in the avidin–biotin 
detection system (Power Stain 1.0 Poly HRP DAB Kit; 
Sakura). After ten minutes of treatment with 3,3′diamin-
obenzidine chromogen substrate, the sections were coun-
terstained with hematoxylin and then examined using an 
Olympus BX43 light microscope and photographs were 
taken using an Olympus DP27 camera.

2.8 � RT‑PCR evaluation of certain genes’ m‑RNA levels 
in cardiopulmonary tissues

Lung and heart tissues weighing about 100 mg were 
subjected to total RNA extraction using the ABT total 
RNA mini  extraction kit (Applied Biotechnology, co. 
ltd, Egypt). RNA purity and concentration were assessed 
using a NanoDrop ND-1000 spectrophotometer [41]. 
The c-DNA synthesis was performed by using ABT 
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H-minus c-DNA synthesis kit (Applied biotechnol-
ogy, co. ltd, Egypt). The m-RNA expression levels of the 
studied genes were detected using fluorescence-based 
real-time detection method according to the protocol of 
ABT 2X sybr mix (Applied biotechnology, co. ltd, Egypt). 
Using the primer designing tool (https://​www.​ncbi.​nlm.​
nih.​gov/​tools/​primer-​blast/), the real-time PCR primers 
were created, as shown in Table  1. Each real-time PCR 
was done in triplicate, and the GAPDH gene was used as 
internal control [4, 5, 43]. The fold change of the results 
was calculated from the equations of CT, ΔCT, ΔΔCT, 
and 2−ΔΔCT [20, 37].

2.9 � Statistical analysis
The statistical package program (SPSS version 20) was 
used to analyze the recorded results using one-way analy-
sis of variance (ANOVA) and post hoc Duncan’s test; 
P values less than 0.05 indicate statistical significance. 
The parametric data were displayed as means ± standard 
error, while Kruskal–Wallis H test and Mann–Whitney 
U test were utilized to analyze the nonparametric results 
such as histopathological scoring which is represented as 
a median.

3 � Results
3.1 � UPLC‑MS qualitative profiling of phenolic‑rich fraction 

in green tea
A total of 52 metabolites were tentatively identified in 
the phenolic-rich fraction of green tea (Table  2, Fig.  1). 
All the identified compounds were mainly of phenolic 
nature belonging to the flavonoids group the majority of 
which are flavan-3-ol and flavanol derivatives, in addition 
to phenolic acids. Flavan-3-ols, known as monomeric 
flavanols, include epicatechins, epigallocatechin, and 
their gallate derivatives. The major flavan-3-ol identified 

compounds in the green tea phenolic-rich fraction 21, 35, 
41, and 47 at ESI− m/z 289−, 577−, 441−, and 451− gener-
ated a common product ion at m/z 289 which is a char-
acteristic mass of epicatechin. These compounds were 
tentatively identified as epicatechin, procyanidin B, epi-
catechin gallate, and epicatechin-hexoxide, respectively. 
Compounds 12 and 44 at m/z 305− and 457 showing the 
molecular ion m/z 305− of epigallocatechin were iden-
tified as epigallocatechin and epigallocatechin gallate, 
respectively.

A total of 13 flavanols were tentatively identified in 
the phenolic-rich fraction of green tea. The major com-
pounds 32, 37, and 40 showing product fragment ions at 
m/z 285 were identified as kaempferol glycosides, namely 
kaempferol rutinoside, kaempferol hexosyl deoxyhexosyl 
hexoside and kaempferol hexosyl deoxyhexosyl hexoside, 
respectively. In addition to, other  flavanols as myricetin 
and quercetin derivatives were  identified from their mass 
fragmentation and compared to the literature as depicted 
in Table 2.

Ten phenolic acids (5 hydroxybenzoic acids and 5 
hydroxycinnamic acids and derivatives) were identified 
in the phenolic-rich fraction of green tea. Gallic acid was 
the most abundant identified phenolic acid. The removal 
of the CO2 (44 Da) and hexosyl moiety (162 Da) from 
their parent ions serves as a common example of the 
MS/MS fragmentation pattern of phenolic acids. Seven 
organic acids were detected as denoted in Table  2, and 
one polyphenol, viz. theaflavin-3,3’-digallate.

3.2 � Oxidative stress evaluations
HIS receiving group displayed noticeably greater levels 
of MDA and lower levels of GSH and CAT than other 
groups. On the other side, the PRFGT-treated groups at 
both doses displayed significantly lower MDA content 

Table 1  Primers sequences used for qRT-PCR

Gene symbol Gene description Accession number Primer sequence

NF-κB Nuclear factor kappa-B NM_001276711.1 F: 5′‐CAC​TGT​CAA​CAG​ATG​GCC​C‐3′
R: 5′‐GTC​TGT​GAG​TTG​CCG​GTC​TC‐3′

TNF-α Tumor necrosis factor alpha NM_012675.3 F: 5′‐ACA​CAC​GAG​ACG​CTG​AAG​TA-3′
R: 5′‐GGA​ACA​GTC​TGG​GAA​GCT​CT-3′

IL-1β Interleukin-1 beta NM_031512.2 F: 5′-TTG​AGT​CTG​CAC​AGT​TCC​CC-3′
R: 5′-GTC​CTG​GGG​AAG​GCA​TTA​GG‐3′

c-Jun c-Jun N-terminal kinases (JNKs) NM_053829.2 F: 5′-GTC​ATT​CTC​GGC​ATG​GGC​TA ‐3′
R: 5′-TGG​ACG​CAT​CTA​TCA​CCA​GC‐3′

c-Fos Fos proto-oncogene, AP-1 transcription factor subunit NM_022197.2 F: 5′‐ACG​ACC​ATG​ATG​TTC​TCG​GG ‐3′
R: 5′‐ GCT​GTC​ACC​GTG​GGG​ATA​AA‐3′

c-Myc c-myelocytomatosis oncogene product or
MYC proto-oncogene, bHLH transcription factor

NM_012603.2 F: 5′‐AGT​CAG​GGT​CAT​CCC​CAT​CA‐3′
R: 5′‐ AAA​GCT​ACG​CTT​CAG​CTC​GT ‐3′

GAPDH Glyceraldehyde3-phosphate dehydrogenase NM_017008.4 F:-5′-ACC​ACA​GTC​CAT​GCC​ATC​AC-3′
R:-5′-TCC​ACC​ACC​CTG​TTG​CTG​TA-3′

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Table 2  Peak assignments of metabolites in the phenolic-rich fraction of Camellia sinensis using UPLC-MS in negative ionization mode

Peak no Assignment Molecular Formula RT (min) Precursor 
ion m/z 
[M-H]‒

Product ions MS/
MS

Chemical class References

1 Malic acid C4H6O5 0.75 133.0137 115,113,105,89, 
87,73,71,57

Organic acid Liu et al. [54]

2 Citramalic acid/cin-
namic acid

C5H8O5 0.77 147.0267 101,85 Organic acid Liu et al. [54]

3 Oxoadipic acid C6H8O5 0.79 159.0712 131,115,113,103 Organic acid Liu et al. [54]

4 (Iso)citric acid C6H8O7 0.81 191.0226 173,111,87,129, 85 Organic acid Ezzat et al. [23]

5 Quinic acid C7H12O6 0.83 191.0459 171,127,111 Organic acid Jeszka-Skowron et al. 
[39]

6 Caffeoyl-hexoside C15H18O9 0.91 341.0954 179,161 Hydrocinnamic acid 
derivative

Ezzat et al. [23]

7 Quinic acid deriva-
tive

C19H34O17 0.94 533.1731 191 Quinic acid deriva-
tive

Han et al. [27]

8 Gallic acid C7H6O5 1.03 169.0139 125,107,97,79 Hydroxybenzoic acid Hasim Kelebek [45]

9 5-O-Galloylquinic 
acid (Theogallin)

C14H16O10 1.05 343.1224 191,169 Hydroxybenzoic acid Han et al. [27]

10 Itaconic acid C5H6O4 1.11 129.0090 85 Organic acid Hassanen et al. [31]

11 (Epi)gallocatechin I C15H14O7 1.18 305.0819 179,167,137,125 Flavan-3-ol Shevchuk et al. [80]

12 (Epi)gallocatechin II C15H14O7 1.56 305.0814 179,167,137,125 Flavan-3-ol Shevchuk et al. [80]

13 p-Coumaroylquinic 
acid I

C16H18O8 1.79 337.1488 191,163,119 Hydrocinnamic acid Han et al. [27]

14 (Epi)catechin C15H14O6 1.99 289.0767 245,205 Flavan-3-ol Kelebek [45]

15 Caffeoylquinic acid C16H18O9 2.06 353.1350 191,179,135 Hydrocinnamic acid 
derivative

Wen et al. [95]

16 Coumaroyl hexoside C15H18O8 2.12 325.1510 163 Hydrocinnamic acid 
derivative

Abu-Reidah et al. [2]

17 Isopropylmalic acid C7H12O5 2.22 175.0398 157,131,115,87 Organic acid Liu et al. [54]

18 Hydroxybenzoic acid C7H6O3 2.29 137.0280 93 Hydroxybenzoic acid Jeszka-Skowron et al. 
[39]

19 (Epi)catechin-(epi)
catechin
(Procyanidin B) I

C30H25O12 2.48 577.1374 451,425,289,125 Flavan-3-ol Abu-Reidah et al. [2]

20 Dihydroxybenzoic 
acid hexoside

C13H16O9 2.85 315.0737 153,109 Hydroxybenzoic acid Abu-Reidah et al. [2]

21 (Epi)catechin C15H14O6 3.24 289.0810 245,205,179,109 Flavan-3-ol Kelebek [45]

22 p-Coumaroylquinic 
acid II

C16H18O8 3.64 337.1298 163 Hydrocinnamic acid Han et al. [27]

23 Kaempferol rutino-
side

C27H30O15 3.71 593.2367 285,447 Flavonol Wen et al. [95]

24 Naringenin hexoside C21H22O10 3.76 433.1012 271 Flavanone Ali et al. [4, 5

25 Myricetin galloyl 
hexoside

C28H23O17 4.35 631.1375 479,316 Flavonol Abu-Reidah et al. [2]

26 Dihydroxybenzoic 
acid

C7H6O4 4.40 153 91,83 Hydroxybenzoic acid Liu et al. [54]

27 (Epi)gallocatechin 
gallate I

C22H18O11 4.97 457.0955 305,169,125 Flavan-3-ol Wen et al. [95]

28 Epigallocatechin gal-
late dihydrate

C22H22O13 5.04 493.0403 457,305,169,125 Flavan-3-ol Shevchuk et al. [80]

29 Myricetin hexoside C21H20O13 5.10 479.1303 316,271 Flavonol Shevchuk et al. [80]

30 Theaflavin C29H24O12 5.26 563.1412 473,225 Flavan-3-ol Shevchuk et al. [80]

31 Quercetin-hexosyl-
pentosyl-hexoside

C33H10O21 5.43 771.0994 609,463,301 Flavonol Han et al. [27]

32 Kaempferol rutino-
side II

C27H30O15 5.58 593.2497 285 Flavonol Wen et al. [95]
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and higher CAT and GSH content than HIS receiving 
group, whereas the marked improvement noticed in 
group receiving PRFGT at dosage level 200 mg/kg 
Bwt. There was no discernible difference between the 
HIS + high dose of PRFGT group and the control group 
in terms of oxidant or antioxidant levels (Fig. 2).

3.3 � Histopathological examination
Compared to the control group (Fig.  3a), lung sections 
of HIS group displayed severe histological changes. 
Extremely vascular congestion accompanied by severe 

interstitial pneumonia was the prominent lesion in all 
sections. The majority of the blood vessels showed vascu-
litis manifested by endothelial necrosis and vascular wall 
thickening with inflammatory cells infiltration within and 
around the blood vessels (Fig.  3b). Most alveoli showed 
damage and others showed hemorrhage. Macrophages 
and eosinophils were the most noticeable inflamma-
tory cells, along with other granulocytic cells (Fig.  3c). 
Moreover, there are extreme interstitial fluid and hem-
orrhages. The majority of the bronchi displayed epithe-
lial desquamation, along with luminal inflammatory cells 

Table 2  (continued)

Peak no Assignment Molecular Formula RT (min) Precursor 
ion m/z 
[M-H]‒

Product ions MS/
MS

Chemical class References

33 Quercetin-hexosyl-
pentosyl-hexoside 
isomer

C33H10O21 5.62 771.0994 609,463,301 Flavonoid Han et al. [27]

34 (Epi)gallocatechin 
gallate II

C22H18O11 5.72 457.0955 305,169,125 Flavan-3-ol Wen et al. [95]

35 (Epi)catechin-(epi)
catechin
(Procyanidin B) II

C30H26O12 5.79 577.2106 289 Flavan-3-ol Wen et al. [95]

36 Quercetin rutinoside C27H30O16 5.82 609.3044 301,191,107 Flavonol Kelebek [45]

37 Kaempferol hexosyl 
deoxyhexosyl 
hexoside

C33H40O20 5.85 755.2800 593, 447, 285 Flavonol Kelebek [45]

38 Vitexin C21H20O10 5.86 431.1213 413,341,311,269 Flavone He et al. [33]

39 Quercetin hexoside C21H20O12 5.94 463.1440 301 Flavonol Wen et al. [95]

40 Kaempferol hexosyl 
deoxyhexosyl 
hexoside

C33H40O20 6.02 755.2800 593, 447, 285 Flavonol Kelebek [45]

41 Epicatechin gallate C22H18O10 6.17 441.1669 289, 169, 125 Flavan-3-ol Wen et al. [95]

42 Kaempferol rutino-
side III

C27H30O15 6.23 593.1575 285 Flavonol Wen et al. [95]

43 Quercetin glucuro-
nide

C21H17O13 6.27 477.0204 301 Flavonol Abu-Reidah et al. [2]

44 (Epi)gallocatechin 
gallate III

C22H18O11 6.36 457.1225 305,169,125 Flavan-3-ol Wen et al. [95]

45 Kaempferol-O-
hexoside

C21H20O11 6.41 447.1767 283,255,147 Flavonol Kelebek [45]

46 (Epi)catechin-3-O-(4-
O-methyl) gallate

C23H20O10 6.60 455.1686 289,183 Flavan-3-ol Kelebek [45]

47 (Epi)catechin-hex-
oside

C21H24O11 6.84 451.0646 289 Flavan-3-ol Liu et al. [54]

48 Kaempferol-O-trihex-
osyl-pentoside

C38H47O24 7.19 887.2621 285 Flavonol Abu-Reidah et al. [1]

49 (Epi)gallocatechin 
gallate dihydrate II

C22H22O13 8.15 493.0708 457,305,169,125 Flavan-3-ol Shevchuk et al. [80]

50 Hydroxy-octadec-
atrienoic acid

C18H30O3 11.59 293.2600 221,192,71 Fatty acid Liu et al. [54]

51 Hydroxyoctadece-
noic acid

C18H34O3 14.21 297.115 279,183,155 Fatty acid Liu et al. [54]

52 Theaflavin-3,3’-
digallate

C43H32O20 14.69 867.3915 563,545,527,501,407 Polyphenol He et al. [33]
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infiltration (Fig. 3d). Toluidine blue staining revealed an 
enormous number of dark blue/purple granulocytic mast 
cells in several areas especially surrounding the blood 
vessels (Fig.  3e). On the other side, the group cotreated 
with PRFGT along with HIS exhibited dose-dependent 
improvement in the microscopic appearance of the lung 
sections. Groups cotreated with 100 mg PRFGT normal 
histological structure of alveoli, blood vessels, bronchi, 
and bronchioles (Fig.  3g). However, mild thickening in 
the interalveolar septa by inflammatory cells infiltration 
was recorded in some sections along with sporadic bron-
chial epithelial vacuolation and necrosis (Fig. 3h). More-
over, the group receiving HIS + 200 mg PRFGT showed 
normal histological structure as shown in the control 
group (Fig. 3i–j).

Table  3 provides our findings about the microscopic 
lesion score in lungs of diverse groups. The score for 
all parameters in all HIS receiving groups significantly 
increased in contrast to the control group. Otherwise, 
PRFGT-treated groups at both doses noticed a signifi-
cant reduction in the pulmonary lesion scoring com-
pared with HIS group, whereas the lowest score noticed 
in high-dose receiving group. In comparison with the 
control group, there is not a significant difference in the 
microscopic score of the group receiving high dose of 
PRFGT.

In contrast to the control groups (Fig. 4a), a significant 
histological change was seen in the heart sections of HIS 
receiving group. There were diffuse intermuscular hem-
orrhage and inflammatory cells infiltration commonly 
eosinophils, together with myocardial degeneration and 
necrosis (Fig. 4b, c). While group receiving HIS + PRFGT 

at both doses showed marked improvement in the histo-
logical appearance of cardiac muscles (Fig. 4d, e), the best 
improvement was observed in group receiving the high 
dose (Fig. 4f ).

Table  4 provides the results of the myocardial lesion 
scoring. The HIS obtained group showed significantly 
higher scores than control group and PRFGT obtained 
groups. Moreover, the groups receiving PRFGT at both 
doses showed lower scores than HIS receiving group. 
In comparison with those receiving the greater dose of 
PRFGT, the higher dose group showed a lower score.

3.4 � Immunohistochemical staining
Lung samples taken from the HIS given group displayed 
TNF-α and Cox-2 immunopositivity stronger than other 
groups. On the other side, HIS + PRFGT group demon-
strates dose-dependent decreasing in both immunostain-
ing reactions. The PRFGT low-dose receiving group 
showed mild-to-moderate immunostaining, while those 
receiving the high dose did not influence any immune 
reactions. Heart sections obtained from HIS group dem-
onstrated strong positive casp-3 immunoexpression. The 
groups cotreated with HIS and PRFGT exhibited nega-
tive to weak casp-3 immunostaining (Fig. 5).

3.5 � RT‑PCR evaluation of certain genes’ m‑RNA levels 
in cardiopulmonary tissues

In this study, the transcript levels of some inflammation-
related genes (TNF-α, NF-κB, and IL-1β) were measured 
in the lung of rats. The expression levels of all genes were 
upregulated in the HIS group. PRFGT ameliorated the 
inflammatory effect of HIS on the lung of rats but did not 

Fig. 1  Representative UPLC-MS base peak chromatogram of phenolic-rich fraction of Camellia sinensis in negative ionization mode
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return to the level of the control group. The higher dose 
of PRFGT was more effective than the lower dose. Also, 
three apoptosis-related genes (c-Jun, c-Fos, and c-Myc) 
were measured in the heart of rats. The expression lev-
els of the apoptosis-related genes were upregulated in 
the HIS group. PRFGT amended the apoptotic effect of 
HIS on the heart of rats but did not return to the control 
group level. The higher dose of PRFGT was more effec-
tive than the lower dose (Fig. 6).

4 � Discussion
Histamine is a biogenic amine produced from the 
amino acid L-histidine by the enzyme L-histidine 
decarboxylase and is degraded by the enzyme diamine 
oxidase (DAO) and histamine N-methyltransferase 

(HNMT) [81]. Despite the presence of both enzymes 
in the intestinal epithelium, DAO serves as the primary 
barrier of HIS absorption into the blood stream [76]. 
The ability of HNMT to breakdown HIS only exists 
intracellular, where it is found in the cytosol [68]. Sev-
eral kinds of foods and drinks contain prominent lev-
els of HIS, including wine, cheese, fermented meat, sea 
food, and any decomposed fish [35]. By consuming high 
quantities of such foods, DAO and HNMT enzyme’s 
capacity to degrade HIS is limited, allowing it to enter 
the bloodstream and distribute in several organs [17]. 
It is distributed throughout the entire body, but lungs, 
skin, and digestive tract have the highest quantities [24]. 
Moreover, some people suffer from decreased ability 
of the gut to break down histamine due to diminished 

Fig. 2  Bar graphs demonstrating the effects of HIS on various oxidant and antioxidant markers in the homogenates of cardiopulmonary tissue. a 
Malondialdehyde (MDA), b reduced glutathione (GSH), and c catalase activity. Means ± SEM are used to represent values (n = 5). Various superscript 
letters (a, b, c, etc.) indicate a significant difference between groups at P ≤ 0.05
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DAO activity, which causes an accumulation of HIS 
in the plasma and this condition known as histamine 
intolerance (HIT) [17]. Histamine participates in sev-
eral immunological and physiological functions as well 
as promoting gastric secretion, inflammation, con-
traction of smooth muscles, vasodilatation, perme-
ability, and many other pathological conditions [96]. 
By increasing the incidence of food poisoning by HIS, 
it is important to find safe ways to prevent the risk of 
HIS poisoning in humans and animals. In our previous 
study, we explored the potential mechanism of repeated 
oral intake of HIS to rats. Thus, the current study was 
designed to assess the cardiopulmonary protective 

effect of PRFGT against such toxicity with comprehen-
sive insight on the molecular mechanism.

Cardiac and pulmonary tissues of all HIS receiving 
groups displayed a discernible raise in MDA content and 
a decline in CAT and GSH content, indicating the pres-
ence of oxidative stress. Reactive oxygen species (ROS) 
overproduction is the outcome of a redux status imbal-
ance, resulting in significant tissue damage [90]. Our 
histopathological outcomes revealed severe pulmonary 
interstitial inflammation along with myocardial degen-
eration because of oxidative stress. Histamine causes air-
way epithelial cells to produce more H2O2 via signaling 
the H1R. The main generators of ROS are Duox1 and 2 

Fig. 3  Photomicrograph of lung tissue sections representing; a control group with normal histologic structure, b–f group receiving HIS, g–h group 
receiving HIS + 100 mg PRFGT, and i–j group receiving HIS + 200 mg PRFGT. Note: multifocal inflammatory cells infiltration (black stars), vasculitis 
(red stars), alveolar damage (black arrows), eosinophils infiltration (red triangles) bronchiolar epithelial necrosis (blue triangles) with luminal 
inflammatory cells infiltration (blue stars), interstitial hemorrhage (black triangles), mast cells aggregation (red arrows), and mild thickening 
of the interalveolar septa (blue arrows). All sections were stained with H&E except e stained with toluidine blue and f stained with Congo red

Table 3  Pulmonary lesion scoring in different treatment groups

Data were signified as median (n = 25 microscopic fields). Various superscript letters (a, b, c, etc.) indicate a significant difference between groups at P ≤ 0.05

Control 100 PRFGT 200 PRFGT HIS HIS + 100 PRFGT HIS + 200 
PRFGT

Bronchial and bronchiolar lesions

 Epithelial degeneration and necrosis 0a 0a 0a 2b 0a 0a

 Luminal inflammation 0a 0a 0a 4b 0a 0a

Vascular lesions

 Congestion 0a 0a 0a 4b 1c 0a

 Perivascular inflammation 0a 0a 0a 2b 1c 0a

Interstitial lesions

 Inflammation 0a 0a 0a 4b 2c 0a

 Hemorrhage 0a 0a 0a 3b 2c 0a

Alveolar lesions

 Collapse 0a 0a 0a 3b 1c 0a

 Damage 0a 0a 0a 3b 1c 0a

 Hemorrhage 0a 0a 0a 3b 2c 0a

 Widening of alveolar septa 0a 0a 0a 4b 2c 0a



Page 10 of 16Hassanen et al. Beni-Suef Univ J Basic Appl Sci            (2024) 13:6 

that are expressed in the bronchial epithelial cells [12]. 
These cells have the highest amounts of H1R expression, 
which regulates histamine’s capacity to generate H2O2. 
Inflammatory cells like neutrophils and macrophages are 
released when histamine is present leading to excessive 
ROS generation [18]. Furthermore, our results proved 
that mast cells and eosinophils have important roles 
in HIS-inducing pulmonary inflammation and cellular 
damage. Toluidine blue is a metachromatic stain that was 
largely used to identify mast cells [7], while the Congo red 
stain accurately diagnoses eosinophils within tissues [73]. 
Mast cells and eosinophils play a key role in several aller-
gic reactions including asthma and anaphylaxis [84]. One 
of the postulated mechanisms of histamine toxicity is by 
stimulation of mast cells via signaling IgE and histamine 
receptor-1 (HR1) to release endogenous histamine and 
other cytotoxic mediators [36]. Mast cells have the ability 
to regulate the activities of numerous organs and tissues 
via releasing the variety of multifunctional preformed 
molecules, including histamine, proteases, prostanoids, 
heparin, and numerous cytokines, chemokines, growth 
factors, and lipid mediators [48]. The vascular endothe-
lium can be significantly affected by these mediators, 

increasing the vascular permeability and adhesiveness. 
All the above-mentioned aspects had the ability to bring 
more inflammatory cells to the localized area causing 
further inflammation and tissue damage [6]. Moreover, 
eosinophils normally present in blood and other tissues 
such as skin, thymus, and spleen once activated by aller-
gen (HIS) migrate to the site of inflammation. The eosin-
ophil chemotactic factor produced by mast cells plays a 
significant role in bringing eosinophils to the inflamed 
area [61]. Eosinophils also secrete cytotoxic mediators as 
major basic proteins, cytokines, chemokines, lysosomal 
enzymes, growth factors, and ROS that induce inflamma-
tion and tissue necroptotic damage [25].

The inflammatory impact of HIS is confirmed by both 
immunohistochemical and molecular studies which 
determine a strong positive expression of the inflam-
matory markers Cox-2, TNF-α, IL-1β, and NF-κB. The 
vasodilation occurs during HIS-mediated inflammation 
results in both exudate and inflammatory cells accumu-
lation in the interstitial tissues [22]. Additionally, HIS 
binds to H1R and H4R, causing generation of proinflam-
matory cytokines like IL-6 and TNF-α [87]. TNF-α, IL-1, 
and IL-6 are the crucial proinflammatory cytokines that 

Fig. 4  H&E-stained heart tissue sections corresponding to; a control group with normal histological organization, b, c group receiving HIS, 
d, e group receiving HIS + 100 mg PRFGT, and f group receiving HIS + 200 mg PRFGT. Note: muscular hemorrhage (black stars), degeneration 
and necrosis of the myocardium (black arrows)

Table 4  Myocardial lesion scoring in different treatment groups

Data were signified as median (n = 25 microscopic fields). Various superscript letters (a, b, c, etc.) indicate a significant difference between groups at P ≤ 0.05

Control 100 PRFGT 200 PRFGT HIS HIS + 100 PRFGT HIS + 200 
PRFGT

Degeneration 0a 0a 0a 4b 1c 0a

Necrosis 0a 0a 0a 4b 1c 0a

Edema 0a 0a 0a 2b 0a 0a

Hemorrhage 0a 0a 0a 4b 2c 0a
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induce inflammation in many pulmonary pathologies 
and diseases. TNF-α is a cytokine that promotes inflam-
mation and has a variety of biological consequences [92]. 
TNF-α induces infiltration of the inflammatory cells, 
production of inflammatory mediators, oxidative and 
nitrosative stress, airway hyperresponsiveness, and tis-
sue remodeling [55]. The cyclooxygenase enzyme (Cox) is 
commonly linked to the incidence of many inflammatory 
disorders [91]. It has been demonstrated that proinflam-
matory cytokines can increase Cox-2, which exacerbates 
the inflammatory immune response in lung damage [38].

In the present investigation, we found that the Bax/
casp-3 signaling pathway-mediated apoptosis also 
shared in the mechanism of cardiopulmonary toxicity 
that induced by HIS. Overproduction of ROS within 
cells damages proteins, nucleic acids, lipids, mem-
branes, and organelles, which may trigger cell death 

processes including apoptosis [26]. Via the mito-
chondrial pathway, ROS can trigger the release of 
cytochrome c from the mitochondria and induce apop-
tosis [16]. In the presence of ATP, released cytochrome 
c interacts with apoptotic protease activating factor-
1(Apaf-1) and activates caspase-9 to produce an apop-
tosome [9]. Caspases 3 and/or 7 are then activated 
by an active caspase-9, which cleaves a certain set of 
substrates and encourages cell death [42]. We found 
that HIS receiving groups showed strong immune 
expression of casp-3 along with upregulation of proto-
oncogene genes c-fos, c-Myc, and c-Jun. These genes 
participate in cell cycle progression and cellular prolif-
eration [100]. A regulatory protein called c-fos contains 
a basic leucine-zipper region that allows it to bind to a 
variety of proteins [101]. Both c-fos and c-Jun dimers 
promote the formation of the activator protein-1 

Fig. 5  Photomicrograph demonstrating the pulmonary expression of both Cox-2 and TNF-α immune markers as well as caspase-3 immunostaining 
in the heart sections of various groups. a–c Control group exhibited negative expression of the above-mentioned immune markers. d–f Group 
receiving HIS showed strong immunopositivity of Cox-2 and TNF-α in the pulmonary tissue along with strong caspase-3 protein expression 
in the myocardium. g–i Group receiving HIS + 100 mg PRFGT displayed moderate immunopositivity of Cox-2 and TNF-α in the pulmonary tissue 
along with negative caspase-3 protein expression in the myocardium. j–l Group receiving HIS + 200 mg PRFGT displayed negative expression 
of the studied immune markers in both lung and heart section
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(AP-1) [40]. AP-1 regulates numerous biological func-
tions, such as cell division, cell death, survival, and dif-
ferentiation [102]. The c-fos gene aids in the process 
of myocardial apoptosis [11]. It is reported that c-Jun 
induces and transactivates caspase-3 gene [83]. One 
of the most crucial transcriptional factors, c-MYC, 
controls a wide variety of cellular processes, including 
apoptosis, growth, and proliferation [62]. The ability of 

the c-Myc protein to promote apoptosis in a variety of 
cellular settings is one of its well-known functions [72].

Otherwise, the groups treated with PRFGT demon-
strated a noticeable decrease in MDA levels and a higher 
antioxidant activity, indicating strong antioxidant prop-
erties of green tea phenolic-rich fraction. The presence 
of high concentration of flavonoids and phenolics may be 
primarily responsible for this action. Catechins present 

Fig. 6  Bar graphs display the variations in gene transcription levels between groups in lung and heart tissues. a, b, c Indicates m-RNA levels for 
the TNF-α, NF-κB, and IL-1β genes in pulmonary tissue. d, e, f m-RNA levels of c-Fos, c-Jun, and c-Myc genes respectively in the cardiac tissue. 
Means ± SEM are used to represent values (n = 5). Various superscript letters (a, b, c, etc.) indicate a significant difference between groups at P ≤ 0.05
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in green tea are famous for their anti-inflammatory, anti-
oxidant, cardioprotective, and anticancer effects. They 
are the elementary unit of compacted tannins generally 
recognized as pro-anthocyanidins with a variety of phar-
maceutical functions [4, 5]. EGCG is the strongest anti-
oxidant among all catechins in green tea [88]. EGCG acts 
as a scavenger of several ROS/RNS by capturing peroxyl 
radicals, and therefore, it can prevent membrane lipid 
peroxidation and protect cells from oxidative damage 
[77]. Gallic acid (GA) and its derivatives are considered 
the primary polyphenolic compounds in green tea and 
also in some fruits [63]. GA increases the levels of glu-
tathione, glutathione peroxidase, glutathione reductase, 
and catalase as well as lowering the oxidative stress-
related damage [56].

Our study showed that PRFGT decreased the expres-
sion of Cox-2 and TNF-α immune markers and down-
regulated the inflammatory genes (IL-1β, TNF-α, and 
NF-κB) in the pulmonary tissue, indicating the anti-
inflammatory effect of green tea phenolic-rich frac-
tion. One study revealed the ability GTE to reduce 
COX-2 activity, which attenuates lipid peroxidation and 
PGE2 accumulation [15]. Other studies explained the 
anti-inflammatory potential of green tea polyphenols 
by regulating the COX-2 and NF-κB pathways [67, 85, 
94] investigated that EGCG-mediated NF-κB inactiva-
tion plays a key role in its anti-inflammatory potential 
via regulating Cox-2 and iNOS. Green tea polyphenols 
exert powerful antioxidant and anti-inflammatory effects 
by regulating a variety of gene expressions, including 
Nrf2, Cox-2, iNOS, NF-κB, AP-1, and STATs [89]. Pre-
vious in  vitro investigation has shown that EGCG has 
anti-inflammatory properties and prevented neutrophil 
chemotaxis [8]. Numerous studies have demonstrated 
that EGCG reduces inflammation by altering the NF-κB/
AP-1 pathway [99]. For instance, the release of histamine 
and leukotriene B4 was significantly inhibited by EGCG 
[59]. More studies discussed the anti-inflammatory effect 
of GA against several pulmonary hypersensitivity reac-
tions which may be mediated by inactivating the tran-
scription levels of IL-33, IL-5, and IL-13 [75, 93]. Recent 
study proved the anti-inflammatory effects of GA against 
toxic hepatitis via downregulating the proinflammatory 
cytokines, IL-1, IL-6, Cox-2, TNF-α [65]. Additionally, 
our study revealed that PRFGT showed mild expression 
of caspase-3 immune marker in myocardial tissue along 
with down-regulation of apoptotic genes such as c-fos, 
c-Myc, and c-Jun which indicates the strong anti-apop-
totic effect of green tea extracted fractions. This outcome 
agreed with the findings of Zong et al. [103], who showed 
that EGCG had an anti-apoptotic potential. Moreover, 
some studies showed that EGCG has a cardioprotec-
tive effect via significant reduction in the pro-apoptotic 

proteins such as Bax, caspase-9, and caspase-3 and 
increases the anti-apoptotic proteins such as Bcl2 [66]. 
Another study showed that the treatment with EGCG 
results in mitochondrial-level cardiac protection via 
reversed the mitochondrial and nuclear changes caused 
by apoptosis [3]. Furthermore, GA had a potent anti-
apoptotic activity through inhibition of Bax/Bcl2 ratio 
[14, 53] and reduction of the levels of caspase-3 [57].

5 � Conclusion
We concluded that the weekly oral intake of HIS to rats 
had the ability to cause severe cardiopulmonary toxicity 
either through oxido-inflammatory stress or apoptosis. 
Additionally, we found that the cotreatment of PRFGT 
with HIS can restore the oxidant/antioxidant balance 
and improve the microscopic picture of both lung and 
heart tissues. PRFGT had an anti-inflammatory effect 
via modulating Cox-2/NF-κB mediated by inactiva-
tion of proinflammatory cytokines including TNF-α and 
IL-1β. Furthermore, the anti-apoptotic effect of PRFGT 
is attributed to downregulating the casp-3, c-jun, c-fos, 
and c-myc genes. We found that PRFGT has a synergis-
tic effect aid in the prevention of HIS-inducing cardio-
pulmonary toxicity suggesting its therapeutic potential 
against several HIS-mediated inflammatory diseases like 
atopic dermatitis, neuroinflammation, and allergies. We 
recommend daily intake of green tea as a beverage or 
adding it to foods containing elevated levels of HIS to 
prevent its possible toxicity.
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