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Introduction

Fiber lasers feature good beam quality, high efficiency, compact structure, and enable
to be tuned extensively and work efficiently from continuous-wave operation to ultra-
short optical pulses [1, 2], from low power to high power schemes [3—-5], which has been
widely applied in nonlinear microscopy [6], optical communication [7, 8], and materials
processing [9]. In the past several decades, the performance enhancement of fiber lasers
mainly relied on fiber development, system optimization, algorithm improvements,
and other means [10—14]. Among them, the role of machine learning is becoming ever
prominent.

Machine learning (ML) is an umbrella term, broadly defined as “field of study that
gives computers the ability to learn without being explicitly programmed” [15]. As an
emerging role, it has been introduced into many fields and achieved gratifying results
in speech recognition [16], object classification [17], chemical health and safety study
[18], computational imaging [19-21], optical metrology [22], optical communications
and networking [23, 24], sensing [25], and photonic design [26—29]. Recently, various
machine learning methods, particularly deep neural networks (DNNs), have attracted
more attention to solving problems in fiber lasers. For example, learning enables approx-
imate models of the underlying physics or dynamic process for complex fiber laser sys-
tems in the form of a “black box’, serving for proxy measurement and tracking control of
physical parameters.
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The purpose of this review is to highlight the recent progress utilizing machine learn-
ing techniques for developing advanced fiber lasers in terms of design and manipulation
for on-demand laser output, prediction and control of nonlinear effects, reconstruction
and evaluation of laser properties, as well as robust control for lasers and laser systems.
Challenges and perspectives are considered in the end.

General description

The field of machine learning yields multiple sources that involve various disciplines as
diverse as probability theory, statistics, adaptive control theory, psychological models,
and complexity theory. Different sources bring different methods and terms into the
machine learning field. At the same time, machine learning continues to develop dra-
matically, and new technologies continue to emerge. It is not easy to summarize all
machine learning content perfectly. Here we introduce some general descriptions of
machine learning and its application in fiber lasers, which aims to provide a reference for
readers in the fiber laser community.

Machine learning basics
This section first introduces the concept of machine learning, followed by the learning

algorithm taxonomy, and emphasizes a widely adopted algorithm, artificial neural net-
works (ANNs).

Concept

The field of machine learning and optimization are intertwined. Most machine learn-
ing problems can transform into optimization ones in the end. Some researchers put
several works with purely adaptive and robust optimization algorithms into the cat-
egory of machine learning, for example, evolutionary algorithms, typically genetic
algorithms, for coherent control of ultrafast dynamics [30], intelligent breathing
soliton generation [31], and self-tuning mode-locked fiber lasers [32]. More common
definitions of machine learning emphasize “learning” and “to gain knowledge” from
data, and a classical one of them is “A computer program is said to learn from experi-
ence E with respect to some class of tasks T and performance measure P if its perfor-
mance at tasks in T, as measured by P, improves with experience E” [33]. Generally,
experience is usually presented in the form of data in tasks, and learning algorithms
are methods of generating models from data. With the learned model, the machine
can make a prediction or take actions in tasks. Obviously, datasets, models, and learn-
ing algorithms are three core elements of machine learning.

The collection of data from experiments or numerical simulation of specific tasks
is called a dataset, marked as D={(x; y)},_, N> Where (x;, y,) is an example and N
is the number of examples. x; is a property description of an example, usually named
as ‘sample’ or ‘feature vector’ For example, x;={x;};_,, 4 is a feature vector with
dimensionality d, where each dimension contains a value x;; that describes the exam-
ple somehow. y; is the label of x;, which can be the form of one of a finite set of classes,
a vector, a matrix, a graph, or others. In some tasks, y; may not exist. Training (also
known as learning) is the process of using data to generate models through learning
algorithms. The undetermined parameters of the model would be modified during the
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training. Therefore, the model can be regarded as the parameterized representation of
the learning algorithm on the given data and model parameter space. The data used
in training is called a training dataset. Sometimes, a validation dataset is split propor-
tionally from the training dataset to show the performance of the model during the
training process. After training, the model needs to be tested on an independent data-
set from the same or similar statistical distribution to the training dataset, the testing
dataset, to evaluate its generalization applicability for new data. Figure 1 shows the
general working framework of machine learning, including data preparation, algo-
rithm selection, training, and test.

Learning algorithm taxonomy

Machine learning covers a very broad field, and it has developed a variety of learning
algorithms to handle different types of learning tasks. We describe four rough classifica-
tions of machine learning algorithms. In different tasks, the available data have different
forms, labeled or unlabeled, research object itself or only a metric value of it. According
to the form of data algorithms used, machine learning can be divided into supervised,
unsupervised, semi-supervised, and reinforcement learning (RL) [34—40]. The data for
supervised learning is labeled, that is, D={(x;, y,)};_1 . n- With the difference between
actual label y; and model output, the model parameters can be iteratively modified to
map the label better. Supervised learning aims to find a mapping f. x— y, where x;ex
(sample space), y;,€y (label space), Dex x y, so that f (x;) =y, Typical supervised learn-
ing problem includes classification and regression. Unsupervised learning specializes
in learning the internal representation or potential relationships or structures of sam-
ples without labels, where D=1{x};,_, , . Clustering and dimensionality reduction are
two common unsupervised learning problems. Semi-supervised learning adopts par-
tially labeled datasets, D=D,+D,, D;={(x; y)};—1,..n and Dy={x};_1, \, where
M> > N. Reinforcement learning attempts to learn what to do and how to map situations
to actions to maximize a reward function [41]. To some degree, deep reinforcement
learning is a control strategy that does not require accurate object models because it can
adapt to the environment via interacting [42].

l M Trained Model
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Fig. 1 The working framework of machine learning
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Machine learning algorithms can be classified according to the learning tasks, such
as classification algorithms, regression algorithms, clustering algorithms, and dimen-
sionality reduction algorithms. For example, principal component analysis and manifold
learning are popular dimensionality reduction algorithms. Some learning algorithms can
work for not only one one kind of task, like support vector machines for classification
and regression tasks [43] and ANNs for almost all machine learning tasks [44—48].

Depending on whether physical knowledge is involved, machine learning algorithms
can be categorized as physics-based and physics-free. Physics-free machine learning is a
purely data-driven method. The core is data-driven modeling, extracting hidden physical
and mathematical models from available system data and representing them by learned
models [49]. Unlike physical and mathematical models represented by explicit equa-
tions, data-driven models belong to empirical models that can be a universal functional
approximator, acting as a black box that allows people to solve problems without pro-
fessional background or expertise. Generally, physically-free machine learning requires
big data for training and is not available for specific tasks where data acquisition costs
are prohibitive. By contrast, physics-informed machine learning integrates data-driven
modeling and prior knowledge [50]. For example, a physics-informed neural network
(PINN) is designed to satisfy some physical constraints automatically, improving accu-
racy and enhancing generalization in small data regimes [51]. In some cases, prior physi-
cal laws can act as a regularization term that constrains the space of admissible solutions
to a manageable size, enabling it to steer itself towards the right solution and converge
quickly [51-53].

Machine learning algorithm features shallow or deep architecture. The performance
of machine learning methods is heavily dependent on the choice of data representation
(or features) [54]. In the early stage, machine learning works with shallow architectures,
for example, hidden Markov model, maximum entropy models, conditional random
fields, and perceptron or ANN with a single hidden layer [55]. They all have a few non-
linear feature transformations, resulting in a limited ability to extract features from raw
data and requiring expertise in engineering for design [56]. In recent years, deep learn-
ing (DL) under deep architectures represented by various deep neural networks (DNN)
has become a hot subfield of machine learning. Deep learning shows amazing power in
discovering intricate structures in high-dimensional data by transforming raw data into
more abstract and ultimately more useful representations through multiple simple but
nonlinear models [56].

Artificial neural networks

Here, we provide more information about ANN because of its notable impact on fiber
laser research. ANN is a mathematical model that imitates the structure and function
of biological neural networks, which is usually used to estimate or approximate func-
tions [38]. ANNSs consist of three types of layers: input, hidden, and output. Each layer
consists of many processing elements, known as neurons or nodes, which have a bias (or
called threshold) b and an active function fthat is usually nonlinear (such as the softmax,
relu, and sigmoid). According to the McCulloch-Pitts (MP) Model [57], when node j in
the network has # inputs, and x; (i=1, 2, ..., 1) notes the ith inputs with interconnection

weight w;, the output of node j is y; = f; (37 wix; — b;), where b; and f; means the bias

ip
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and activation function of node j. Plenty of nodes are arranged in a certain hierarchical
structure to form a network.

The architecture of an ANN can be classified by its topological structure, i.e., the over-
all connectivity and active function of nodes. ANNs can be divided into feedforward
and recurrent classes according to their topological connectivity structure. Feedforward
neural network is the most common network with a unidirectional multilayer structure,
where data flows from the input to the hidden layer and then to the output layer. The
simplest feedforward neural network is the fully connected network (FCNN), the nodes
in each layer are connected with all the nodes in the last layer. The recurrent neural net-
work (RNN) is developed mainly to process sequence data, the feature of which is that
the current output is related to the previous output, for example, video and text. RNNs
will memorize the previous information and apply it to the calculation of the current
output. The input of the hidden layer includes not only the output of the input layer but
also the output of the previously hidden layer. Theoretically, RNNs can process sequence
data of any length. However, in practice, to reduce complexity, it is often assumed that
the current state is only related to the first few states. Mainstream RNNs are long short-
term memory (LSTM) and gated recurrent unit (GRU) [58] (Fig. 2).

The training process of the ANN is to determine these weights with search operators.
Optimization is the core of the training, and most machine learning problems boil down
to optimization problems [59]. In practice, a great variety of gradient descent algorithms,
for example, stochastic gradient descent (SGD) algorithm, Adam, AdaGrad, RMSProp
[60-62], combined with the backpropagation algorithm, are used to train ANNs. The
working details of the backpropagation are similar to the chain rule for derivatives [56].
In recent years, in addition to the gradient descent algorithm, there has been a great
interest in combining learning with metaheuristics optimization algorithms, like evolu-
tion algorithms [63—65] and simulated annealing algorithms [66].

ANN with a multilayer structure rather than a single hidden layer is expected to
yield a better learning ability. However, the weights of multilayer networks are difficult
to optimize because of gradient diffusion (Gradient Diffusion). As the number of net-
work layers increases, this situation will become more serious. The existence of these
problems restricts the development of multilayer networks. In 2006, Geoffrey E. Hinton
et al. proposed improved training methods for deep architectures, which is regarded as
the beginning of deep learning [67]. Nowadays, DNNs, a FNN with more than one hid-
den layer [16], is still the mainstream deep learning framework. Popular DNNs include
restricted Boltzmann machine (RBM), deep belief network (DBN), and convolutional
neural network (CNN). Studies that exploit supervised, unsupervised, and semi-super-
vised learning have developed various architectures like autoencoder (AE), generative
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adversarial network (GAN), variational autoencoder (VAE), and graph convolutional
network (GCN) [68]. Besides, the deep Q-network (DQN) is a representative algorithm
in deep reinforcement learning, trained with a variant of Q-learning [69].

Learning-enabled fiber laser
We first analyze typical problems in fiber lasers and then explain what machine learning
can do for them.

The learning problems in the field of the fiber laser can be divided into identifica-
tion (learning the input-output prediction model), estimation (learning how to char-
acterize unmeasured parameters, such as reconstructed inputs, predicted theoretical
outputs, and inferred evaluation metrics of outputs), design (learning how to obtain the
target), and control (learning the control law). In practice, these problems are interre-
lated. For example, the identified prediction model can help solve estimation (including
prediction, reconstruction, and evaluation), design, and control problems. For the con-
venience of description, a general formulation of data relationship is considered, y = Ax,
where x and y are the input and corresponding output of the fiber laser system, A is the
forward operator or transfer function of fiber or fiber laser setup, which describes the
explicit relationship (e.g., physical principles and rules) or implicit relationship (with-
out enough physical knowledge) between the input x and output y. Sometimes, some
special terms are considered, such as Ax, the disturbance of input coming from the envi-
ronment, n, noise included in the output, and E(y), an evaluation function of output
y. Table 1 and Fig. 3 illustrate the typical problems in the fiber laser systems.

Prediction

Machine learning has demonstrated an outstanding system identification ability to
reproduce physical models by identifying hidden structures and learning input-output
functions based on data analysis, which even can distill theories of dynamic processes,
transforming observed data into predictive models [53]. For example, recurrent neu-
ral networks are influential in successful applications because of their ability to rep-
resent sequential dependent data, such as forecasting the spatiotemporal dynamics of
high-dimensional and reduced-order complex systems [70], modeling the large-scale
structure and low-order statistics of turbulent convection [71], and inferring high-
dimensional chaos [72]. In the fiber laser field, nonlinear dynamic systems described by

Table 1 Typical problems in the fiber laser systems (*means a specific value)

Problems Description Optimization solution Learning solution

Prediction Solving for y from x when Ais - finding £ x—y, y="1x)
unknown

Reconstruction  Solving for x* from specificy*  x* = argminf(Ax; y*) finding £y — x, x* =f(y*)

X

Evaluation Calculating a evaluation function - finding f.y —E(y),
E(y) with respect toy Ey)=A(y)

Design Finding x=x* to achieve x* = argminf (Ax; y*) finding f.y — x, x* =f(y*)
specific y* X

Control Solving for Ax to maintain Ax* = arg rTAnnf(A(x + Ax);y*)  finding f.y— Ax, Ax=A1(y)

X

y=y
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Fig. 3 Typical problems in the fiber laser systems

Evaluation

nonlinear partial differential equations (PDEs), e.g., the nonlinear Schrédinger equation
(NLSE), usually have no analytical solutions. Numerical methods and related calculation
strategies are studied for numerical solutions. There is a strong interest in finding a data-
driven solution through machine learning. In recent years, machine learning has shown
power in predicting complex nonlinear evolution governed by NLSE [73-75]. PINNs
guided with specific theories can also be an effective analytical tool to solve PDEs from
incomplete models and limited data [76].

Reconstruction and design (inverse problem)

The inverse problem in fiber laser fields can be divided into two categories. The first
one is the reconstruction problem: recovering the x” from measurement data y’, where
y =Ax 4+ n, for example, pulse reconstruction from a speckle pattern through a multi-
mode fiber, mode decomposition from measured intensity patterns. The noise # might
be an obstacle to achieving a high-precision reconstruction. The second is the design
and manipulation problem: given a specific design target y (e.g., a gain profile), to deter-
mine the required input of fiber laser system x™ (such as the input voltages, currents,
powers, and wavelengths), or the laser system itself A'(e.g., fiber with specific structures)
where y' = Ax" or y =A’x. The noise # is usually ignored during the design process. Typ-
ical design problems include finding suitable geometric parameters during fiber struc-
ture design and shaping signals to produce target temporal and spatial characteristics. In
some special cases, the target y is too ideal and cannot be achieved because of physical
theories or the restricted experimental condition and can only find one close to it.

It should be noted that the forward operator, A, can be completely known, partly
known, or unknown in different applications. When A is well known, some conventional
methods can transfer the inverse problem to an optimization problem and solve it with
an iterative process. For each y’, a similar operation needs to be solved from scratch.
However, this scheme is weak or cannot work when the forward operator, A, is com-
plex, requiring a time-consuming calculation procedure, partly known or even totally
unknown. Machine learning is a powerful tool to solve inverse problems, simply rely-
ing on learning the inverse mapping A~! and then obtaining a solution x =A™ (y) in a
single step. Further, additional feedback and control can help to improve the result accu-
racy, and a well-trained model can accelerate this process by replacing complex compu-
tation in A.
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Control

When there is a high requirement for control accuracy and speed because of dynami-
cal environmental disturbance, a feedback loop and the corresponding control unit
are required to follow the specific change. Learning and optimization are two primary
means to affect robustness. They usually involve computational processes incorporated
within the system that trigger parametric updating and knowledge or model enhance-
ment, improving progressively. Machine learning provides new insights for feedback and
control [77, 78], particularly in the dynamic, complex, and disturbance-sensitive system,
where conventional control algorithm shows low control bandwidth and weak robust-
ness. An exciting discovery in published literature is that learning models can automati-
cally reject instrumental or environmental noise. Some applications combine machine
learning with traditional algorithms to enhance performance [79, 80].

Denoising

This part has a tight relationship with image and signal processing. Machine learning
techniques can overcome data error to some extent, such as removing bad points and
blur in the raw data [81, 82] and completing tasks when the measurement device yields
strong noise [83]. The denoising ability of machine learning is significant in many practi-
cal applications.

Other applications
Machine learning can be used to reduce manual engineering in experimental operations
of laboratories by modifying the hardware, such as the alignment of laser beams [84].

Fiber and laser design

Different applications require lasers output with specific characteristics in time, space,
and frequency domains. In the design problems to obtain on-demand output, factors like
fiber structure, laser type, experimental beam path, etc., usually come into considera-
tion. This section will review typical applications of machine learning techniques in fiber
structure design and fiber amplifiers design. Machine learning can complement iterative
design methods based on physical principles and optimization algorithms where each
design problem needs to be repeated. Besides, nonlinear effects enable laser shaping in
an optical fiber with many degrees of freedom. A prediction model of nonlinear phe-
nomena and laser propagation can help with laser properties shaping. The related con-
tent of properties manipulation based on the study of nonlinear effects can be found in
Section 4 (Fig. 4).

Fiber design

Photonic crystal fiber (PCF) is an important new optical waveguide. Different from the
structure of conventional fibers with two concentric regions (core and cladding) with
varying doping levels, the core of PCFs has air holes periodically arranged along the
fiber’s length, which makes the cladding index wavelength-dependent [85]. The optical
properties of PCF result from a series of structure parameters, such as the holes size,
hole spacing, and the number of air-hole rings. Therefore, the parameters design of the
PCF structure relies on high-precision modeling of structure parameters. Conventional
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Fig. 4 Design and manipulation for targeted laser properties

numerical methods like the finite element method, block-iterative frequency-domain
method, and plane wave expansion method need to perform multiple times for a specific
fiber design, which requires significant computing resources when dealing with complex
fiber structures.

In 2019, Sunny Chugh et al. adopted a FCNN with supervised learning to model a
solid-core PCF [86]. PCF geometric parameters, including the diameter of holes (d), the
separation between the center of two adjacent holes (pitch, A), the refractive index of
core (n.), wavelength (M), and the number of rings (N,), are considered as the inputs of
ANN, and optical properties including effective index (n.q), effective mode area (A.g),
dispersion (D), and confinement loss (a,), are their labels, respectively, which are calcu-
lated using Lumerical Mode Solutions. Simulation quantitative analyses show that this
method can support the accurate and quick design for PCF structure parameters. The
predicted optical properties of the trained ANN model have an acceptable MSE value
with their labels. As for the computation runtimes, Lumerical Mode Solutions takes a
few minutes for each parameter, while the ANN model only needs a few milliseconds
(Fig. 5).

Fiber amplifier design

Machine learning plays a more important role in innovative fiber amplifier design.
Raman amplifier (RA) is a typical research exemplar [79, 87-90]. RA is an attractive
optical amplification scheme that offers gain availability across a broad range of wave-
lengths while maintaining low noise due to distributed amplification. Inverse design for
Raman amplifiers focuses on selecting pump powers and wavelengths that would result
in a targeted gain profile. The challenge of this problem lies in the highly-complex inter-
action between pumps and Raman gain [87].

In 2019, Darko Zibar et al. demonstrated an ANN method for the highly-accurate
design of arbitrary Raman gain profiles, numerically in C and C+ L-band and experi-
mentally in C band [87]. The ANN resembles auto-encoders, including two FNNs. The
first is the backward neural network NN, mapping from the Raman gain profile to the
required pump power and wavelength configurations. The second one NNj,, forward
neural network, represents the forward mapping between the pump powers and wave-
lengths and the Raman gain profile, which can work to fine-adjust the predicted results
of NN, when combined with a gradient descent algorithm.
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Fig. 5 Photonic crystal fiber modeling with a fully connected neural network. Figure adapted with
permission from ref. [86] (© 2019 Optical Society of America under the terms of the OSA Open Access
Publishing Agreement)

Prediction and control of nonlinear effect

Machine learning provides physics-free and physics-informed manners for modeling
nonlinear fiber laser systems. On the one hand, with an amount of data representing
system behaviors and powerful computation hardware, machine learning techniques
can find the relationship between system state variables (input, internal, and output
variables), providing new avenues for exploring high-dimensional dynamical systems
without solving complex mathematical and physical equations. On the other hand,
incorporating physical principles into neural networks can help regularize the train-
ing in small data regimes. Further, the obtained model of the nonlinear effect can also
be used to design and control the laser properties (Fig. 6).

Pulse prediction of nonlinear dynamics
High nonlinearity in pulse evolution is an obstacle to establishing accurate numeri-
cal propagation simulations. Machine learning can provide an alternative solution by
modeling the propagation and evolution of laser properties based on collected data
from the nonlinear system.

In 2021, Lauri Salmela et al. used a RNN to achieve model-free prediction of com-
plex nonlinear propagation in optical fibers governed by an NLSE system [73]. The
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Fig. 6 Prediction of laser properties governed by the nonlinear effects
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trained network was proved to work for higher-order soliton compression and ultra-
broadband supercontinuum generation, predicting temporal and spectral evolutions
of ultrashort pulses in highly nonlinear fibers solely from the input pulse intensity
profile. Other propagation scenarios for a wider range of input conditions and fiber
systems can also be generalized, including multimode propagation.

Hao Sui et al. demonstrated a compressed convolutional neural network as an inverse
computation tool to predict initial pulse distribution from a series of discrete power pro-
files at different propagation distances [75]. Two nonlinear dynamics, the pulse evolution
in fiber optical parametric amplifier systems and the soliton pair evolution in high-non-
linear fiber, are studied in simulations. The simulation results on the test datasets hold
a deviation with fair stability, which indicts the potential applications of this method in
optimizing the initial pulse of fiber optics systems (Fig. 7).

Xiaotian Jiang et al. presented a physical-informed neural network to solve NLSE and
characterize the pulse evolution of different input waveforms [91]. The network uses an
initial pulse and its label (responsive NLSE solution) for training. The predicted NLSE
solution from the network will be used to calculate its corresponding pulse via physi-
cal theory. The loss is combined with two terms: the loss of initial pulse and calculated
pulse, and the other term describes the difference between the NLSE solution from net-
work and label. In this way, the predicted results of the network can always satisfy the
NLSE. The network can work with less computational complexity than a commonly used
numerical method, the split-step Fourier method.

Spatiotemporal nonlinearities prediction and control

In 2020, Ugur Tegin studied spatiotemporal nonlinearities in multimode fibers for
spectrum shaping. The results show that a multilayer neural network could learn non-
linear frequency conversion dynamics, serving for generating a target beam spectrum
[92]. Another two highly nonlinear phenomena, cascaded stimulated Raman scatter-
ing based broadening of the spectrum and supercontinuum generation, are also under
consideration. Later in 2021, they extended the method of ref. [73] (see Pulse Predic-
tion of Nonlinear Dynamics) to predict spatiotemporal nonlinear propagation for an
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Fig. 7 Initial pulse distribution prediction with a convolutional neural network. Figure adapted with
permission from ref. [75] (© 2021 Optical Society of America under the terms of the OSA Open Access
Publishing Agreement)
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arbitrary number of modes in graded-index multimode fibers through a RNN [74]
(Fig. 8).

Spatiotemporal nonlinearities prediction is significant for generating a white-light
continuum (WLC). The accuracy model of the underlying spatiotemporal nonlin-
ear optical process will help the generation of the broad and stable WLC, replacing
the time-consuming empirical optimization procedures of WLC properties (such as
bandwidth, energy, and stability). In 2021, Carlo M. Valensise et al. adopted deep
reinforcement learning to control the spatiotemporal dynamics for WLC generation
[93]. The learning agent can learn an effective control policy of three degrees param-
eters (the energy of the pump pulse, the numerical aperture of the focused beam, and
the position of the nonlinear plate concerning the beam waist), achieving stable and
broadband WLC generation experimentally (Fig. 9).

Pulse nonlinear shaping

Pulse shaping in optical fibers based on wave-chopping devices and nonlinear control
are two efficient methods to tailor the on-demand laser properties. Wave-chopping is a
primary method for pulse laser generation from extra-cavity modulation of continuous
laser, which commonly relies on chopper devices such as electro-optic and acousto-optic
modulators [94, 95] and enables flexible shaping of temporal properties to get arbitrary
pulse shape and duration. Limited by the response time of the driver, it is hard for the
extra-cavity modulated pulse fiber laser to obtain the ultra-short pulse fiber, usually
with pulse durations in ps and ns levels [96—100]. The pulse power obtained from extra-
of-cavity modulation is limited by the power handleability of the modulation device. A
multi-stage amplifier is required to get a high pulse output, but this will lead to pulse
distortion because of the gain saturation effect [99]. A method to overcome this problem
is to find the suitable modulation signal by optimization algorithm to pre-compensate
distortion [97].

An accuracy model of pulse nonlinear propagation is another way for pulse shaping
[101, 102]. In 2020 and 2021, Sonia Boscolo et al. used artificial neural networks to model
nonlinear pulse propagation in fibers with normal and anomalous dispersion [103, 104].
A FCNN is trained to learn the relationship between the temporal and spectral intensity
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Fig. 8 Spectrum shaping with a fully connected neural network. Figure adapted with permission from ref.
[92] (© The Author(s) 2020, distributed under the terms of the Creative Commons Attribution license (http://
creativecommons.org/ licenses/by/4.0/)
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Fig. 9 White-light continuum generation with deep reinforcement learning. Figure adapted with permission
from ref. [93] (© 2021 Optical Society of America under the terms of the OSA Open Access Publishing
Agreement)

profiles of the pulses and the fiber parameters. Further, the network can identify the ini-
tial pulse shape according to the pulse shape from the fiber output.

Reconstruction and evaluation of laser properties

In laser property reconstruction and evaluation, recent research involving machine
learning focuses on indirect methods, highlighting the advantage of low experimental
cost and high immunity to instrumental and environmental noise. In detail, measure-
ment images (such as intensity patterns like pulse intensity, spectral intensity, near-field
beam intensity) are mapped to the required laser properties (such as ultrashort pulses
spectral amplitude, phase, and temporal duration) for one-step inference rather than a
direct measurement. For example, a deep learning method has been explored to map
the speckle pattern of a single-mode fiber followed by a disordered medium to the wave-
length of a diode laser directly [105]. When considering phase detection, there may be
a phase ambiguity problem (e.g., multiple phases result in the same intensity pattern).
To eliminate the ambiguity, a speckle pattern passing through a scattering device, e.g.,
the multimode fiber, is used to break the degeneracy of data and build a one-to-one cor-
respondence to the required laser properties, such as a single-shot full-field pulse meas-
urement technique enabled by deep learning [106] (Fig. 10).

Ultrashort pulses reconstruction

Ultrashort laser pulse reconstruction is a challenging topic in ultrafast science, such as
ultrafast imaging, femtochemistry, coherent control, and high-harmonic spectroscopy
[107]. Typically, the duration of an ultrashort pulse is below picoseconds and too short
to be measured directly by photodiodes. Frequency-resolved optical gating (FROG)
[108] and dispersion scan (d-scan) [109] are two widespread indirect methods. With
a recovery algorithm, such as the principal component general projections algorithm
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Fig. 10 Reconstruction and evaluation of laser properties

[110] and Ptychographic reconstruction algorithm [111], the 2D trace can support the
reconstruction of ultrafast pulses. In recent years, deep learning has been introduced in
ultrafast pulses reconstruction. In 2018, Tom Zahavy et al. first applied the DNN tech-
nique to FROG to characterize ultrashort optical femtosecond pulses phase [112]. Later,
more work on the deep-learning reconstruction of the ultrashort pulse phase was dem-
onstrated for the attosecond pulse [113, 114].

One research in the fiber laser field showed temporal duration characterization
of the mode-locked pulses using the dispersive Fourier transform trace [115]. The
trained artificial neural network can predict the pulse duration with an average con-
sistency of 95%. The proposed technique can be adapted to create a compact and low-
cost feedback loop in complex laser systems.

Mode decomposition

Mode decomposition (MD) technique of multimode fibers, which aims to calculate
the amplitude and phase information of each eigenmode, is essential for analyzing the
complete optical field and its beam properties. A challenge of complete mode decom-
position is that different combinations of modal weights and phases may result in the
same near-field intensity pattern [116]. In the few-mode fiber, the main ambiguity
comes from the modal phase.

In 2019, Yi An et al. used a CNN, modified from VGG-16, with supervised training to
predict modal weights and relative phases with only the near-field intensity pattern for
the first time [117]. Because of phase ambiguity, the cosine value of relative phases is
adopted rather than relative phases themselves as a part of labels to ensure the network
can converge under a one-to-one mapping relationship. Considering the sign of rela-
tive modal phases, the process from predicted cosine values to relative phases takes up a
higher time cost as the number of modes increases. Restricted by the capturing speed of
the CCD (30Hz), the real-time decomposing rate is experimentally limited to 29.9 Hz for
3-mode and 6-mode cases if it only needs modal weight determination [118, 119]. When
predicting both modal weights and relative phases, the real-time decomposing rate is
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29.9 Hz for 3-mode and 24 Hz for 6-mode cases. Later, this work was extended to modal
analysis for Hermite—Gaussian beams emitting from solid-state lasers [120] (Fig. 11).

In 2020, Xiaojie Fan et al. handled the phase ambiguity of modal coefficients using
two labels: near-field and far-field images [121]. A combined loss to train a convolu-
tional neural network considers the reconstruction loss of near-field and far-field images
together. Simulation results show that the training accuracy can be improved at the cost
of increased labels in the datasets.

In 2021, with more powerful computational graphics processing units, Stefan Rothe
et al. presented mode decomposition with another type of CNN, DenseNet, achieving
10 modes experimentally [122]. Like [117-120], they also used the cosine value of rela-
tive phases to make the label. The trained network can work for datasets with modes
unknown, implementing mode decomposition on a subset of 10 modes of a 55-mode
fiber.

Han Gao et al. used optimized datasets for network training to reduce the calculation
complexity [123]. The principal component analysis, a dimensionality reduction algo-
rithm, was adopted to remove redundant information and noise in the near-field beam
patterns. A 3-layer FCNN is trained to map the pre-processed near-field beam patterns
to its label (the cosine value of the modal phase and the modal weights). In a 3-mode
simulation, dataset optimization can help reduce the speed of complete modal demodu-
lation from 40 ms per frame to 5ms per frame. In the 3-mode experiment test, the aver-
aged correlation between reconstructed images and target images of 300 samples is
0.9224.

Beam quality evaluation

Beam propagation factor M? is an important parameter for assessing laser beam qual-
ity. A standard M? measurement determined by the International Organization for
Standardization is experimentally complex and relatively time-consuming. Improved
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Fig. 11 Mode decomposition with a convolutional neural network modified from VGG-16. Figure adapted
with permission from ref. [117] (© 2019 Optical Society of America under the terms of the OSA Open Access
Publishing Agreement)
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techniques for fiber laser include a single-shot scheme with a Fabry-Perot resona-
tor [124], complex amplitude reconstruction methods with interferometers [125, 126],
and two identical Charge-Coupled Device (CCD)s [127], and mode decomposition
methods [128-130]. Although the relationship between the M? factor and a single near-
field pattern is implicit, deep learning method can extract a straightforward mapping
based on data analysis.

In 2019, Yi An et al. utilized a trained CNN to achieve M? determination of the fiber
beams in about 5ms with only one near-field beam pattern from the CCD, which is
highly competitive in real-time measurement for time-varying beams [131]. This method
also shows excellent robustness for imperfect beam patterns, such as noisy patterns and
patterns from the CCD with vertical blooming [83] (Fig. 12).

Robust control for laser and laser system

Introducing a feedback mechanism into the architecture of fiber laser or fiber laser
system to perform closed-loop control of external and internal factors through servo
drive components is a feasible solution to maintaining its stable operation and state
locking. Ongoing efforts in machine learning have made the control of complex and
sensitive fiber laser and fiber laser systems.

Mode locking in mode-locked laser

Mode-locked fiber lasers (MLFLs) based on nonlinear polarization rotation are the
mainstream commercial products, and their performance is extremely sensitive to per-
turbations inside or outside the cavity, thus requiring strict environmental control to
maintain robust performance. Cavity sensitivity to birefringence has a significant impact
on mode-locking dynamics. However, quantitative modeling of stochastic and sensitive
birefringence is unclear. Traversal and optimization algorithms have been wildly studied
for automatic mode-locking techniques [30, 132—137].
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Fig. 12 M? evaluation with a convolutional neural network modified from VGG-16. Figure adapted with
permission from ref. [131] (© 2019 Optical Society of America under the terms of the OSA Open Access
Publishing Agreement)
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In 2014, a research group at the University of Washington achieved birefringence
characterization of MLFLs based on machine learning sparse representation in a numer-
ical simulation [138]. Further, by combining the adaptive extremum-seeking controllers
and the machine learning based birefringence classification, they proposed a self-tuning
fiber laser based on numerical simulations [139]. In 2018, they developed a self-tuning
laser based on deep learning and model predictive control (DL-MPC) algorithm [140].
The centerpiece of the DL-MPC algorithm is the model prediction module, a recurrent
neural network to predict the future laser states. When the difference between the pre-
dicted and real laser state exceeds a certain threshold, a VAE will work at first to infer
the birefringence. Then a simple FCNN will map its result to the control input (angles of
a polarizer and three quarter-waveplates) to maintain mode-locking (Fig. 13).

In 2021, Qiuquan Yan et al. demonstrated a deep-reinforcement learning algorithm with
low latency (DELAY) for the automatic mode-locked operation in a saturable absorber-
based ultrafast fiber laser [141]. The DELAY algorithm has four deep neural networks,
two for selecting the appropriate action (adjust input voltages of the electrical polariza-
tion controller) according to the laser state and the other two to evaluate the effect of the
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Fig. 13 Mode-locking with deep-learning model predictive control algorithm. Figure adapted with
permission from ref. [140] (© 2018 Optical Society of America, Open Access)
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executed actions. The experiment result shows that the fastest recovery time of the algo-
rithm after vibration is 0.472s, and the average recovery time is 1.948 s (Fig. 14).

Phase locking in coherent laser combination

Fiber laser has attracted research interest in many fields because of its compact struc-
ture, high efficiency, high portability, and good beam quality. As the power increases,
the beam quality of a single fiber laser will decrease due to some physical limits [3-5].
Coherent beam combination (CBC) of multiple fiber lasers is a practical approach to
breaking the power limitation [142, 143]. With phase synchronization between the sub-
beams, the coherent output could be realized, thereby improving the power of the entire
output beam while maintaining beam quality and improving the brightness.

Because of mechanical and thermal perturbations in actual engineering, a phase con-
trol technique is required to ensure phase synchronization and stabilization of sub-
beams and thus maximize combination efficiency. The active phase-locking method uses
a phase-detection and feedback servo control system to compensate for the dynamic
phase noise to realize the in-phase coherent output of each sub-beam. Phase detection
in classic active phase-locking can be divided into two categories: direct and indirect
detection. Direct ones yield high accuracy while requiring complex experimental struc-
tures, such as the heterodyne detection method [144, 145], interferometric phase meas-
urement method [146], phase-intensity mapping method [147], and pattern recognition
method [148]. Indirect detection techniques utilize electrical modulation and demodu-
lation to find phase information, typically dithering techniques [149-152] and stochastic
parallel gradient descent (SPGD) algorithm [153].

A common question in CBC is how to combine a large number of sub-beams effi-
ciently to achieve a high output power. However, the control bandwidth of most classic
active methods decreases along with the number of sub-beams. The control bandwidth

of the phase control is still a challenging problem in large-scale CBC systems. Machine
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Fig. 14 Mode-locking with low-latency deep-reinforcement learning algorithm. Figure adapted with
permission from ref. [141] (© 2021 Chinese Laser Press, Open Access)
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learning has recently been introduced to extend the classic control methods, where rein-
forcement and supervised learning are two main approaches in applications.

In 2019, Henrik Tinnermann et al. demonstrated deep reinforcement learning for
Mach-Zehnder interferometer CBC set up and tiled aperture beam combining [77,
78]. The result of the critic network is regarded as a reward for beam quality, and it will
decide the action of the control network. The control strategy is similar to that in an
optimization scheme. Since it needs time to take action, the robustness still needs to be
enhanced before practical applications (Fig. 15).

In 2021, Maksym Shpakovych et al. proposed a quasi-reinforcement learning algorithm
for an array of up to 100 laser beams [154]. The piston aberration in this system is created
by a spatial light modulator (SLM) rather than coming from the actual environment. In
this case, the influence of dynamic random noise in real systems was not considered.

In the same year, Xi Zhang et al. applied the Q-learning algorithm, an iterative rein-
forcement learning method, to CBC [155]. When the number of channels is low, it has
a similar performance to the SPGD algorithm, while its parameter debugging is more
convenient than the SPGD algorithm.

A feasible supervised deep-learning based CBC relies on a well-trained neural network
that can reverse mapping the phase of each sub-beam from an intensity profile. During
the phase control process, the phase errors are compensated by the predicted phase of
the neural network. The premise of this method is to ensure one-to-one correspondence
between input and output. Only this way can the network converge and thus have phase
prediction capabilities. In the symmetrically arranged beam array of tiled aperture sys-
tems, the far-field intensity distribution can correspond to the different phase distribu-
tions in the near-field [156], so it cannot be directly paired with the phase as training data.

In 2019, Tianyue Hou et al. incorporated a CNN based on supervised learning into
tiled aperture CBC systems to learn the relationship between the intensity profile of the
combined beam and the relative phases of array elements for the first time [157]. In this
way, the required phase for compensation can be obtained directly, which is quite dif-
ferent from the methods based on reinforcement learning [77, 78, 154, 155]. This work
adopted non-focal-plane rather than focal-plane images to train the deep-learning
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Fig. 15 Tiled aperture beam combining with deep reinforcement learning. Figure adapted with permission
from ref. [78] (© The Author(s) 2019, distributed under the terms of the Creative Commons Attribution license
(http://creativecommons.org/ licenses/by/4.0/)
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model to avoid the data collision problem. Later, this method is extended to generate
orbital angular momentum beams with different topological charges from a CBC system
[80]. It is to be noted that structured light [158—161], one of the research frontiers, can
be generated based on a beam array inspired by similar methods (Fig. 16).

Furthermore, to obtain a straightforward optical design that could adopt the focal-plane
intensity image, in 2021, Qi Chang et al. considered breaking the degeneracy of the com-
bined beam pattern in the focal plane with a diffuser [162]. A CNN maps the scattering
intensity images in the focal plane to the phase error of the fiber array. To some extent, the
role of the diffuser is equivalent to applying both intensity and phase modulation.

Similarly, Renqi Liu et al. applied amplitude modulation into sub-beams of a tiled-
aperture coherent beam combination system [163]. In the two-beam coherent combina-
tion experiment, the system can simultaneously measure sub-beam beam-pointing and
phase difference with an RMS accuracy of about 0.2 purad and A/250, respectively.

Another research adopted a four-layer FCNN to combine 81 channels on a two-
dimensional, 9x9 beam diffractive optical element (DOE) combiner [164]. Similar to
[154], this system also works in an ideal situation. The network was trained to map the
far-field interference pattern to the phase of DOE. Since nearly identical interference
patterns might come from different beam phases, the phase ambiguity is an obstacle
to the convergence of networks. A core operation of this work is that the training data
is produced from a limited phase perturbation range (less than the 180-degree range)
which is regarded as the unambiguous region. The trained network can quickly predict
the phase for small yet frequent perturbations, which is the usual case. A feedback loop
is introduced to pull the phase into the trained region through a random-walk if the
phase is out of the trained range. This work also discussed why limited region training is
adequate for the full phase perturbation range.

Discussions and prospects

Over the last decade, machine learning has dramatically boosted the development of fiber
lasers, leading to new paradigms for advanced research and practical engineering in fiber
lasers. Even though many pretty impressive results have been presented in the available
studies, potential problems and challenges remain. For example, some work is based only
on numerical data or numerical verification. Further work needs to be concerned, such

as uncovering the governing models from experimental responses, validating learning
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Fig. 16 Coherent beam combination with a deep convolutional neural network and non-focal-plane images.
Figure adapted with permission from ref. [157] (© The Author(s) 2019, distributed under the terms of the
Creative Commons Attribution license, http://creativecommons.org/ licenses/by/4.0/)
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models in laboratories, and online learning involving environmental changes in real-time
applications. Besides, the high burden of data collection, expensive computation cost, and
poor interpretability might severely restrict the application possibilities of machine learn-
ing, especially the deep learning methods with a black-box mechanism. Applications that
require high interpretability in the industry still prefer classical optimization algorithms.
When should we choose the machine learning method under the trade-off of effective-
ness and cost? What makes one machine learning method better than another? To what
extent would we trust the machine learning results and conclusions? The exploration of
fundamental questions like the above will drive machine learning research.

Opportunities and challenges are on the way. Going forward, effective tools are sup-
posed to accelerate machine learning research. Mature open sources like TensorFlow
[165] and PyTorch [166], have brought great convenience to the popularization of
machine learning. However, standardized benchmarks for fiber and fiber laser research
are rare. Further work could consider creating open datasets for a specific topic that
serve as a standard for judging or comparing other things, which would benefit machine
learning research in the relative field.

Novel machine learning techniques are emerging in an endless stream. Various new
frameworks and new mathematics for scalable, robust, and rigorous next-generation
learning machines are under development, which will continue to promote the develop-
ment of lasers and achieve more brilliant results in the foreseeable future. For example,
algorithm design by hand is a laborious process. To improve it, the concept of learning
to optimize deserves more attention [167, 168], which shows algorithm design can be
cast as a learning problem. The relative technique might benefit the creation of autono-
mous fiber lasers for self-learning and intelligence, featuring unlimited scalability and
resistance to disruption.
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DNNs Deep neural networks

RL Reinforcement learning

PINN Physics-informed neural network
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RNN The recurrent neural network
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