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Abstract

Background: Sickle cell disease (SCD) is a chronic hemolytic disease caused by an altered hemoglobin molecule
(HbS) and was first termed as a molecular disease. Glutamic acid in the normal hemoglobin molecule (HbA), was
replaced by valine in HbS at the sixth position of both β-chains. This alteration was proved to be due to a single
point mutation GTG instead of GAG in the genetic code. Since the discovery of sickle cell disease in 1910, great
efforts have been done to study this disease on a molecular level. These efforts aimed to identify the disease
etiology, pathophysiology, and finally to discover efficient treatment. Despite the tremendous work of many
research groups all over the world, the only approved drug up to this moment, for the treatment of SCD is the
hydroxyurea.

Main text: In this review, the antisickling pharmaco-therapeutics will be classified into two major groups:
hemoglobin site directed modifiers and ex-hemoglobin effectors. The first class will be discussed in details, here in,
focusing on the most important figures in the way of the rational drug design for SCD treatment aiming to help
scientists solve the mystery of this problem and to get clear vision toward possible required therapy for SCD.

Conclusion: Despite the large number of the antisickling candidates that have been reached clinical studies yet,
none of them has been introduced to the market. This may be due to the fact that hemoglobin is a large molecule
with different target sites, which requires highly potent therapeutic agent. With this potency, these drugs should be
safe, with acceptable oral pharmacokinetic and pharmacodynamic properties. Such ideal drug candidate needs
more efforts to be developed.
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1 Background
Sickle cell anemia was first discovered by J. B. Herrick in
1910 [30], who noted morphological difference between
normal RBC’s (disc shape) and abnormal (elongated
shape) of the sickled RBC’s. In 1923, the reversibility of
RBC’s sickling was reported [65], whereas the correlation
between oxygen tension and sickling was declared, many
years later, by Hahn and Gillespie [27]. They stated that
sickling occurs only under low oxygen tension, while
erythrocytes regain its normal shape by increasing oxy-
gen partial pressure. The breakthrough information of
the sickle cell disease (SCD) was the discovery by

Pauling et al. in 1949 [55] that SCD was caused by an al-
tered hemoglobin molecule HbS and was first termed a
molecular disease. The same research group also pro-
posed a mechanism of the sickling phenomenon which
happens due to the interaction of the complementary
deoxy HbS molecules to form long chains that attract
one another forming a crystal or liquid crystal. This pos-
tulation was supported by Harris’ observation that 10%
of the deoxy HbS solution consists of a polymer [29].
Using peptide mapping technique in 1956, Ingram re-
ported that glutamic acid in the normal hemoglobin
molecule (HbA) was replaced by valine in HbS at the
sixth position of both β-chains [33, 34]. In 1977, Marotta
research group proved that the replacement of glutamic
acid by valine is due to a single point mutation GTG in-
stead of GAG in the genetic code [42]. Indeed, electron
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microscopy and X-ray diffraction analysis described the
structure of HbS fiber as a 14-stranded fiber, each strand
is formed of seven proto-filaments [17, 18]. Under low
oxygen conditions, the mutant hemoglobin (HbS) poly-
merizes through intermolecular contact between the
mutated βVal6 from one Hb tetramer and a hydrophobic
pocket formed by β1Ala70, β1Phe85, and β1Leu88 resi-
dues on a different tetramer. The formation of these
polymers results in losing the normal disc shape of RBCs
with the formation of sickle-like shaped RBCs, where
they become more fragile. These sickle cells are unable
to pass through narrow capillaries resulting in painful
vaso-occlusive crises [57]. As a result, the sickle cells
undergo hemolysis leading to anemia and a shortened
lifespan. The vaso-occlusive crises is associated with fever,
severe pain in the extremities, chest, back, and/or abdomen.
Moreover, aplastic hematologic crisis due to viral or bacter-
ial infection, or hemolytic crisis due to infection or other
etiologic reasons were reported [32]. Aplastic hematologic
crisis causes injury of the bone marrow cells which in turn
decreases the erythrocytes production. On the other hand,
hemolytic crisis leads to destruction of the circulating
erythrocytes which causes a decrease in the hematocrit
values. Transfusions are lifesaving for patients in this stage
of the disease. Hydroxyurea [14], a myelosuppressive agent,
is the only effective drug proven to reduce the frequency of
painful episodes.

2 Main text
2.1 Introduction
Apparently, there is a leap in the recent research for
potential treatment of SCD. This was evident by the
large number of published research articles in many
international journals and conferences along with several
drug candidates in phase I, II, and III clinical trials [6, 13,
15, 41, 66]. This progress, in our opinion, is provoked by
the discovery of many ex-hemoglobin sites which have been
reported as targets to control sickling or gelling of HbS. A
prime example of such sites is RBC’s cell membrane-
calcium-activated potassium channel (Gardos channel); one
of the main routes for K+ loss and dehydration in RBCs
[24, 26, 35], which could be blocked by clotrimazole and
other imidazole inhibitors [10]. Additionally, DNA methyl
transferases [63] and histone deacetylase [31] are viewed as
validated antisickling targets that could be inhibited for in-
ducing fetal hemoglobin (HbF) that does not participate in
the polymerization of hemoglobin subsequently decreases
HbS polymerization [21, 45]. Similarly, inhibition of the rho
kinase protein [40] by hydroxyfasudil shows promise in
SCD treatment as it increases endothelial NO synthase
levels and induces HbF [21]. Another approach is targeting
adenosine signaling that is responsible for multiple patho-
physiological roles in SCD through subtype 2B adenosine
receptors antagonism [22]. Such discoveries opened the

gate for scientists to explore new approaches and to ration-
ally design new small molecules as potential antisickling
agents [16, 21]. Thirty years ago, site-directed modification
of hemoglobin was the major strategy used to design anti-
sickling candidates targeting different hemoglobin pockets
that were identified using X-ray diffraction analysis. Those
hemoglobin effectors were classified according to their
mode of interaction with hemoglobin into covalent and
non-covalent-binding hemoglobin alloesteric effectors.
Covalent modifiers are molecules that bind covalently
to one or more reactive sites of hemoglobin. Exam-
ples of the covalent binding effectors are cyanates
[11, 43, 49], aldehydes [4, 48], acetyl salicylates [67,
68], α,β-unsaturated carbonyls [38, 54], and nitrogen-
mustard derivatives [23, 58]. On the other hand, non-
covalent modifiers (e.g., aromatic amino acids [25, 59],
ureas [12], alkonic acids [20, 53], and esters [9]) bind to
Hb through ionic, Van der Waal, or hydrogen bond force
of interaction that leads to polymer destabilization (anti-
gelling) or breaking the salt bridges which results in shift-
ing the allosteric equilibrium and the subsequent
increases in HbS affinity for oxygen (antisickling).
Antisickling pharmaco-therapeutics could be generally

classified into two major groups: hemoglobin site-directed
modifiers and ex-hemoglobin effectors. In this part, only
the first class will be discussed in more details, in order to
gather all ideas, strategies, and outcomes of the research
and efforts made for discover new treatment of SCD,
whereas the second class is stated herein in brief and will
be discussed in details in part II review.

2.2 Hemoglobin allosteric modifiers
Hemoglobin allosteric modifiers (HAM) include any nat-
ural or synthetic therapeutic agent that targets hemoglobin
to change its properties with the aim to inhibit its sickling
and/or its polymerization to be useful for the treatment of
SCD. The first attempt to synthesize stereospecific HbS
modifiers was published in 1977 [39]. This work was based
on the hypothesis that HbS aggregation could be abolished
by an oligopeptide that mimics the amino acid sequence of
the mutation site at the donor area of the HbS tetramer.
This oligopeptide would competitively inhibit binding with
the acceptor site of the other HbS tetramer and presum-
ably prevent polymerization. Different series of oligopep-
tide amides were synthesized e.g., β 1–6, β 3–6, β 5–6, and
even longer sequences of the N-terminal region of the HbS
β-chains (β 1–8) [39, 69]. The obtained results indicated
that oligopiptide sequence β 1–6 possesses the highest ac-
tivity as inhibitor of HbS aggregation. However, when
changing the sequence order of such peptide as β 125634
HbS, it maintained the same activity, which indicated lack
of specify.
In 1984, an allosteric non-competitive DPG (2,3-dipho-

sphoglycerate) antagonist, BW12C, was designed targeting
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the α-amino terminal of oxy HbS [7]. DPG along with H+

are the natural allosteric effectors that lower Hb affinity
for oxygen. BW12C’s structure was designed to have an o-
hydroxy group to the aldehyde moiety to stabilize the
formed Schiff-base between one of the α N-terminal of
the protein and the carbonyl of the aldehyde group. In-
deed, the carboxylic group was included in the BW12C’s
structure to form salt bridge with the other α N-terminal
of the oxy HbS. Despite of its antisickling activity in vitro
and in vivo, BW12C has very short half-life (4 h).
In 1991, vanillin, a nutraceutical agent, was picked up

as a safe antisickling lead compound [3], following the
previous results reported by Zauggand and Beddel re-
search groups [8, 70]. Vanillin has a moderate antisick-
ling effect and was proved to bind covalently with HbS,
increasing its oxygen affinity as well as decreasing RBC’s
sickling. However, due to its poor oral bioavailability,
vanillin possessed weak antisickling effect after oral
administration [5, 19, 36, 64]. To overcome such draw-
back, a vanillin pro-drug was designed to have a thiazoli-
dine protection of the aldehyde group to bypass the
gastrointestinal metabolism. Such compound showed
significant improved oral pharmacokinetics and pharma-
codynamics, yet, it still suffered from some degradation
in the digestive tract [71].

5-Hydroxymethyl-2-furfural (5-HMF, a vanillin isoster)
was reported to have a remarkable antisickling activity. It
is several times more potent than vanillin in inhibiting
sickling and protecting sickle mice from hypoxia [2, 60].
5-HMF is currently in clinical trials in SCD patients [28].

The structure activity relationship study of a series of 5-
HMFs as antisickling agents indicated that replacing the
hydroxymethyl group at the 5-position of the furan ring as
in 5-HMF by hydrophobic moieties (for example alkyl or
alkoxy groups) decreases its activity, while its removal
destroys the activity. This observation was confirmed by
the crystallographic results implied the importance of the
hydroxyl moiety of 5-HMF in the stabilization of the
relaxed R state of hemoglobin [61]. Based on these results
and using vanillin and pyridoxal (previously studied anti-
sickling non-toxic aldehyde) [37] as scaffold, several pyri-
dyl derivatives (INN) were developed and evaluated for
their antisickling activity [1, 50, 62]. Amazingly, some of

these compounds showed as much as 90 and 2.5-foldpo-
tency compared to vanillin and 5-HMF, respectively, al-
though they bind at the same site of hemoglobin as 5-
HMF [1].

In the same study, it was stated that the allosteric ac-
tivity of these pyridyl derivatives is highly related to the
position of the methoxy and pyridyl groups with respect
to the aldehyde function. Generally, ortho-pyridyl ben-
zaldehyde derivatives having a meta or para-methoxy
substitution showed the highest activity, as in compound
INN312, which act as a stereospecific inhibitor of the
deoxy-HbS polymer while efficiently increasing the Hb
affinity for oxygen [50].
In a trial to overcome the poor oral bioavailability of

aldehydes, a series of imidazolylacryloyl derivatives were
designed using ethacrynic acid (ECA); 2-(2,3-dichloro-4-(2-
methylenebutanoyl)phenoxy)acetic acid, as a pharmaco-
phore [54]. ECA, a diuretic, was reported to inhibit HbS
polymerization [38, 56]. However, its diuretic effect op-
posed its chance to be used in the treatment of SCD. The
imidazolylacryloyl derivatives, referred as KAUS, have an α,
β-unsaturated ketone moiety, which was expected to
undergo Michael addition on the thiol group of βCys93 in
the same manner of ECA leading to the inhibition of sick-
ling. Although those compounds did not show the expected
activity, co-crystallization of deoxygenated or carbonmo-
noxy Hb with KAUS-12 or KAUS-1 showed an unexpected
mode of Michael addition on the N-terminal αVal1 at the
α-cleft of the T-state structures of hemoglobin.

Recently, Metcalf’s research team, using molecular mod-
eling, has designed a new series of aldehydes having a
bicylic ether link ortho to the aldehyde group. Their strat-
egy was based on the ability of the aldehyde’s carbonyl
function group to form a Schiff base with the two N-
terminal valines in both α-chains in HbS, while the bicyc-
lic moiety would fit more into the intradomain cavity [44].
This work was concluded successfully with the discovery
of a new potent allosteric modifier of HbS, GBT440, hav-
ing a pyrazol-5-yl-pyridine ether link. This compound was
able to highly increase the hemoglobin affinity for oxygen
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which resulted in the decline of the polymerization of
deoxy-HbS.

The X-ray analysis revealed that GBT440 [52] binds
covalently to a single α-chain in a 1:1 stoichiometry to the
HbS tetramer. It is worth mentioning that all of the previ-
ously reported aldehydes bind covalently to the HbS chain
in a 2:1 stoichiometry. It was reported that compound
GBT440 possesses a high oral bioavailability in rats (60%),
with more than 19 h half-life. In addition, GBT440 parti-
tions highly and preferentially into the red blood (RBC/
plasma ratio is ∼ 150). Therefore, the authors proposed
that GBT440 would be a superior antisickling hemoglobin
modifier that specifically targets RBCs and exerts its effect
in a relatively low therapeutic dose. Currently, GBT440 is
in phase III clinical trials in SCD patients.
Interestingly, another class of covalent binding Hb allo-

steric modifiers was discovered having a symmetric struc-
ture mediated by a disulfide link [47, 51]. Those modifiers
were identified after a random biological screening of 38,
700 compounds using small molecule microarrays, followed
by a high-throughput assay to test the selected molecules
that modified Hb affinity for oxygen. TD-1(di(5-(2,3-dihy-
dro-1,4-benzodioxin-2-yl)-4H-1,2,4-triazol-3-yl)disulfide)
was the capstone of the evaluated compounds where it
showed a greater effect even than 5-HMF, on oxygen affin-
ity of human hemoglobin.

The X-ray crystallographic analysis of Hb-TD-1 complex
indicated that a monomer of the TD-1 structure reacts co-
valently to both β-Cys93 and β-Cys112. Indeed, it was
found also that TD-1 reacts in a monomeric pattern, but
non-covalently to the central water cavity of the Hb tetra-
mer, stabilizing the relaxed (R) state, and disturbing the
salt-bridge interaction between β-His146 and β-Asp94, de-
stabilizing the tens (T) stat. TD-1, was also reported to pre-
vent sickling of human sickle cells. Encouraged by these

results, another triazole disulfide, TD-3, was published by
the same researcher group, to bind covalently to the Hb as
TD-1 does but has no superior effect than the later as a
hemoglobin modifier [46].

2.3 Conclusion
Hundreds of covalent binding hemoglobin allosteric modi-
fiers that successfully increase HbS oxygen affinity and
decrease its polymerization were published. Many of these
modifiers have reached human clinical trials, but unfortu-
nately none has been introduced to the market yet. This
could be attributed to the fact that hemoglobin is a large
molecule having different target sites, which requires highly
potent therapeutic agent (nanomolar affinity). In addition,
these drugs should be safe and possess suitable oral phar-
macokinetic and pharmacodynamic properties. Such ideal
drug candidate needs more efforts to be identified and
developed.
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