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Abstract 

Background:  Influenza virus disease remains one of the most contagious diseases that aided the deaths of many 
patients, especially in this COVID-19 pandemic era. Recent discoveries have shown that the high prevalence of 
influenza and SARS-CoV-2 coinfection can rapidly increase the death rate of patients. Hence, it became necessary to 
search for more potent inhibitors for influenza disease therapy. The present study utilized some computational mod-
eling concepts such as 2D-QSAR, 3D-QSAR, molecular docking simulation, and ADMET predictions of some 1,3-thia-
zine derivatives as inhibitors of influenza neuraminidase (NA).

Results:  The 2D-QSAR modeling results showed GFA-MLR ( R2train = 0.9192, Q2 = 0.8767, R2
adj = 0.8991, RMSE = 0.0959, 

R
2
test = 0.8943, R2pred = 0.7745) and GFA-ANN ( R2train = 0.9227, Q2 = 0.9212, RMSE = 0.0940, R2test = 0.8831, R2pred = 0.7763) 

models with the computed descriptors as ATS7s, SpMax5_Bhv, nHBint6, and TDB9m for predicting the NA inhibitory 
activities of compounds which have passed the global criteria of accepting QSAR model. The 3D-QSAR modeling was 
carried out based on the comparative molecular field analysis (CoMFA) and comparative similarity indices analysis 
(CoMSIA). The CoMFA_ES ( R2train = 0.9620, Q2 = 0.643) and CoMSIA_SED ( R2train = 0.8770, Q2 = 0.702) models were found 
to also have good and reliable predicting ability. The compounds were also virtually screened based on their binding 
scores via molecular docking simulations with the active site of the NA (H1N1) target receptor which also confirms 
their resilient potency. Four potential lead compounds (4, 7, 14, and 15) with the relatively high inhibitory rate (> 50%) 
and docking (> − 6.3 kcal/mol) scores were identified as the possible lead candidates for in silico exploration of 
improved anti-influenza agents.

Conclusion:  The drug-likeness and ADMET predictions of the lead compounds revealed non-violation of Lipinski’s 
rule and good pharmacokinetic profiles as important guidelines for rational drug design. Hence, the outcome of this 
research set a course for the in silico design and exploration of novel NA inhibitors with improved potency.
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1 � Background
Influenza virus disease remains one of the major health 
menaces affecting humans because of its high mortal-
ity and morbidity rates in recent times even with the 
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devastating COVID-19 pandemic [1]. The COVID-19 
pandemic has affected the socioeconomic and financial 
state of numerous countries around the world [2]. The 
recommendations of constant hand hygiene, face mask-
wearing, social, and physical distancing made by public 
health officials have immensely helped in controlling 
the spread of COVID-19 and other diseases including 
the influenza virus disease [3]. The seasonal influenza 
rates are reported to be lower  in previous years which 
could be due to the numerous COVID-19 precautions 
taken to slow down the spread of coronavirus [4]. How-
ever, researchers thought the decreased number of influ-
enza cases was associated with the lack of testing which 
makes sense because patients with symptoms of respira-
tory infections are usually tested for COVID-19 [5]. In 
Europe, the epidemiology of seasonal influenza and res-
piratory syncytial virus (RSV) has dramatically changed 
during the COVID-19 pandemic. There was also a signifi-
cant decrease in both influenza and bronchiolitis during 
usual peak seasons in Australia and New Zealand [2, 6]. 
It has been reported that coinfected patients with influ-
enza and COVID-19 viruses were over fourfold more 
likely to be necessitated with ventilation support and 
2.4 times more tendency to die. This shows the need for 
more influenza testing of COVID-19 patients in the hos-
pital and further highlights the advantages of full vacci-
nation against both influenza disease and COVID-19 [7]. 
Influenza has caused over 9.3–49 million illnesses in the 
USA each year since 2010 [8]. It is also estimated that 
influenza disease results in 31.4 million outpatients’ visits 
and more than 200,000 hospitalizations each year. One 
of the longest flu seasons in recent years (2017–2018) 
was estimated that over 900,000 people were hospital-
ized and more than 80,000 people died [9]. In addition, 
185 pediatric deaths were reported by the Centers for 
Disease Control (CDC) during the period; about 80% of 
these deaths occurred in children who had not received 
the vaccination. The World Health Organization (WHO) 
reported about 2–5 million cases of severe illness caused 
by the ravaging seasonal influenza virus epidemic which 
resulted in over 500,000 deaths globally [10]. These flu 
epidemics cause severe respiratory infections in children, 
adults, the elderly, and people with underlying health 
conditions [11]. Some of the factors that aggravate the 
infection include obesity, diabetes, rheumatic diseases, 
and so on. For example, the relationship between respira-
tory viral disease and obesity came to prominence during 
the 2009 swine influenza pandemic [12–14].

Influenza virus neuraminidase is an enzyme that cata-
lyzes the obliteration of terminal sialic acid residues (siali-
dase) which aids in liberating new virions formed from 
the infected cells and circulating to infect the neighbor-
ing cells [15]. The neuraminidase (NA) inhibition can 

defend the host cells from being infected and prevent its 
proliferation [16]. Due to the highly preserved active site 
structure of neuraminidase [17], it has become an attrac-
tive molecular target for the exploration and development 
of novel anti-influenza inhibitors. Presently, Zanamivir 
(Relenza™), oseltamivir (Tamiflu™), zanamivir octanoate 
(Inavir™), and peramivir (Rapivab™) are the four approved 
neuraminidase inhibitors for influenza treatment [18]. 
Although there is a lot of concern concerning the advent 
of drug resistance effects resulting from the high vari-
ability of the influenza virus [15], it becomes necessary to 
explore more anti-influenza drugs that have more potent 
efficiency and binding modes with safer side effects 
than the currently available drugs. The trial-and-error 
approach applied in the development of new drugs has 
been seen to be very tedious, costly, and time-consuming 
[19], and many 1,3-thiazine analogs were reported to have 
a wide variety of pharmacological properties [20]. The 
main objective of this study was to apply some computa-
tional modeling concepts such as 2D-QSAR, 3D-QSAR, 
molecular docking, and ADMET predictions in identify-
ing potential lead compounds of 1,3-thiazines that could 
be utilized for future in silico design and exploration of 
more potent analogs with improved bioactivities.

2 � Methods
2.1 � Dataset collection and NA inhibitory activities
Twenty-nine compounds of 1,3-thiazine derivatives as 
inhibitors of influenza (H1N1) neuraminidase (NA) were 
retrieved from the literature [20]. The NA inhibitory 
activities of the compounds were reported as percentage 
inhibition rates (P) at the initial concentration of 40 µg/
mL, and the estimated activities were computed using 
the logit formula as shown in Eq.  1. Furthermore, 21 
compounds were considered as a training set, while the 
remaining 8 compounds were used as the test set as pre-
sented in Table 1.

2.2 � QSAR studies
2.2.1 � 2D‑QSAR studies
2.2.1.1  Molecular descriptor calculations  The 2D struc-
tures of the dataset compounds were precisely drawn 
using ChemDraw software [21]. The structures were con-
verted to 3D with the subsequent initial energy minimi-
zation at the molecular mechanics force fields (MMFF) 
level using Spartan 14 software. The minimized structures 
were further optimized at the density functional theory 
(DFT) level with B3LYP/631G** basis set in a vacuum to 

(1)Activity = log
P

100− P
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have a more realistic structural conformation when their 
respective equilibrium geometries were attained [22]. 
The pharmaceutical data exploration laboratory soft-
ware (PaDEL-Descriptor) was utilized to calculate about 

2000 descriptors from the optimized structures. These 
molecular descriptors are computed based on the steric 
potentials, electronic, potential hydrogen bonds of path 
length, relative ionization, and hydrophobicity properties 
of structures [23]. As such, 1D, 2D, and some 3D Java class 
descriptors were computed by retaining the 3D coordi-
nates of the optimized structures.

2.2.1.2  Data pretreatment  The computed descriptors 
were pretreated by removing non-informative descriptors 
such as constant and highly inter-correlated descriptors. 
The constant descriptors with a default variance cutoff of 
0.001 and inter-correlated descriptors with a coefficient 
cutoff of 0.8 were applied to remove the non-informative 
descriptors [24].

2.2.1.3  2D‑QSAR model building and  statistical valida‑
tion  The 2D-QSAR model was initially built using the 
Materials Studio software based on genetic function 
approximation (GFA) for feature selection of the best 
subset descriptors in the training set [22]. The Friedman 
lack-of-fit (LOF) as the fitness function of the GFA model 
during the evolution process was measured, while the 
scaled LOF smoothness parameter was set as the default 
of 0.5, although the LOF that is measured with Materials 
Studio slightly differs from the original Friedman formula 
as shown in Eq. 2.

where C is the number of the model terms other than the 
constants, d is the scaled smoothing parameter, p is the 
total number of descriptors as model terms excluding 
constants, N is the training set compounds, γ is the safety 
factor with a score of 0.99 which makes sure that the 
denominator must be equal to zero. The scaled smooth-
ing parameter is related to the scaled LOF smoothness 
factor ( γ) which was set at default 0.5 for a well-defined 
LOF measure as shown in Eq. 3.

In addition, the population sample was set to 10,000, 
the maximum generation was set to 1000, and the num-
ber of top equations was set to 1 for an effective model 
convergence [25]. The descriptor matrix of the built 
model was initially subjected to the Y-Randomization test 
as a measure to attest to the quality of the model before 
being exported to Molegro Data Modeller (MDM) for the 
development of the multi-linear regression (MLR) and 
the nonlinear regression model version based on artificial 

(2)LOF =
SSE

N
[

1− γ

(

C+dp
N

)]2

(3)d = γ

(

M − Cmax

Cmax

)

Table 1  Substitution arrangement of 1,3-thiazine derivatives 
along with their NA inhibitory activities

S. No. R1 R2 Inhibition 
rates (%)

Activity

1 2-Cl-5-NO2 Et 39.94 0.1772

2 3-NO2 Et 16.21 0.7134

3 2-EtO Et 37.18 0.2278

4 2-MeO Et 68.08 -0.3290

5 4-Cl Et 39.94 0.1772

6 3,4-diMeO Et 29.65 0.3752

7 4-NO2 Et 60.40 -0.1833

8 4-N(Me)2 Et 19.86 0.6059

9 4-AcO Et 25.62 0.4629

10 4-F Et 37.04 0.2304

11 4-MeO Et 10.25 0.9423

12 4-Me Et 17.48 0.6740

13 3-Et-4AcO Et 23.49 0.5128

14 2-NO2 t-Bu 52.30 -0.0400

15 3-NO2 (CH2)2OCH3 59.81 -0.1727

16 2-Cl-5-NO2 Et 34.37 0.2809

17 3-NO2 Et 9.79 0.9645

18 2-EtO Et 19.28 0.6219

19 2-MeO Et 23.78 0.5059

20 4-Cl Et 14.11 0.7844

21 3,4-diMeO Et 17.06 0.6868

22 4-N(Me)2 Et 21.22 0.5697

23 4-OH Et 23.93 0.5023

24 4-F Et 14.87 0.7578

25 4-MeO Et 13.36 0.8119

26 4-Me Et 8.03 1.0589

27 3-Et-4OH Et 25.47 0.4663

28 2-NO2 t-Bu 17.66 0.6686

29 3-NO3 (CH2)2OCH3 11.98 0.8661
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neural network (ANN) analysis [26]. The prediction 
capability of the GFA-MLR and GFA-ANN generated 
was assessed using internal validation metrics as follows:

	 i.	 The Pearson correlation coefficient (r): is a meas-
ure of the correlation of two variables x and y. It is 
mathematically defined as

where σx and σy are the standard deviations for the 
variables x and y. However, Pearson correlation 
coefficient squared (r2) is often used to describe 
relationships between two variables whose range of 
values is between 0 and 1.

	 ii.	 Adjusted R2: is a modification of the Pearson cor-
relation coefficient that fine-tunes the number 
of descriptors used in the multi-linear regression 
model which will always be less than or equal to the 
Pearson correlation coefficient as defined below:

where N corresponds to the number of compounds 
in the training set as data points and p is the num-
ber of descriptors in the built model.

	iii.	 Spearman’s rank correlation coefficient (ρ): is a 
well-ordered correlation coefficient that utilizes 
the data points hierarchy as a substitute for the raw 
data points, and it is defined as

where the raw data points are changed to ranks. di 
is the difference between the ranks of correspond-
ing values of x and y and N is the number of data 
points.

	iv.	 Cross-validated correlation coefficient often repre-
sented as (Q2): is a measure of predictive power of 
the regression model, and it is defined as

	where xobs, i and xpred, i refer to the observed and pre-
dicted activity scores. The closer the score of q2 is 
to 1.0, the better the model’s predictive power.

	 v.	 Root-mean-square error (RMSE): is a good meas-
ure for evaluating the prediction performance of 
the model generated which is proportional to the 
observed mean score as defined below.

(4)R =

∑N
i=1(xi − x)

(

yi − y
)

(N − 1)σxσy

(5)Adjusted R2
= 1−

(

1− r2
) N − 1

N − p− 1

(6)ρ = 1−
6
∑N

i=1 d
2
i

N
(

N 2 − 1
)

(7)Q2
= 1.0−

∑N
i=1(xpred, i − xobs, i)

2

∑N
i=1

(

xobs, i − xobs, i
)

The reliability and the predictive performance of the 
models were also assessed with the relevant external vali-
dation metrics as proposed by some prominent QSAR sci-
entists such as Alexendra Tropsha and Kunal Roy. Some 
of the external validation metrics include the predicted 
coefficient of determination for the test set R2

pred , regres-
sion coefficients for the test set ( R2

test ), delta modified 
square of correlation coefficient ( �R2

m ), coefficient of 
determination of Y-randomization 

(

CR2
p

)

 , among others 
[27].

2.2.1.4  Model applicability domain (AD)  The model 
applicability domain is the theoretical chemical space 
of the compounds defined by the descriptors and the 
modeled activity in which the acceptable QSAR model 
can make reliable predictions [21]. Thus, the technique 
helps in detecting the structural and response outliers 
in the training and test set, respectively. Furthermore, 
the leverage approach was utilized to assess the chemi-
cal space of a QSAR model, and the plot of standard-
ized residuals against leverage values (h) also known as 
the Williams plot was used  to virtually screen the com-
pounds [28]. As such, compounds with leverage scores 
less than the threshold (h < h*) and standardized residual 
scores within ± 3.0σ (standard deviation unit) are set to 
have fallen in the model’s chemical space or applicability 
domain. The warning leverage (h*) is calculated using:

where d is the number of descriptors in the model and N 
is the number of compounds as the training set.

2.2.2 � 3D‑QSAR studies
2.2.2.1  Molecular minimization and  alignment  The 
optimized structures were minimized with Gasteiger–
Huckel atomic charges of Tripos force field based on 
Powell conjugate gradient algorithm method at conver-
gence criteria of 0.05  kcal/(mol Å) and 1000 maximum 
iterations to determine their steady conformation using 
Sybyl-X 2.1.1 program [29]. The molecular alignment of 
a database is one of the most crucial steps for building a 
reliable and predictive 3D-QSAR model. Hence, the distill 
rigid alignment was used to align the compounds in the 
database of the studied dataset to the most potent com-
pound in the dataset (compound no. 4) as the template 
shown in Fig. 1A, B.

(8)RMSE =

√

∑N
i=1 (xi − x)2

N

(9)h∗ = 3
(d + 1)

N
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2.2.2.2  Development of  3D QSAR models  The com-
parative molecular field analysis (CoMFA) and compar-
ative molecular similarity indices analysis (CoMSIA) 
were used for building the 3D-QSAR models [30]. The 
descriptor parameters utilized for the CoMFA model 
building were electrostatic (E) and steric (S) energies 
at a point in space surrounding the compounds, while 
the CoMSIA model was utilized for more additional 
descriptors such as hydrophobic (H), hydrogen bond 
donor (HBD) field, and hydrogen bond acceptor (HBA) 
fields [31].

2.2.2.3  Statistical validation of  the  3D‑QSAR mod‑
els  The 3D-QSAR models were built by correlating 
the latent components from the set of available CoMFA 
and CoMSIA descriptors as the independent variables 
with the NA inhibitory activity of the compounds  
through partial least squares (PLS) regression analysis 
[32]. The competency of the 3D-QSAR models built 
was analyzed based on the prominent statistical valida-
tion parameters for an acceptable QSAR model.

2.3 � Molecular docking studies
Molecular docking simulation was carried out on the 
studied dataset using molecular operating environ-
ment (MOE) V2015.10 software. The 2009 pandemic 
H1N1 neuraminidase complexed with oseltamivir 
(PDB: 3TI6) was used as the protein receptor for the 
study, and the co-crystallized ligand (oseltamivir) in 
the receptor was used as the reference drug [33]. The 
best poses obtained were studied through visualization 
of the most stable complex formed using Discovery 
studio.

2.4 � Drug‑likeness and ADMET prediction studies
The initial assessment of drug-likeness and pharmacoki-
netic parameters of potential drug candidates is key at 
the initial stage of the drug discovery process which aids 
in rolling out unfavorable effects of the candidates [34]. 
The pharmacokinetic parameters are based on desirable 
adsorption, distribution, metabolism, excretion, and tox-
icity (ADMET) of the query drug when administered into 
the body [28]. An efficient and accurate ADMETlab 2.0 
Web server (https://​admet​mesh.​scbdd.​com/) was utilized 
to predict numerous physicochemical, drug-likeness, 
pharmacokinetic, and toxicity parameters of compounds 
in the study [35, 36]. In addition, the drug-likeness of the 
compounds was assessed based on Lipinski, Ghose, Veber, 
Egan, and Muegge rules using the SwissADME online 
Web server at http://​www.​swiss​adme.​ch/​index.​php.

3 � Results
3.1 � 2D‑QSAR modeling results
The GFA-MLR model was built using 21 compounds 
as a training set, while the remaining 8 compounds are 
the test set for the model’s external validation. The GFA-
MLR model with the best 4 subset descriptors is given as

3.2 � 3D‑QSAR modeling results
Before building the 3D-QSAR models, the optimized 
structures were automatically split based on a random 
method into a training set (21 compounds) and test set (8 

(11)

Activity = − 0.00312656 × ATS7s + 2.96987

× SpMax5_Bhv− 0.569084 × nHB int 6

− 0.00306718 × TDB9m − 5.3867

Fig. 1  Optimized structures (A) structure of compound 4, (B) alignment and superposition of the dataset compounds (capped sticks model)

https://admetmesh.scbdd.com/
http://www.swissadme.ch/index.php
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compounds) using Sybyl-X 2.1.1 software, and the valida-
tion results were generated.

3.3 � Molecular docking results
The 1,3-thiazine derivatives (29 compounds) of the data-
set were docked with the H1N1 neuraminidase receptor 
using MOE software as depicted earlier, and the results 
are shown in Table 12.

3.4 � Drug‑likeness and ADMET prediction results
See Fig. 12 and Tables 15, 16, and 17.

4 � Discussions
4.1 � 2D‑QSAR modeling studies
The 2D-QSAR modeling was performed on the 29 com-
pounds of 1,3-thiazine derivatives as inhibitors of influ-
enza neuraminidase. As mentioned earlier, the GFA 
model building protocol of Materials Studio was utilized 
in the feature selection of the best subset descriptors 
from the pool of computed molecular descriptors. It is 
evident from the excellent internal and external statistical 
parameters in Tables 2 and 3 that the model established a 
strong relationship between the four selected descriptors 
and the NA inhibitory activity. The validation metrics for 
the GFA-MLR model include low LOF value of 0.0546, R2 

(training set) of 0.9192, adjusted R2 of 0.8991, cross-vali-
dation squared (Q2) of 0.8767, RMSE score of 0.0959, 
R2
test of 0.8943, and R2

pred of 0.7745 which have all passed 
the model criteria of accepting QSAR model. The Y-rand-
omization test was ascertained via randomly scrambling 
the response activity (Y), while the model descriptors of 
the training set are kept constant which resulted in the 
construction of random models [38]. The 50 random 
models were generated with low R2 and Q2 scores which 
attested that the original model is robust and not con-
structed by chance [39]. The coefficient of determination 
for the Y-randomization test ( CR2

p) was computed as 
0.8300 (≥ 0.5) which confirmed the reliability of the 
model generated as shown in Table  4. Hence, it was 
observed that all the validation criteria were fully agreed 
with the acceptable threshold parameters proposed [37].

To explore the nonlinear effect of the model, the 
selected descriptors were used to construct the ANN 
models. The input layer consists of the four selected 
descriptors with a single hidden layer, and the NA inhibi-
tory activity was used as the output layer. As such, the 
4-x-1 ANN architecture (x is the number of neurons in 
the hidden layer) was adopted to build different ANN 
models, and the different value of x could be limited from 
2 to 5 [40]. Each of the ANN model architectures was 

Table 2  Internal validation of the 2D-QSAR models

Internal validation metrics GFA-MLR model GFA-ANN (4-5-1) 
model

Threshold Comment References

Lack of fit (LOF) 0.0546 –

Pearson correlation (r) 0.9590 0.9610 R > 0.6 Passed [37]

Pearson correlation squared ( R2train) 0.9192 0.9227 R2
train > 0.6 Passed [37]

Adjusted R2 (R2
adj) 0.8991 – R2

adj > 0.6 Passed [37]

Spearman rank correlation (ρ) 0.9155 0.9220 ρ > 0.6 Passed

Root-mean-square error (RMSE) 0.0959 0.0940 Low Passed

Cross-validated squared (Q2) 0.8767 0.9212 Q2 > 0.6 Passed [37]

Y-randomization ( cR2p) 0.8300 – cR2p > 0.6 Passed [38]

Table 3  External validation parameters of the 2D-QSAR models

External validation metrics GFA-MLR model GFA-ANN (4-5-1) 
model

Threshold Comment References

Pearson correlation squared ( r2test) 0.8943 0.8831 R2
test > 0.6 Passed [37]

R2pred
0.7745 0.7763 R2pred > 0.5 Passed [37]

ΔR
2

m(test) 0.0804 –  < 0.5 Passed

r20 0.8943 –  > 0.5 Passed

RMSEP 0.1835 0.1813 – –

r′20 0.8923 –  > 0.5 Passed [37]
∣

∣r20 − r′0

∣

∣ 0.0172 –
∣

∣r20 − r′0

∣

∣< 0.3 Passed
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built at default settings with a maximum training epoch 
of 1000, the momentum of 0.2, a learning rate, and an 
output layer learning rate of 0.3 using the Molegro tool. 
For all the ANN models built, 100 epochs were sufficient 
to achieve stable results. The statistics of the ANN archi-
tectures are reported in Table  5, where the 4-5-1 

architecture (R2 = 0.9235 and RMSE = 0.0944) was 
selected as the best ANN model due to its  lowest RMSE 
value among others. The schematic representation of the 
GFA-ANN (4-5-1) architecture is presented in Fig. 2. The 
internal and external validation results of the best ANN 
(4-5-1) model revealed improved statistical parameters 
such as R2 (training set) of 0.9227, cross-validation (Q2) 
of 0.9212, RMSE of 0.0940, R2

test of 0.8831, and R2
pred of 

0.7763 as shown in Tables  2 and 3 accordingly. The 
description name of the model descriptors coded as 
ATS7s, SpMax5_Bhv, nHBint6, and TDB9m, and their 
numerical values which explain some essential chemical 
features in numerical values in predicting the anti-influ-
enza activity are reported in Tables 6 and 7, respectively, 
while the parameters for the correlational analysis such 

Table 4  Y-randomization test of the model descriptors

Model type R R2 Q2(LOO) Model type R R2 Q2(LOO)

Original 0.9588 0.9193 0.8767 Original 0.9588 0.9193 0.8767

Random 1 0.6840 0.4678 0.0498 Random 26 0.2884 0.0832 − 0.4710

Random 2 0.4711 0.2220 − 0.4192 Random 27 0.7986 0.6378 0.2956

Random 3 0.2190 0.0480 − 0.6641 Random 28 0.2870 0.0824 − 0.4902

Random 4 0.5558 0.3089 − 0.2649 Random 29 0.4048 0.1639 − 0.4706

Random 5 0.2217 0.0492 − 0.7146 Random 30 0.5201 0.2705 − 0.1913

Random 6 0.4871 0.2373 − 0.4865 Random 31 0.4476 0.2003 − 0.3614

Random 7 0.4123 0.1700 − 0.5249 Random 32 0.6789 0.4608 0.0217

Random 8 0.4255 0.1811 − 0.5226 Random 33 0.5206 0.2710 − 0.3008

Random 9 0.3584 0.1285 − 0.7647 Random 34 0.4066 0.1653 − 0.3498

Random 10 0.3822 0.1461 − 0.3750 Random 35 0.2158 0.0466 − 0.5317

Random 11 0.5802 0.3366 − 0.2461 Random 36 0.3436 0.1180 − 0.4491

Random 12 0.6829 0.4664 0.1653 Random 37 0.5381 0.2895 − 0.1994

Random 13 0.3048 0.0929 − 0.5982 Random 38 0.1872 0.0351 − 0.7212

Random 14 0.4534 0.2056 − 0.4894 Random 39 0.3764 0.1417 − 0.4775

Random 15 0.5593 0.3128 − 0.2535 Random 40 0.4192 0.1757 − 0.4040

Random 16 0.2342 0.0549 − 0.6505 Random 41 0.4819 0.2322 − 0.4027

Random 17 0.4352 0.1894 − 0.5397 Random 42 0.3246 0.1054 − 0.4438

Random 18 0.3545 0.1256 − 0.4689 Random 43 0.4260 0.1815 − 0.4004

Random 19 0.2646 0.0700 − 0.6156 Random 44 0.5884 0.3462 − 0.0941

Random 20 0.1861 0.0346 − 0.5696 Random 45 0.3674 0.1350 − 0.4138

Random 21 0.4574 0.2092 − 0.4509 Random 46 0.3198 0.1023 − 0.4408

Random 22 0.2850 0.0812 − 0.5281 Random 47 0.3520 0.1239 − 0.4713

Random 23 0.3162 0.1000 − 0.4651 Random 48 0.3749 0.1405 − 0.4282

Random 24 0.5506 0.3031 − 0.2223 Random 49 0.3209 0.1030 − 0.6999

Random 25 0.3291 0.1083 − 0.5492 Random 50 0.4067 0.1654 − 0.6966

Random models parameters

Average R 0.4228

Average R2 0.2029

Average Q2 − 0.3899

CRp2 0.8300

Table 5  Statistical results of different ANN model architecture

ANN architecture R2 RMSE RMSE(Test)

4-2-1 0.9163 0.0998 0.1884

4-3-1 0.9200 0.0966 0.1865

4-4-1 0.9214 0.0956 0.1851

4-5-1 0.9227 0.0940 0.1813
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as correlation coefficient, VIF, and mean effect values of 
the descriptors are shown in Table 8.

The Pearson correlation coefficient between pairs of 
descriptors is less than 0.7 which indicates the independ-
ence of descriptors used to build the model. The meas-
ure of multicollinearity between the descriptors was 
computed as variance inflation factor (VIF) as in Eq. 12, 
where R2 is the Pearson correlation coefficient for the 
descriptors.

The VIF scores of the four subset descriptors fall within 
the threshold limit (VIF < 10) suggesting void multicol-
linearity which implies that each descriptor is orthogo-
nal to one another [41]. The relative contribution of 
each descriptor toward increase or decrease in the NA 
inhibitory activity is measured based on their mean effect 
scores (ME) defined as

where βi represents the coefficient of the descriptor i, 
Di represents each descriptor score for a compound, 
and n represents the number of training set compounds 

(12)VIF = 1
/

(

1− R2
)

(13)ME =
βi

∑n
i Di

∑n
i

(

βi
∑n

i Di

)

[42]. It was observed that the SpMax5_Bhv is the major 
contributor to the increase in the NA inhibitory activ-
ity with the positive mean effect scores of + 1.538, while 
the nHBint6, ATS7s, and TDB9m have a negative mean 
effect of − 0.2225, − 0.1725, and − 0.1187, respectively 
(Fig. 3). This implies that the increase in the information 
described by the SpMax5_Bhv descriptor will positively 
influence the NA activity of the compounds with the 
decrease in the properties of the remaining descriptors in 
the model.

The error predictions consist of three important com-
ponents which include random error (variance), sys-
tematic error (bias), and measurement error (noise), 
but models are more affected by systematic errors [43]. 
Therefore, a model with high systematic error should be 
rebuilt to reduce the high level of bias. This is because bias 
redirects the data into an artificial course that could lead 
to the wrong interpretation [25]. The ability of the GFA-
MLR and GFA-ANN models in predicting the reported 
NA inhibitory activity of the compounds without any 
computational errors was assessed using the standardized 
residual versus NA inhibitory activity plots as shown in 
Fig. 4A, B. Since all the residual values fall within the defi-
nite threshold of ± 2.0, it implies that the model is free of 
systematic error and can give a good prediction.

4.1.1 � Model applicability domain of the 2D‑QSAR model
The applicability domain of the 2D-QSAR model is 
the chemical space where the model can make a reliable 
prediction based on the four selected model descrip-
tors stated earlier. In this study, the leverage approach 
was applied to examine the chemical space of the GFA-
ANN model. The standardized residuals computed were 
plotted against the leverage values for all compounds 
(William’s plot) to identify the response and structural 
outliers as presented in Fig. 5. Interestingly, most of the 
compounds in the dataset were observed to be confined 
within the standardized residual threshold limit of ± 3.0 
and leverage (h*) of 0.714, respectively, except for mol-
ecule 26 with a higher leverage score of 0.714 which is 
inferring that the compound is a structural outlier.

Fig. 2  Schematic representation of the GFA-ANN (4-5-1) architecture

Table 6  Computed model descriptor values

Descriptor class Descriptor code Description

2D ATS7s Broto-Moreau autocorrelation—lag 7/weighted by I-state

2D SpMax5_Bhv Largest absolute eigenvalue of Burden modified matrix—n 5/weighted by relative van 
der Waals volumes

2D nHBint6 Count of E-State descriptors of strength for potential hydrogen bonds of path length 6

3D TDB9m 3D topological distance-based autocorrelation—lag 9/weighted by mass
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4.2 � Statistical validation results for the 3D‑QSAR models
The CoMFA model was built with both electrostatic and 
steric field contributions as the independent variables of 
the training set and was further exposed to cross-valida-
tion PLS regression analysis and the statistical validation 
analysis. The statistical validation results of the CoMFA_
ES model are Q2 (0.643 with 4 latent components), 

non-cross-validated R2 value (0.962), and SEE (0.0779). 
However, the statistical validation results from the vari-
ous probable CoMFA models are summarized in Table 9. 
For the CoMSIA studies, the statistical validation results 
of all 30 probable models with different field combina-
tions based on the five field descriptors such as steric (S), 
electrostatics (E), hydrophobic (H), hydrogen bond donor 

Table 7  Computed model descriptor values

Name ATS7s SpMax5_Bhv nHBint6 TDB9m Activity MLR Train (4D) ANN Train (4-5-1)

Training set

8 328.6200 3.1143 2.0000 355.3020 0.6059 0.6071 0.6258

9 343.3860 3.1514 2.0000 409.0160 0.4629 0.5062 0.5131

10 337.3610 2.8954 2.0000 265.4610 0.2304 0.2049 0.1982

12 317.3060 2.9889 2.0000 216.9720 0.6740 0.6943 0.7293

13 421.9410 3.1621 2.0000 356.1220 0.5128 0.4547 0.4694

14 459.1530 3.0036 2.0000 311.7580 -0.0400 0.0035 -0.0010

15 442.4260 3.0034 2.0000 358.3800 -0.1727 -0.0877 -0.0737

16 296.8580 2.9538 3.0000 149.4700 0.2809 0.2918 0.2686

17 295.9440 2.9534 2.0000 142.5230 0.9645 0.8840 0.8928

19 280.5280 2.8973 3.0000 62.4053 0.5059 0.4420 0.4644

20 203.8400 2.9016 2.0000 175.6480 0.7844 0.9163 0.9181

21 303.7690 2.9523 2.0000 226.0140 0.6868 0.6000 0.6363

25 225.2410 2.9486 2.0000 237.9970 0.8119 0.7980 0.8246

27 270.9540 2.9540 3.0000 114.5590 0.4663 0.4806 0.4868

28 360.7500 2.9938 2.0000 159.4810 0.6686 0.7493 0.7844

29 344.3980 2.9933 2.0000 233.2870 0.8661 0.5725 0.6026

3 394.8890 3.1292 3.0000 213.5830 0.2278 0.3097 0.2492

4 375.9440 2.9013 3.0000 206.1430 -0.3290 -0.2851 -0.1862

23 230.4260 2.8838 3.0000 109.1630 0.5023 0.4152 0.4411

24 237.1110 2.8809 2.0000 114.7140 0.7578 0.9378 0.9351

5 304.0900 2.9121 2.0000 333.6530 0.1772 0.1495 0.1355

Test set

7 353.7690 3.0239 2.0000 481.0830 -0.1833 -0.1260 -0.1076

22 228.3700 2.9538 2.0000 313.1860 0.5697 0.5729 0.6014

26 317.0560 2.9527 2.0000 102.8700 1.0589 0.9375 0.9287

2 293.9720 3.0101 2.0000 300.9610 0.7134 0.5724 0.5947

6 400.0460 2.9753 2.0000 309.6650 0.3752 0.1107 0.0919

1 392.1160 3.0356 3.0000 190.2440 0.1772 0.1119 0.0615

11 325.4910 3.0576 2.0000 314.3700 0.9423 0.5740 0.5936

18 298.7220 2.9542 3.0000 88.4821 0.6219 0.4743 0.4797

Table 8  Correlation statistics of the model descriptors

Descriptor ATS7s SpMax5_Bhv nHBint6 TDB9m VIF Mean effect

ATS7s 1.0000 0.5761 − 0.1319 0.5899 1.7983 − 0.1725

SpMax5_Bhv 0.5761 1.0000 − 0.1931 0.6454 1.9724 1.5138

nHBint6 − 0.1319 − 0.1931 1.0000 − 0.5552 1.6354 − 0.2225

TDB9m 0.5899 0.6454 − 0.5552 1.0000 3.0710 − 0.1187
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(D), and hydrogen bond acceptors (A) are shown in 
Table 10. Furthermore, the CoMSIA-SED model revealed 
the highest Q2 score of 0.702 with three components, an 
R2 value of 0.877, and a relatively low SEE value of 0.1318. 
However, the best models among the possible CoMSIA 

models with robust statistical validation results are sum-
marized in Table 11. In addition, the validations metrics 
of all possible CoMFA and CoMSIA models were found 
within the benchmark scores for an acceptable QSAR 
model that was proposed by Alexander Golbraikh and 
Alexander Tropsha (Q2 > 0.5 and R2 > 0.6). This implies 
that the validation metrics of the models generated are 
statistically reliable which indicates their predictive 
potential and robustness [43]. The graphs of predicted 
against experimental NA inhibitory activity for the train-
ing and test set compounds of the models revealed a sat-
isfactory linear correlation, as presented in Fig.  6 A, B, 
respectively.

4.2.1 � Contour map analysis of the CoMFA and CoMSIA 
models

The utmost advantage of applying CoMFA and CoM-
SIA approaches is to be able to visualize the field effect 
of the compound structure on the specific target prop-
erty in terms of contour maps. These contour maps 
explicitly identify important regions that are under the 
influence of some conformational field energies where 
any changes may significantly affect the target property. 
Compound 4 as the most potent compound was cho-
sen as a template to examine the most prominent field 

Fig. 3  Mean effect plot of the model descriptors

Fig. 4  Plot of standardized residuals versus experimental NA activity, 
A GFA-MLR model, B GFA-ANN model

Fig. 5  Scatter plot of the standardized residuals of the GFA-ANN 
model against leverage scores (Williams plot)

Table 9  Statistical validation results of probable CoMFA models

Q2: leave-one-out cross-validated correlation coefficient; R2: non-cross-validated 
correlation coefficient; SEE: standard error of estimation; N: number of optimum 
components;

Descriptors Q2 R2 SEE N

Steric (S) 0.315 0.822 0.1584 3

Electrostatic (E) 0.640 0.834 0.1528 3

S + E 0.643 0.962 0.0779 5
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contributions for the studied dataset. The steric and 
electrostatic contour maps of the CoMFA_ES model 
for compound 4 are shown in Fig.  7A, B, respectively. 
The green and yellow contour maps represent the steric 
interactions, while the red and blue contours signify 
electrostatic interactions. The CoMFA contour maps 

of steric and electrostatic interactions give valuable 
information on the regions around the molecule that 
can decrease or increase the NA inhibitory activities. 
For steric contour maps, the green contour depicts that 
the desirable addition of bulky groups in the regions 
would increase the activity, while the yellow contours 
portrayed that the steric or bulky groups are undesir-
able in the region for increasing activity [44]. The green 
contour was predominantly distributed near positions 
(3, 4, and 5) of the benzene ring, proposing that fur-
ther addition of bulky groups in these regions would 
enhance the activity. Meanwhile, the yellow contours 
near the 2-MeO and the acetamido groups of the same 
compound suggest that further attachment of bulky 
fragments in the region would decrease the activity of 
the compound. In the electrostatic field contour maps, 
the red regions depict regions where electron-with-
drawing groups enhance the activity, while the blue 
regions depict regions where electron-donating groups 
increase the activity. The red contour near the meta 

Table 10  Statistical validation results of all possible CoMSIA 
models

S. No. Descriptors Q2 R2 SEE N

1 Steric (S) 0.639 0.963 0.0771 5

2 Electrostatic (E) 0.662 0.901 0.1216 4

3 Hydrophobic (H) 0.651 0.967 0.0726 5

4 H-Bond Donor(D) 0.659 0.900 0.1223 4

5 H-Bond Acceptor(A) 0.600 0.943 0.0956 5

6 S + E 0.655 0.901 0.1216 4

7 S + H 0.646 0.968 0.0720 5

8 S + D 0.662 0.904 0.1199 4

9 S + A 0.597 0.943 0.0952 5

10 E + H 0.648 0.946 0.0931 5

11 E + D 0.701 0.873 0.1338 3

12 E + A 0.619 0.944 0.0944 5

13 H + D 0.660 0.906 0.1185 4

14 H + A 0.602 0.950 0.0895 5

15 S + E + H 0.647 0.973 0.0682 6

16 S + E + D 0.702 0.877 0.1318 3

17 S + E + A 0.627 0.943 0.0952 5

18 S + H + A 0.600 0.950 0.0894 5

19 S + H + D 0.661 0.909 0.1167 4

20 S + A + D 0.610 0.900 0.1222 4

21 E + A + D 0.662 0.865 0.1378 3

22 E + A + H 0.629 0.951 0.0886 5

23 A + H + D 0.608 0.901 0.1217 4

24 E + D + H 0.699 0.879 0.1306 3

25 S + E + H + D 0.700 0.882 0.1288 3

26 S + E + H + A 0.636 0.950 0.0890 5

27 S + H + D + A 0.661 0.871 0.1350 3

28 E + H + D + A 0.661 0.871 0.1353 3

29 S + E + D + A 0.665 0.870 0.1353 3

30 S + E + H + D + A 0.664 0.875 0.1327 3

Table 11  Statistical validation results of the best 3D-QSAR 
models

3D-QSAR models Q2 R2 SEE N R2
test

CoMFA_E + S 0.643 0.962 0.0779 5 0.6318

CoMSIA_E + D 0.701 0.873 0.1338 3 0.6154

CoMSIA_S + E + D 0.702 0.877 0.1318 3 0.6535

CoMSIA_E + D + H 0.699 0.879 0.1306 3 0.6070

CoMSIA_S + E + D + H 0.700 0.882 0.1288 3 0.6610

Fig. 6  Scatter plot of predicted against experimental NA inhibitory 
activity: A CoMFA_SE model, B CoMSIA_SED model
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and para positions of the benzene ring suggests that 
attaching electronegative groups at the positions may 
increase the NA inhibitory activities of the compounds.

The 3D contour maps for the best CoMSIA_SED model 
are shown in Fig. 8A–C, where the electrostatic contour 
map in the model is more or less similar to that of the 
CoMFA model. As such, the discussion will make empha-
sis on the hydrogen bond fields. The HBD contour map is 
presented in Fig. 7A, where the cyan contours depict the 
HBD favorable regions and the purple contour reveals 
unfavorable HBD regions for the HBD contour map. The 
purple contour was observed near the carbonyl oxygen 
(C=O) of the 2-acetamido group, while the cyan contour 
was embedded near the –HN group of the acetamido 
group of the same compound.

Based on the CoMFA and CoMSIA contour maps anal-
ysis, it was observed that the 2-acetamido group, 5-car-
boxylate group, and the substituents around the benzene 
ring of the compounds are significant for the NA inhibi-
tory activity as summarized in Fig. 9.

4.3 � Molecular docking studies
Molecular docking simulation is an important molecu-
lar modeling strategy in the computer-assisted design 
of new compounds (structure-based drug design) which 
provides information about the residual interaction 
types of target ligands with the active site of a protein 
as a receptor [28]. Before the docking started, the co-
crystallized oseltamivir was extracted from the H1N1 
neuraminidase protein (PDB: 3TI6) and then docked 
into the binding pocket to confirm the reliability of the 

docking algorithm used by the MOE program as well as 
to note the amino acid residues surrounding the ligand. 
The results revealed the docking scores of the best poses 
ranging from − 7.2004 to − 5.8457  kcal/mol as shown in 
Table 12. From the docking score results, four lead com-
pounds (4, 7, 14, and 15) with a relatively high inhibitory 
rate (> 50%) and docking score (> − 6.3  kcal/mol) were 
identified as the possible lead candidates for future explo-
ration of improved anti-influenza agents. Compound 4 as 
the most potent molecule with an activity of 68.9% had a 
good docking score of − 6.3290  kcal/mol, and the resid-
ual profile of the complex is presented in Fig. 10. For the 
conventional H-bond interaction analysis, the residue of 
ARG371 behaves as H-bond donors to the carbonyl oxy-
gen (C=O) and nitrogen of the thiazine core of the mole-
cule 4 as the H-bond acceptors to form 3 hydrogen bond 
interactions, while the hydrogen (–HN) of the acetamido 
group behaves as H-bond donor to the oxygen atom of 
ASN 347 residue at a bond distance of 2.9575 Å as sum-
marized in Table 13. The hydrogen atoms of the methoxy 
(2-MeO) and ethyl groups of the same compound behave 
as H-bond donors to the oxygen atoms of the ASN347, 
GLU277, GLU276, and GLU119 as the acceptors to form 
C–H bond interactions at different bond distances. For 
the hydrophobic interactions, the π-orbital of the Tyr 
406 residue interacts with the methyl (alkyl) group of the 
same compound to form a π-alkyl hydrophobic inter-
action type, while the other hydrophobic interaction 
formed was due to the π-orbital interaction from the 
compound with an alkyl group of ILE 222 residue at dif-
ferent distances, respectively (Fig. 11).

Fig. 7  3D fields of the CoMFA model for the most active compound 4. A Green areas depict desirable steric bulk, while yellow areas disfavor steric 
bulk, B electrostatic contour map where blue regions favor positive charge and red regions favor negative charge
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The major residual interactions in 15-com-
plex (Fig.  12) with the highest binding score 
of − 6.8435  kcal/mol include four conventional 
H-bonds, five C–H bonds, five electrostatic interac-
tions, and two salt bridges with different amino acid 
residues in the NA active site of the targeted recep-
tor, which are summarized in Table  14. For the con-
ventional H-bond interaction, the active residues of 
ARG118, ASN294, and ARG371 behave as H-bond 

Fig. 8  3D fields contribution of the CoMSIA_EAD model for the most active compound 4. A Magenta contours represent regions for desirable 
hydrogen bond acceptors, while red areas represent undesirable acceptors, B electrostatic contour map where blue regions favor positive charge 
and red regions favors negative charge, C cyan contours represent areas for desirable hydrogen bond donors, while purple areas represent 
undesirable donors

Fig. 9  General description of the 3D QSAR analysis
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donors to the oxygens from the nitro (NO2) and car-
bonyl (C=O) group of the compound 15. Also, the 
hydrogen atoms of the –(CH2)2OCH3 moiety of the 
same compound behave as H-bond donors to the oxy-
gen atoms of the GLU227 and TRP178 as the acceptors 
to form the carbon–H bond interactions at different 
bond distances. The amino acid residues of ASP151, 
GLU277, and ARG118 interact with the π-orbital of the 
same compound to form π-anion electrostatic inter-
actions, while the partial positive charge of the nitro 
group (3-NO2) interacts with the negative charges 
of ASP151 and GLU277 residues to form attractive 
charge interactions (electrostatic). In addition, the 
residues of ARG292 and ARG371 also formed two salt 
bridges (a combination of electrostatic and hydrogen 

bond interactions) with oxygen from the nitro group of 
the compound at different bond distances.

4.4 � Drug‑likeness assessment and ADMET predictions
In evaluating the drug-likeness of the compounds, their 
physicochemical properties are usually related to some 
filter variants. Therefore, relevant physicochemical 
parameters (Fig.  12) are generated from the ADMET-
lab 2.0 Web server. The physicochemical properties for 
the four lead compounds (4, 7, 14, and 15) are within 
the upper limit (brown) and lower limit (red) as pre-
sented in the radar charts accordingly (Fig. 12). The four 
lead compounds which have passed the Lipinski rule of 
five (Table  10) were further assessed with other drug-
likeness filter rules such as the Ghose filter rule, Veber’s 

Table 12  Molecular docking scores of the 1,3-thiazine derivatives

Score: the final docking score, rmsd_refine: the root-mean-square deviation between the pose before and after refinement, E_conf: the energy of the conformer. 
E_refine: core from the refinement stage, calculated to be the sum of the van der Waals electrostatics and solvation energies, under the generalized Born solvation 
model (GB/VI), E_score1: score from rescoring stages 1, E_place: score from the placement stage, E_score2: score from rescoring stages 2

S. No. Score rmsd_refine E_conf E_place E_score1 E_refine E_score2

1 − 6.4901 1.3386 − 122.1681 − 48.5505 − 9.4307 − 25.8249 − 6.4901

2 − 6.5735 1.8070 − 120.4932 − 70.4411 − 9.9137 − 33.2956 − 6.5735

3 − 6.3551 1.5179 − 150.6771 − 50.2391 − 10.2081 − 36.4173 − 6.3551

4 − 6.3290 1.6909 − 152.5328 − 77.3417 − 9.7922 − 33.5268 − 33.5268

5 − 5.8457 0.8892 − 149.0868 − 38.0634 − 9.2550 − 21.9753 − 5.8457

6 − 6.5115 1.3100 − 134.0408 − 71.9441 − 10.3233 − 20.1000 − 6.5115

7 − 6.6258 1.5226 − 121.8536 − 73.6325 − 9.7901 − 28.5852 − 6.6258

8 − 6.3074 2.6590 − 141.4917 − 32.7300 − 10.0024 − 31.0956 − 6.3074

9 − 6.5875 1.1095 − 164.7347 − 70.6521 − 9.4724 − 25.4637 − 6.5875

10 − 6.1763 1.9554 − 139.1840 − 50.2221 − 9.3584 − 28.1367 − 6.1763

11 − 6.2310 2.9689 − 154.7956 − 44.6518 − 9.9946 − 36.2267 − 6.2310

12 − 6.3392 1.7148 − 152.7194 − 51.0108 − 10.1836 − 30.4122 − 6.3392

13 − 7.2004 1.3127 − 163.7089 − 83.6582 − 9.7403 − 34.5889 − 7.2004

14 − 6.8369 1.4159 − 149.8267 − 62.5150 − 10.2103 − 31.9916 − 6.8369

15 − 6.8435 1.0493 − 108.2935 − 53.3988 − 10.0980 − 33.9323 − 6.8435

16 − 6.2685 0.9614 − 95.1933 − 64.1636 − 9.9163 − 22.2508 − 6.2685

17 − 6.5204 0.8028 − 94.8014 − 84.4307 − 10.1112 − 29.5498 − 6.5204

18 − 6.5349 1.2536 − 130.5752 − 70.3961 − 10.2722 − 26.5739 − 6.5349

19 − 6.2513 1.2438 − 127.6415 − 63.2090 − 10.4032 − 31.3327 − 6.2513

20 − 5.9769 2.0611 − 111.9184 − 55.1487 − 10.4111 − 24.8607 − 5.9769

21 − 6.5886 1.2004 − 106.8793 − 83.1832 − 12.7530 − 37.4622 − 6.5886

22 − 6.3499 1.0607 − 126.4274 − 66.8849 − 9.6530 − 30.2890 − 6.3499

23 − 6.1877 1.4714 − 132.0677 − 60.9961 − 11.8590 − 26.3517 − 6.1877

24 − 6.0548 1.3597 − 112.9793 − 60.1168 − 9.4625 − 28.6708 − 6.0548

25 − 6.2808 1.4735 − 127.5015 − 66.0587 − 9.6263 − 30.4590 − 6.2808

26 − 6.1317 1.5469 − 131.9421 − 60.5972 − 9.9004 − 25.7525 − 6.1317

27 − 6.2819 2.1607 − 138.3339 − 79.3915 − 11.5250 − 27.2055 − 6.2819

28 − 6.6802 1.2019 − 120.7970 − 65.8939 − 10.1814 − 39.3712 − 6.6802

29 − 6.4982 1.4052 − 73.6767 − 63.0311 − 10.3986 − 28.9355 − 6.4982

Oseltamivir − 9.2388 1.3910 − 152.6088 − 74.5023 − 17.5359 − 65.9785 − 9.2388
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rule, Egan’rule, and Muegge’s rule using the SwissADME 
Web server as shown in Table  15. Lipinski’s criteria for 
drug-likeness include molecular weight (MW ≤ 500  g/

mol), n-octanol/water distribution coefficient (Log P ≤ 5), 
number of hydrogen bond acceptors (nHA ≤ 10), and 
number of hydrogen bond donors (nHD ≤ 5) [45, 46]. 

Fig. 10  3D docking view of compound 4 with the H1N1 neuraminidase receptor (PDB: 3TI6). A The best pose of compound 4, B residual 
interaction of compound 4-complex, C 3D hydrogen bond surfaces around the ligand, D 2D residual interaction of 4-complex
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From Lipinski’s table of the lead compounds in the data-
set, the Log P scores of the compounds are relatively high 
close to 3 log mol/L which is the optimal limit (0 < log 
P < 3). This implies that the compounds have low aqueous 
solubility and good oral bioavailability [47, 48]. The Log 
P also gives information on the cellular membrane per-
meability and hydrophobic binding to macromolecules 
such as the target receptors, plasma proteins, metabo-
lizing enzymes, or transporters [49]. Oseltamivir as the 
standard neuraminidase drug has lower log P scores 
of − 1.317 which tend to experience difficulty in penetrat-
ing the lipid bilayer of the cell membrane. The lead com-
pounds were appraised by other drug-likeness rules such 
as Ghose, Veber, Egan, and Muegge rules, and the result 
depicted that they all satisfied most of the rules except 
for compounds 7and 15 which have violated Egan rule as 
shown in Table 16.

The biochemical processes involved from the admin-
istration of a drug into the body to its elimination play 
an important role in lead identification and optimization 
[50]. A perfect drug candidate must be non-toxic, and 
when administered should be absorbed into the circula-
tory system and eradicated without affecting the biologi-
cal activity [50]. These discrete biochemical processes are 
closely interrelated, leading to the evaluation of ADMET 
properties as one of the prime factors in the process of 
drug discovery [51].

Some of the relevant computed ADMETlab 2.0 param-
eters generated include human intestinal absorption 
(HIA), human colon adenocarcinoma cell lines (Caco-2) 
permeability, Madin–Darby canine kidney cells (MDCK) 
permeability, plasma glycoprotein (Pgp) inhibitor, plasma 
glycoprotein (Pgp) substrate, plasma protein binding 
(PPB), volume distribution (VD), blood–brain barrier 
(BBB) penetration, human cytochromes (CYP), clearance 
(CL), half-life (T1/2), AMES toxicity, carcinogenicity 

(Carc), eye irritation (EI), and respiratory toxicity (RT) 
as shown in Table  17. The computed value for HIA 
showed that the lead compounds have the probability of 
excellent absorption from the intestinal membrane. The 
Caco-2 cell permeability has been an important index 
for an eligible drug candidate which is associated with 
human intestinal absorption [46]. The lead compounds 
were considered to have proper Caco-2 cell permeabil-
ity because their values are higher than the optimal score 
of − 5.15 log cm/s. The MDCK permeability is utilized 
as an in  vitro model for permeability screening, and its 
apparent coefficient is used to assess the efficiency of 
chemicals in the body and also to estimate the effect of 
the blood–brain barrier. The lead compounds were con-
sidered to have high passive MDCK permeability with 
predicted coefficients of greater than 2.0 × 10−5  cm/s. 
The output results of the lead compounds revealed an 
excellent probability of being Pgp substrates. PPB is one 
of the most important mechanisms of drug uptake and 
distribution resulting from the drug–protein bindings in 
the plasma which strongly affects the pharmacodynam-
ics behavior of the drug [52]. The lead compounds were 
also predicted to have a high value of PPB (> 90%) depict-
ing a broad therapeutic index. The theoretical concept of 
the VD parameter is used to relate the administered drug 
dose with the actual initial concentration in the circula-
tory system which often describes the in vivo distribution 
[52]. As such, the lead compounds are predicted to have 
proper VD values in the range of 0.04–20 L/kg. The BBB 
permeate output of the lead compounds predicted no 
BBB penetration may cause any central nervous system 
side effects. For the metabolism, the predicted outputs 
revealed the probabilities of being either lead substrates 
or inhibitors of CYPs of the isoenzymes (1A2, 3A4, 2C9, 
2C19, and 2D6) whose range of values is within 0 to 1. The 
clearance of a drug (CL) is an important pharmacokinetic 

Table 13  Binding interaction of the H1N1 neuraminidase receptor with compound 4

Bond (Å) Interaction type From Chemistry To Chemistry

2.9723 Hydrogen Bond A: ARG371 H-Donor 4 H-Acceptor

2.7175 Hydrogen Bond A: ARG371 H-Donor 4 H-Acceptor

2.6552 Hydrogen Bond A: ARG371 H-Donor 4 H-Acceptor

2.9575 Hydrogen Bond 4 H-Donor A: ASN347 H-Acceptor

2.5011 Carbon Hydrogen Bond 4 H-Donor A: ASN347 H-Acceptor

2.4892 Carbon Hydrogen Bond 4 H-Donor A: GLU277 H-Acceptor

2.6665 Carbon Hydrogen Bond 4 H-Donor 4 H-Acceptor

2.5644 Carbon Hydrogen Bond 4 H-Donor A: GLU276 H-Acceptor

2.6332 Carbon Hydrogen Bond 4 H-Donor A: GLU119 H-Acceptor

5.1658 Hydrophobic(π-alkyl) A: TYR406 π-orbital 4 Alkyl

5.3130 Hydrophobic(π-alkyl) 4 π-orbital A: ILE222 Alkyl
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measure that describes how the drug is excreted from the 
body. The predicted clearance penetration results of the 
lead compounds showed that compounds 4, 14, and 15 
are predicted to have low clearance levels, while com-
pound 7 tends to have moderate clearance (< 5 mg/min/

kg). In terms of toxicity, the AMES mutagenicity, eye irri-
tation, and respiratory toxicity of the lead compounds are 
mostly predicted as non-toxic which is in agreement with 
the previous reports.

Fig. 11  3D docking view of compound 15 with the H1N1 neuraminidase receptor (PDB: 3TI6). A The best pose of compound 15, B residual 
interaction of compound 15-complex, C 3D hydrogen bond surfaces around the ligand, D 2D residual interaction of compound 15-complex
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5 � Conclusion
In conclusion, the study utilized computational modeling 
concepts such as 2D-QSAR, 3D-QSAR, molecular dock-
ing, and ADMET predictions of 29 analogs of 1,3-thiazine 

derivatives as influenza neuraminidase inhibitors to 
explore the various leads for exploration of improved 
compounds. The GFA-MLR and GFA-ANN models 
with feature selected descriptors, ATS7s, SpMax5_Bhv, 

Fig. 12  Physicochemical radar chart of the lead compounds in the dataset
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nHBint6, and TDB9m, were found to have reliable pre-
diction of the NA inhibitory activities from the 2D-QSAR 

modeling studies. The 3D-QSAR studies further revealed 
the correlation of various conformational fields as a func-
tion of NA inhibitory activity of the compounds from 
the previewed contour maps of the CoMFA and CoM-
SIA models. The statistical validation of the 2D-QSAR 
and 3D-QSAR was all within the global benchmarks 
for accepting QSAR models which supports the predic-
tive performance of the models. The drug-likeness and 
ADMET predictions of the lead compounds revealed 
non-violation of Lipinski’s rule and good pharmacoki-
netic profiles, respectively, as essential guidelines for 
rational drug design. The outcome of this study overlaid 
a solid foundation for the in silico design and exploration 
of novel NA inhibitors with improved potency.

Table 14  Binding residual interaction of the H1N1 neuraminidase receptor with compound 15

Bond (Å) Interaction type From Chemistry To Chemistry

3.0716 Carbon hydrogen bond 15 H-Donor A: GLU227 H-Acceptor

2.7803 Carbon hydrogen bond 15 H-Donor A: GLU277 H-Acceptor

2.3958 Carbon hydrogen bond 15 H-Donor A: GLU227 H-Acceptor

2.7646 Carbon hydrogen bond 15 H-Donor A: TRP178 H-Acceptor

2.5774 Carbon hydrogen bond 15 H-Donor A: TRP178 H-Acceptor

1.9756 Hydrogen bond A: ARG118 H-Donor 15 H-Acceptor

2.0478 Hydrogen bond A: ARG118 H-Donor 15 H-Acceptor

2.5643 Hydrogen bond A: ASN294 H-Donor 15 H-Acceptor

1.9466 Hydrogen bond A: ARG371 H-Donor 15 H-Acceptor

3.1851 Other (Sulfur-X) 15 Sulfur A: ASP151 Sulfur

2.0022 Electrostatic; H-bond A: ARG292 Positive; H-Donor 15 Negative; H-Acceptor

1.9585 Electrostatic; H-bond A: ARG371 Positive; H-Donor 15 Negative; H-Acceptor

4.6885 Electrostatic A: ARG118 Positive 15 Negative

4.6762 Electrostatic 15 Positive A: ASP151 Negative

4.4499 Electrostatic 15 Positive A: GLU277 Negative

3.0763 Electrostatic A: ASP151 Negative 15 π-orbital

3.9660 Electrostatic A: GLU277 Negative 15 π-orbital

Table 15  Lipinski’s rule of the lead compounds in the dataset

Key: Molecular weight (MW), n-octanol/water distribution coefficient (Log P), number of hydrogens bond acceptors (nHA), number of hydrogen bond donors (nHD), 
number of Lipinski violations (nLV)

S. No. MW (g/mol) Log P (log mol/L) nHA nHD TPSA nLV

4 348.11 2.003 6 0 77.320 0

7 363.09 2.067 8 0 111.230 0

14 391.12 2.637 8 0 111.230 0

15 393.10 1.575 9 0 120.46 0

Oseltamivir 330.15 − 1.317 10 9 0

Rule  ≤ 500  ≤ 5  ≤ 10  ≤ 5  ≤ 1

Table 16  Drug-likeness assessment of the lead compounds 
based on Ghose, Veber, Egan, and Muegge

S. No. Ghose Veber Egan Muegge

4 Yes Yes Yes Yes

7 Yes Yes No Yes

14 Yes Yes Yes Yes

15 Yes Yes No Yes

Oseltamivir Yes Yes Yes Yes
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Abbreviations
MLR: Multi-linear regression; QSAR: Quantitative structure–activity relation-
ship; ANN: Artificial neural network; GFA: Genetic function approximation; NA: 
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tive structure–activity relationship; 3D-QSAR: Three-dimensional quantitative 
structure–activity relationship; NA: Neuraminidase.
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