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Abstract

With the advent of the era of big data, artificial intelligence has attracted continuous
attention from all walks of life, and has been widely used in medical image analysis,
molecular and material science, language recognition and other fields. As the basis
of artificial intelligence, the research results of neural network are remarkable.
However, due to the inherent defect that electrical signal is easily interfered and the
processing speed is proportional to the energy loss, researchers have turned their
attention to light, trying to build neural networks in the field of optics, making full
use of the parallel processing ability of light to solve the problems of electronic
neural networks. After continuous research and development, optical neural network
has become the forefront of the world. Here, we mainly introduce the development
of this field, summarize and compare some classical researches and algorithm
theories, and look forward to the future of optical neural network.

Keywords: Optical neural network, Deep learning, Optical linear operation, Optical
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Introduction
As one of most active fields in computer science, artificial intelligence is focus on

simulating structure of the nervous system through constructing artificial neural net-

work (ANN) which establish connections between neurons in various layers of the

neural network and make it good generalization ability and robustness. Since the

1980s, the research work of ANN has made great progress. Also, it has successfully

solved many practical problems that are difficult to be solved by modern computers in

the fields of pattern recognition, intelligent robot, automatic control, prediction and es-

timation, biomedicine, economy, etc., with good intelligence characteristics.

At present, electronic computing is still the most important computing power sup-

port for the implementation of artificial intelligence algorithms, especially deep ANN

model. Although the specific hardware architectures are different, in a word, they all

adopt the von Neumann type computing principle to complete the computing task

with complex logic circuits and processor chips [1]. The original neural network archi-

tecture used CPU for computing, but it could not meet the requirements of a large
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number of floating-point operations in deep network, especially training phase. More-

over, the parallel computing efficiency was too low, and it was quickly replaced by GPU

with strong parallel computing capability. It can be said that GPU promoted the devel-

opment of deep learning.

However, the demand for computational power in deep learning is endless. Lim-

iting by the interference of electrical signals, energy consumption and physical

limits [2, 3], although electronic components base on silicon can still support it

now, the traditional deep learning has quietly appeared a bottleneck. The academia

and industrial circles attempt to seek alternative methods to solve electronic de-

fects that can take precautions on computing power. As the speed of light as high

as 300,000 km per second, which is 300 times faster than that of electron, the in-

formation carrying ability and variety which is 2*10^4 times more than that of

electric channels, as well as high parallelism and strong anti-interference [4, 5], it

has great advantages in information transmission and optical computing. Replacing

electricity with light has become a potential and promising work mode, which is

the trend of the times.

Therefore, people try to build neural networks by optical way to achieve deep learn-

ing architecture. Optical neural network (ONN) emerges as the times require. It has

the characteristics of high bandwidth, high interconnection and internal parallel pro-

cessing, which can accelerate the partial operation of software and electronic hardware,

even up to the “light speed”, is a promising method to replace artificial neural network.

In the photonic neural network, matrix multiplication can be performed at the speed of

light, which can effectively solve the dense matrix multiplication in the artificial neural

network, so as to reduce the consumption of energy and time. Moreover, the nonlinear-

ity in ANN can also be realized by nonlinear optical elements. Once the training of the

optical neural network is completed, the entire structure can perform the optical signal

calculation at the speed of light without additional energy input. In 1978, Goodman of

Stanford University first proposed the theoretical model of optical vector-matrix multi-

plier [6], which became an important step in optical calculation [7, 8], and promoted

the development of optical matrix multiplier (OMM) [9, 10] and photonic neural

network.

In this paper, we are going to discuss the hot topic in the field of deep learning——

optical deep learning, that is to build neural network by optical method instead of trad-

itional artificial neural network and train it. It has a large number of linear layers and is

connected with each other. The specific structure of the paper is as follows: in the first

chapter, it briefly introduces how the artificial neural network developed into optical

neural network. ANN is mainly composed of two core components——linear part and

nonlinear activation, and then is trained to adjust and optimize the weights of each

connection, make the network converge in the end. Therefore, the second and third

chapters start from the two core operations respectively, describe in detail how the re-

searchers realize the linear operation and nonlinear activation function in the optical

way after introducing the basic principles, so as to successfully build the optical neural

network. The fourth chapter, according to different training methods, elaborates the

particular training process of optical neural network, and carries out experiments and

results comparison for some typical applications. Finally, in the fifth chapter, we

analyze and discuss the optical neural network, describe the possible future research
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direction and development of ONN; and a brief and to the point summary is given in

the sixth chapter.

The optical realization of linear operation
In the introduce we mentioned ONN is the optical implementation of both of linear

and nonlinear operations of ANN. According to the structure of ANN [11] and the

working principle of neurons [12]——linear operation zi = bi + ∑jWijxj and nonlinear ac-

tivation ai = ϕ(zi) in Fig. 1, it can be seen that the neural network requires a lot of linear

multiplication and summation operations. The most direct embodiment of such a

multiplication and summation operation in the algorithm is to give two groups of data

and carry out multiplication and addition operations in the “for” loop. If we think about

this problem simply, we will find that many iterations are needed to complete this op-

eration, which will waste a lot of computing resources. Thus, people begin to seek a

faster method——vectorization method, which can make it into the multiplication of

two matrices namely the input matrix and the weight matrix.

We know that it’s easy to achieve the computation between two matrices by using an

electronic computer, but it’s also difficult to realize when the matrix dimension is very

large. For example, to realize the multiplication of two matrices with a size of n*n, n3

multiplication and n3 addition operations need to be performed, which is 2n3 opera-

tions in total. If n is very large, assuming it is 1024, it requires to take 214,7483,648 cal-

culations that is a huge number, up to millions of times. It can be seen that using

computer to achieve multiplication operations is very time-consuming. However, if the

high speed, high parallelism and anti-interference of light are used to achieve this oper-

ation by optical means, it is likely to require only a few or even only one operation. In

the training of neural network, the data we need to process and analyze is extremely

large. At this time, the characteristics of optics are extremely important, which can

bring great convenience for calculation. The appearance of optical matrix multiplier

lays the foundation of optical calculation, and provides a development path for the op-

tics of neural network.

Next, we will briefly introduce optical matrix multiplier, which is the basic optical

realization of linear multiplication and summation operation, namely matrix

Fig. 1 a The structure of ANN [11]. b The principle of neurons [12]
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multiplication, and then explain how to realize linear operation in optical neural net-

work from the different principles of implementing the multiplication operation.

Optical matrix multiplier

Matrix multiplication is a very important operation in matrix operation, and its calcula-

tion process is complicated. Simply put, the multiplication between two matrices is that

the corresponding elements of row i of the first matrix and column j of the second

matrix are multiplied and added one by one, and then get result matrix element cij,

which is also called inner product operation. The multiplication result matrix can be

obtained by traversing the rows or columns of the two matrices once. If A = (aij)m × s

and B = (bij)s × n, the matrix multiplication operation is defined as follows:

A� B ¼ C;where C ¼ cij
� �

m�n; cij ¼
Xs
k¼1

aikbkj; i ¼ 1; 2;⋯;m; j ¼ 1; 2;⋯; nð Þ

In fact, multiplication is a process of number accumulation for many times. Corres-

pondingly, matrix multiplication is the sum of several different numbers after accumu-

lation for many times. In the electronic computer, the accumulator as the core

arithmetical unit, can be used to achieve matrix multiplication operation. Similarly,

such an optical multiplier can be designed as the core of the photonic computing sys-

tem, which has two-dimensional parallelism. Optical multiplication is the process in

which optical information is loaded and converted, and the optical multiplier is respon-

sible for realizing this process. The principle of the optical multiplier is simply de-

scribed in Fig. 2(a).

If the function f in the graph is replaced by a matrix, the graph can be simply repre-

sented as multiplication between matrices. And matrices can be considered as a com-

bination of vectors, so we can start from multiplying vectors by matrices to multiplying

matrices by matrices. The vector-matrix multiplication system model was first pro-

posed by Goodman [6]. After continuous research and improvement by scholars, the

final structure of vector-matrix multiplier is shown in Fig. 2(b).

Let’s take an m*n matrix A multiplied by an n-dimensional vector B to get an m-

dimensional vector C. Firstly, vector B is realized by using linear array light source, and

the light intensity of n light sources of linear array is corresponding to the input vector

B. Then, the light beam emitted by the linear array source passes through the collima-

tion lens L1 to form a parallel light and irradiates on the cylinder lens CL1. Due to its

fan-out effect in the horizontal direction, B is duplicated by CL1 in the vertical direc-

tion to form a light band. After that, the beam reaches SLM, which is controlled by the

computer to load the matrix A, and the two are multiplied. Then, the beam passes

through the collimating lens CL2. Due to its fan-in effect in the vertical direction, the

light of all pixels in the i-th row of SLM will be concentrated on the i-th detector of

CCD. It can be found that in vector-matrix multiplication, the optical system will first

copy and paste the vector and expand it into a matrix, and then multiply it with an-

other matrix. From another point of view, this is a special kind of matrix-matrix multi-

plication. In 1993, an optical 4f system was proposed to realize the multiplication

between matrices, as shown in Fig. 2(c), which mainly uses the Fourier transform of

lens and the convolution principle [13].
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The optical matrix multiplier fully embodies the parallel computing power of light,

and the optical linear operation completed by OMM is essentially to realize the modu-

lation of information-carrying light by means of certain approaches and some proper-

ties of light, such as diffraction, interference and so on.

Diffraction of light to realize linear operation

Light travels along a straight line in the air. When encountering an obstacle or a small

hole, light will deviate from the straight-line propagation path, resulting in the

phenomenon of uneven distribution of light intensity, which is called diffraction. After

the discovery of diffraction in 1665, it attracted the attention of many scholars who

invested a great deal of efforts in this field, and formed a complete system theory after

long-term development.

In 1678, The Dutch physicist Huygens proposed that every point on the wave surface

could be regarded as the wave source of the emitted secondary wave, emitting spherical

secondary wave respectively. At a certain time in the future, the envelopment surface of

these secondary waves would be the new wave surface at that time, which is the Huy-

gens principle [14]. Although Huygens principle well explains refraction and reflection

and birefringence of light, it does not involve the analysis of light wave intensity and

wavelength, and cannot well explain diffraction phenomenon. After the appearance of

the Young’s Double-Slit Interference experiment in 1810 [15], Fresnel supplemented

Huygens principle with the help of wavelet coherent superposition in 1815, and devel-

oped qualitative Huygens principle into semi-quantitative principle with mathematical

proof, which is called Huygens-Fresnel principle [16], expressed as ~EðPÞ ¼ A
iλ ∬

Σ

exp ðikRÞ
R

KðθÞdσ . However, this principle is only a semi-quantitative principle, and

there is no specific function representation for the tilt factor, and the meaning of

Fig. 2 Optical Matrix Multiplier. a The optical multiplier. b The structure of Vector-Matrix multiplication
system [6]. c Matrix-matrix multiplication realized by 4f system [13]
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proportionality coefficient is not clear, so it has limitations. Therefore, Kirchhoff and

Sommerfeld derived the diffraction formula according to the general wave theory, and

gave the specific form of the tilt factor and proportional coefficient. Kirchhoff used

Green Theorem [17] to solve the Helmholtz equation [18], obtained the complex amp-

litude of monochromatic light in free space, and finally concluded the Kirchhoff inte-

gral theorem [19], specifically expressed the basic concepts of Huygens-Fresnel

principle. The Kirchhoff’s diffraction formula is as follows: UðP0Þ ¼ A
jλ ∬

Σ

ejkðrþlÞ

rl

cos < n!; r! > − cos < n!; l
!

>

2
ds . Although Kirchhoff’s diffraction formula gives a

good practical effect, the boundary conditions of Kirchhoff hypothesis violate the po-

tential field theorem [20]. Therefore, Sommerfeld adopted another Green’s formula to

overcome the problem that Kirchhoff boundary condition assumption violate the po-

tential theory theorem, making it self-consistent in theory. Its specific form is:

U ΙðP1Þ ¼ A
jλ ∬

Σ

ejkðrþlÞ

rl
cos < n!; r! > ds

U ΙΙðP1Þ ¼ − A
jλ ∬

Σ

ejkðrþlÞ

rl
cos < n!; l

!
> ds

8>><
>>: , this is the Rayleigh-Sommerfeld equation

[21].

The above equations are all based on Fresnel diffraction. In addition, Fraunhofer dif-

fraction was also discovered [22], which is a special case of Fresnel diffraction and be-

longs to far-field diffraction. Because the Fraunhofer diffraction field is easy to calculate

theoretically, has great application value and it is not difficult to realize experimentally,

people pay more attention to it. In particular, the rise of Fourier optics in modern

transform optics endows classical Fraunhofer diffraction with new modern optical sig-

nificance. With the rise of optical Fourier transform, the transformation from space do-

main to frequency domain is realized. Light can represent more contents, and the

distribution of light in Fresnel diffraction is also analyzed in more detail. Kirchhoff and

Rayleigh-Sommerfeld diffraction both discuss the propagation of light in the spatial do-

main, and the propagation of light in the frequency domain is summarized as angular

spectrum theory [23].

Diffraction is a very extensive optical phenomenon, which contains a lot of content.

The theories related to diffraction can be collectively called diffraction theory. But be-

cause the light is electromagnetic wave, the diffraction problem cannot be separated

from the classical electromagnetic field theory based on Maxwell’s equations, and elec-

tromagnetic field is also a vector field, so the strict diffraction theory should be the vec-

tor diffraction theory. When the light vector is only one component, or does not

involve the diffraction light propagation, polarization state and the case that aperture

wavelength is much larger than light wavelengths, the light can be regarded as a scalar,

accordingly it is the scalar diffraction theory.

The implementation based on Rayleigh-Sommerfeld equation

Any obstacle can cause light to diffract, but only when the size of the obstacle or hole

is smaller than or similar to the wavelength of light, obvious diffraction phenomenon

can be observed. Diffraction produces numerous wavelets at the small aperture. These
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wavelets superimpose each other when they reach the viewing screen. The degree of

mutual weakening becomes lighter or heavier regularly during the overlapping, thus

forming the light and dark streaks. In fact, diffraction is the coherent superposition of

infinite continuous wavelet, which is mathematically represented as an integral prob-

lem. Therefore, the optical diffraction phenomenon can be used to design the linear op-

eration of the optical neural network and realize the linear multiplication and

summation operation in the neural network.

According to Rayleigh-Sommerfeld equation of diffraction theory, we can regard

each neuron of a given diffraction layer as a secondary source of wave consisting

of the optical model: wl
iðx; y; zÞ ¼ z − zi

r2 ð 1
2πr þ 1

jλÞ expð j2πrλ Þ, which is also the basic of

many diffraction network architectures. In these networks, transmittance was taken

as a learnable parameter W, and then training and learning were carried out to

complete the task of identification and classification. Under normal circumstances,

when the network using the diffraction principle modulates light waves and con-

ducts diffraction light analysis, there will be such a premise that the vibration dir-

ection of the light vector in the whole light wave field doesn’t change, or only one

component of the light vector is considered, so vector diffraction is generally sim-

plified to scalar diffraction for using.

In June 2018, Lin Xing, a researcher from the University of California, Los Angeles

(UCLA), and other researchers, innovatively proposed an all-optical diffraction deep

learning framework based on light diffraction, which they called the diffraction deep

neural network (D2NN) [24]. D2NN is composed of multi-layer diffraction surfaces to

form the physical layer. By cooperating with these diffraction surfaces, the linear oper-

ation function of neural network can be performed in the form of light. The principle

and structure of the whole network are shown in Fig. 3(a), which is composed of input

layer, several diffraction layers and output layer. In the input layer, the information is

Fig. 3 Optical neural networks using light diffraction to realize linear operation. a Schematic diagram of
deep diffraction neural network D2NN [24]. b Diffraction grating network system [25]. c Metasurface
implements optical logical operations [26]
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encoded into the amplitude channel or phase channel of the input surface by irradiat-

ing with coherent light. There are several holes on the input surface, and diffraction of

the beam occurs on the input surface, which results in coherent superposition of wave-

let, changes the amplitude and phase of input wave, and completes the coding process.

Through optical diffraction, light goes from the input layer through the diffraction

layers to the output layer, achieving layer-by-layer connections. Similar to the input

layer, the diffraction layer has certain parameters. Light of terahertz frequency can

transmit through the diffraction layer. After being modulated by parameters through

the diffraction layer, the coherent superposition of wavelet is carried out, so as to

realize the modulation of light wave and complete the process of forward propagation,

that is, the optical linear calculation process of neural network. In the output layer

there will be a photoelectric detection array to detect the output light intensity. In

2019, this research group also proposed a broadband diffraction neural network based

on the same architecture [27], which makes the model’s demand for light sources no

longer limited to monochromatic coherent light sources, and can process information

modulated by time-incoherent light sources, expanding the application range of ONN

realized by this architecture.

The architecture of 3D printed deep diffractive optical neural network achieves high-

speed and low-power calculation, which is unique and innovative, but it still has some

big problems. The first is the diffraction layer. Although the manufacturing cost of the

diffraction layer is relatively low and the accuracy rate can reach 91.75%, it is difficult

to achieve miniaturization of devices, process complex data and image analysis. More-

over, all parameters cannot be reprogrammed after 3D printing. The second problem is

the light source, the THz light source used in this study. Such a system is expensive

and bulky. The third is the surrounding experimental environment. In this study, an

optical platform is required to carry out the network architecture. Due to the existence

of optical diffraction, the requirements on the surrounding environment, such as vibra-

tion and optical environment, will be quite severe. Ozcan said, although the research

uses light at terahertz frequencies, it is also possible to make light at visible, near-

infrared or other frequencies in the future, and such networks could also be made by

photolithography or other techniques. Therefore, inspired by the diffraction deep

neural network, more and more scholars have begun to devote themselves to the study

of variants based on D2NN.

In December 2019, a team from Tianjin University developed a matrix grating to re-

place the 3D-printed diffraction layer [25], and used a carbon dioxide laser tube to emit

10.6um infrared light for detection by the HgCdTe detector array, as shown in Fig.

3(b). Similarly, the superposition of light waves is realized through the diffraction of

each slit of the grating and the interference between slits, thereby achieving the optical

linear operation. It is worth mentioning that infrared light source is used in the net-

work which has the following advantages: Firstly, it can reduce the cost of the whole

network architecture; Secondly, the size of a single neuron can be reduced to 5 μm, and

the characteristic size is reduced by 80 times compared with the previous network. In

this way, the matrix grating of 1 mm*1 mm can contain 200*200 neurons, and the dis-

tance between layers can also be shortened. The miniaturized matrix grating will be

very helpful to integrate into the silicon photonic platform and acquire more extensive

application.
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In 2020, a team from Zhejiang University proposed to realize optical logic operation

using metasurfaces based on diffraction neural network [26]. The optical logic compu-

tation is equivalent to the classification task, optical logic unit is designed based on the

diffraction neural network, and finally realize the logic operation. The feasibility and

completeness of this method is proved theoretically. Figure 3(c) shows the layout of the

diffraction neural network based on the optical logical operation. Each region of the in-

put layer is assigned a specific logical operator or an input logical state, which has two

different states for light transmittance. In other words, the input layer only needs to set

the transmission state of each region, then the input plane wave can be spatially coded

for specific optical logic operation. The hidden layer is composed of the metasurfaces.

According to Huygens-Fresnel diffraction principle, taking AND, OR, and NOT-logical

units as examples, the hyperparameters and weight coefficients of the diffraction neural

network are obtained through learning and training. Then, according to these parame-

ters, an efficient medium metasurface is used to construct the phase mask. As a hidden

layer, it is designed to decode the encoded input light and generate the output light

logic state. Two regions are set in the output layer and light passing through the hidden

layer is directionally scattered by the metasurface to one of the two designated regions

in the output layer. Compared with 3D-layer diffraction system and matrix-grating net-

work system, this method does not require complex optical control system, and only

need simple plane wave as input. By selectively activating sub-region of input layer, dif-

ferent logical calculation functions can be realized.

To sum up, D2NN based on the Rayleigh-Sommerfeld equation, is able to perform

various complex functions that traditional computer neural networks can achieve at a

speed close to the speed of light and without energy consumption. It opens up new op-

portunities for using passive components based on artificial intelligence to quickly

analyze data, images and object classification, so as to realize all-optical image analysis,

feature detection and object classification. For example, a driverless car using this tech-

nology can immediately respond to a stop sign. As soon as it receives light from the

sign diffraction, D2NN can read the sign information; the technology can also be used

to categorize a large number of targets, such as looking for indications of disease in

millions of cell samples. In addition, new camera designs and optical components using

D2NN to perform tasks can be implemented, passively used in medical technology, ro-

botics, security, and any application that requires image and video data. For example,

all-optical diffraction neural network can be used to construct holograms that can

realize “THz” imaging at a very low cost through 3D printing [28], reconstructing high-

quality images at a high speed.

The implementation based on the Fourier transform

The Fourier transform of light is also a member of the great family of diffraction, which

grows out of Fraunhofer diffraction and plays an extremely important role in modern

optics due to some of its special properties, such as convolution theorem. Based on

Fourier optics, the Fourier lens of optical element can realize the Fourier transform and

complete the conversion of time-space domain and frequency domain. According to

the convolution theorem [29], the convolution of two two-dimensional continuous

functions in the space domain can be obtained by the inverse transformation of the
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product of their corresponding two Fourier transforms. On the contrary, convolution

in the frequency domain can be obtained by Fourier transform of product in the space

domain. Hence, the multiplication operation can be done by convolution in the fre-

quency domain, and then by the inverse Fourier transform.

f x; yð Þ�h x; yð Þ <¼> F u; vð ÞH u; vð Þ ð1Þ

f x; yð Þh x; yð Þ <¼> 1=2π F u; vð Þ�H u; vð Þ½ � ð2Þ

Not only that, one of the simplest and most basic functions of a lens is to converge

light beam, which can be similar to a summation operation to a certain extent. There-

fore, we can use the function of Fourier transform and light wave convergence and

superposition of lens wave to realize the function of linear multiplication and summa-

tion function of optical neural network.

In 1989, Tai Wei Lu proposed a two-dimensional programmable optical neural net-

work [30], which is based on the interconnection structure of lens array. Linear sum-

mation is realized by using lens array, and has good parallel computing and

programming abilities. But because of the influence of imaging aberrations and light

detection, the number of neurons is severely limited. In 1997, Yang’s team used a co-

axial lens array to build an optical neural network with 32*32 neurons [31], which sig-

nificantly reduced aberration and improved light efficiency. In 1993, Yasunori

Kuratomi proposed an optical neural network with vector feature extraction [32]. The

network structure consists of four layers, namely the input layer, the two hidden layers

and the output layer. In the input layer, a flat plate is used to convert letters to binary

grid pattern. In the hidden layer 1, a 2 * 2 lens array is applied to realize four feature

extraction layers, used to extract feature line segments, and focus on feature-extracting

optical neuron device (FEOND) as the hidden layer 2 to extract feature vector. Ultim-

ately, the FEOND output is obtained from readout beam by crossed polarizers, which is

detected by CCD for recognition tasks. Neurons in the output layer are fully connected

with the neurons in the hidden layer 2.

In the early stage, the lens network reflected its focusing and gathering function, so

as to achieve linear summation operation. With the gradual maturity of Fourier theory,

the convolution theorem began to be discovered and used.

In August 2018, Julie Chang et al. from Stanford University proposed an optoelec-

tronic hybrid neural network based on diffractive optical elements [33]. A layer of op-

tical convolution operation is added to the network before the electronic calculation,

including a “4f system” composed of two convex lenses with both focal length of f

which realizes two cascaded Fourier transforms, as shown in Fig. 4(a). Due to optical

convolution, the computation of the whole network is greatly reduced.

In September 2019, researchers from Hong Kong University of science and technol-

ogy, demonstrated an all-optical neural network (AONN) [34], with tunable linear op-

eration and the optical nonlinear activation function. Figure 4(b) shows the

experimental implementation schematic diagram of an optical neuron, the linear oper-

ation of which is programmable implemented by the spatial light modulator and the

Fourier lens. During the linear operation, the laser spot is used to represent the vector,

and the laser beam is divided into different directions by using SLM. The incident light

power in different regions of SLM represents different input layer nodes. By
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superposing multiple phase gratings, the incident light will illuminate different direc-

tions and have certain weights. Then, the Fourier transform of the lens is used to

superimpose all diffraction beams in the same direction onto the points on its front

focal plane, so as to realize the linear summation function. The specific linear operating

system is shown in Fig. 4(c).

Interference of light to realize linear operation

When multiple beams with the same frequency, same vibration direction and fixed

phase difference are superimposed in a certain space, there will be the phenomenon

that distribution of light intensity is different from the sum of the original intensity of

multiple beams, which is called interference [35]. Interference and diffraction are essen-

tially same, both are superpositions of waves, and the spatial distribution of light and

dark is not uniform. However, there are differences between them in terms of forming

conditions, distribution rules and mathematical treatment methods. Diffraction is the

superposition of numerous small element amplitudes, which is calculated by integra-

tion. While interference is a superposition of a finite number of beams, calculated by

summation. It can be said that diffraction is a complex interference, and in fact inter-

ference and diffraction often go hand in hand. Both interference and diffraction can

achieve linear summation.

Shen. Y et al. proposed a new photonic chip system for a new all-optical neural net-

work, as shown in Fig. 5 [36]. The calculation method of the beam in the photonic chip

is similar to the basic principle of interference, and the linear operation is realized by a

cascaded array with 56 programmable Mach-Zehnder interferometers. The network

consists of a cascade of multiple OIUs and ONUs. In OIU, the principle of matrix

multiplication is singular value decomposition (SVD). As we all know, any real matrix

Fig. 4 Optical neural networks with linear operation realized by Fourier transform of light [33]. a Optical
convolution operation is realized by 4f system. b Experimental realization of optical neurons in AONN [34]. c
The linear operating system of AONN [34]
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M can be decomposed through SVD into M =U Σ V †. U, V † can be achieved by op-

tical beam splitter and phase shifter, Σ can be realized by optical attenuator. By tuning

the phase shifter integrated in MZIs, you can perform any size of operation on the in-

put. This new method uses multiple beams to propagate and produce interference pat-

tern with using interaction of wave, thereby conveying the desired operation results. In

principle, the optical chip with this architecture can run on traditional artificial

intelligence algorithm, which is much faster than the traditional electronic chip, with

less than one thousandth of the energy.

Scattering of light to realize linear operation

When light meets obstacles or holes, diffraction will occur; When multiple beams of

light meet, interference will occur; If light is incident on an opaque surface or random

medium, it will be reflected from all aspects by tiny particles, which is known as scat-

tering and was first discovered by scientists in the early 1960s. The so-called scattering

[37] is the phenomenon that the spatial distribution, polarization state or frequency of

light intensity is changed by the action of molecules or atoms in the propagation

medium. The scattering medium is the propagation medium that causes the scattering

phenomenon.

In 1990, The random scattering medium has been proved theoretically that it can be

used as a thin lens to image the target [38]. In 2007, I. M. Vellekoop et al. from Twente

University in the Netherlands verified the I. Freund’s point of view experimentally, used

feedback control technology to control the spatial light modulator (SLM) to modulate

wavefront phase of the incident light in the scattering medium, making wavefront

phase distortion compensation caused by optical scattering. As a result, originally cha-

otic scattering light is focused to the specified location. The technology is the wavefront

modulation focusing technology [39]. In 2010, I. M. Vellekoop combined wavefront

modulation focusing technology with the optical memory effect of random scattering

medium [40], and successfully observed the fluorescent structure located behind the

Fig. 5 Using the principle of interference to realize the linear operation in the neural network [36]. a
Coherent nanophotonic circuit. b Each layer of the neural network is composed of optical interference unit
OIU and optical nonlinear unit ONU. c The internal structure of OIU unit
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random scattering medium through scanning imaging [41]. Based on the technology, E.

G. Putten et al. achieved the super diffraction limit scanning microscopic imaging of

gold nanoparticles by using “‘random scattering lens” made of gallium phosphide (GaP)

[42], with a resolution of 97 nm. It’s the first time to realize the super diffraction limit

imaging based on random scattering medium, which has opened a new page in the field

of far-field super diffraction limit imaging, and set off a research upsurge of random

scattering imaging technology in the world. Next, optical coherence tomography tech-

nology [43], speckle correlation imaging technology [44], optical phase conjugation

technology [45] and other technologies emerged successively, providing more choices

for observing targets through random scattering media such as biological tissues.

With the continuous development of deep learning and scattering imaging, as well as

the strong learning ability of deep learning, researchers attempt to combine them to try

to make new breakthroughs and development. For instance, the realization of scattering

medium target recognition based on the direct machine learning of speckle intensity

image [46]. In the experiment, the camera captures the speckle intensity image of the

amplitude or phase object on the spatial light modulator, and classifies the acquired

face and non-face speckle intensity images by using support vector machine.

In the D2NN-type network mentioned above, the diffraction modulation layer is simi-

lar to the scattering medium. After the light wave passes through, the optical parame-

ters such as the spatial distribution, polarization state will change, and finally the

specular pattern with fine-sized particles will be obtained. Moreover, according to the

results of computer training simulation, each diffraction pattern is very similar to

speckle pattern. Therefore, such a network modulation layer can be analogous to the

scattering medium. In fact, we still according to parameters we have learned, design 3D

printing layers gratings, etc. Each parameter or pixel on it can be regarded as the

neuron in the network, but the number of neurons is limited. The scattering medium

is different, its internal disorder dielectric particle assembly can provide thousands of

optical computing neurons, even with larger scattering loss.

The deep ONN constructed by active tumor cells in 2018 well embodies this design

[47]. It uses a living three-dimensional tumor brain model to demonstrate the morpho-

logical dynamics of tumor detected by a trained random neural network through image

transmission. Tumor brain cells act as scattering mediators and play a role of hidden

layers, and the number of waveguide hybrid nodes, namely neurons, is tens of thou-

sands. In this three-dimensional tumor brain model, each cell is a scattering center with

a complex transfer function. By training SLM weights of the input layer, a design using

scattering media to construct ONN is presented. The specific structure of ONN is

shown in Fig. 6(a). The input layer is realized by a spatial light modulator after iterative

training, the middle layer is a three-dimensional spherical layer, and the output is com-

posed of CCD, which detect the intensity distribution.

In fact, whether the diffractive modulation layer of the diffraction network or the

scattering ONN of tumor cells, their networks are layered. In previous studies, re-

searchers have found that neural networks need an appropriate number of layers to

complete specific tasks, so as to achieve low loss, high accuracy and good performance.

If the number of network layers is too few, its training inference ability cannot reach

the desired results; If the number of layers is too much, problems of gradient decline

and overfitting are likely to occur, resulting in poor results and extremely long training
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time. Of course, in the photonic neural network, since the task is completed at the

speed of light, we hope that under the premise of ensuring the experimental effect, the

number of layers is as much as possible, so that we can train a better network and get

more accurate results. Thus, there can be an assumption that exists an optical neural

network with an infinite number of layers.

In August 2019, Erfan Khoram et al. designed a new type nano-medium, called nano-

photonic neural medium NNM [48], which is composed of matrix material silicon di-

oxide and a large number of dopants. The dopants may be either pores or materials

with different refractive index from the matrix material. A large number of dopants can

strongly scatter the incident light in both positive and negative directions. The position

and shape of dopants are equivalent to the weight parameters in the traditional neural

network. Scattering makes the incident light mix in space, and the incident light con-

tains the information of the input image, which is similar to the linear matrix multipli-

cation in the traditional neural network. NNM is shown in Fig. 6(b), linear materials

complete linear matrix multiplication and nonlinear materials complete activation func-

tion. This nanostructure, which allows light energy to be redistributed in different di-

rections in space, can be used for computation between neurons and has a stronger

expression capability than layered optical networks. In fact, the layered network is a

subset of NNM because the medium can be molded into connected waveguides just

like a layered network. The light only needs to pass through the scattering medium,

which may surpass the previous hierarchical feedforward network and become a very

deep neural network, and there is no problem of gradient decrease in the deep neural

network. In addition, NNM does not need to follow any specific geometry, so it can be

easily integrated into existing visual or communication devices, and will have a wider

range of applications.

In 2020, Y. Qu et al. from Oregon State University, inspired by the NNM, proposed

an integrated ONN framework based on optical scattering elements based on optical

scattering unit [49], taking the network structure of coherent nanophotonic circuits as

a prototype, which integrated optical interference unit and optical nonlinear unit. The

core structure of the optical network framework is an integrated nano-photonic com-

puting unit——Optical Scattering Unit OSU, which be comprised of a multi-mode

Fig. 6 Optical neural networks using scattering to realize linear operation. a Deep ONN constructed by
active tumor cells [47]. b Nanophotonic neural medium NNM [48]
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interference (MMI) coupler with a nanometer-pattern coupler region to implement

matrix multiplication. It has the same function as the matrix multiplication unit OIU.

OSU can be designed as coherent architecture like OIU to realize arbitrary unitary

matrix multiplication. Similarly, a more advantageous noncoherent architecture can be

designed which directly manipulates the light intensity to achieve random matrix multi-

plication. In addition, the researchers also realized the optical convolution operation of

CNN based on noncoherent OSU. The core of the realization of convolution operation

in OSU is to use “kernel matrix” to execute in the photonic circuit, so as to realize the

conversion from convolution operation to optical kernel matrix multiplication. The

image is divided into blocks and vectorized. By vectorizing and stacking each kernel,

the kernel set is converted into a “kernel matrix”, so that the one-dimensional image

blocks can be effectively multiplied by the “kernel matrix”, which is equivalent to the

convolution operation. Since nano-imaging makes light scatter within a small region of

the coupler and increases the degree of freedom, it can be optimized by an inverse de-

sign approach.

Wavelength division multiplexing (WDM) to realize linear operation

Using the principle of diffraction to achieve the optical linear operation, the optical

signals propagate in the air. Specific transmission medium, such as scattering

medium, can also be used for signal transmission, corresponding to the content in

Section 2.2.4; or optical fiber, with wide transmission bandwidth, low transmission

loss, strong anti-interference, light weight and low cost, has obvious advantages in

light transmission. In optical fiber transmission, at present, WDM is often relied

on [50]. WDM can effectively improve the transmission capacity and realize the

separation and composition of light. Therefore, optical fiber can be used for the

calculation of huge data.

In 2012, Y. Paquot et al. [51] successfully constructed an optoelectronic hybrid serial

recurrent neural network based on optical fiber system, whose structure is shown in

Fig. 7(a). Signals are injected from an arbitrary waveform generator (AWG) and modu-

lated on light by amplifiers and modulators. The reservoir layer in the middle consists

of variable optical attenuators, delay lines, feedback photodiodes, mixers, amplifiers,

and a Mach-Zehnder modulator. The photodiode converts the outputs of the system

into electrical signals and reads them out. By training and controlling the output

weights, the system can realize the recognition of square wave and sine wave. This net-

work can achieve the equalization of communication channel and is the scene expan-

sion of photonic neural network in the field of communication. In the same year, F.

Duport et al. also used optical fiber system to construct an all-optical circulating neural

network [52], adopting optical fiber delay switching of single nonlinear node for offline

training, and its structure was shown in Fig. 7(b). In addition to directly using delay

lines to obtain the delay function, devices such as micro-ring array and multimode

interference separator array can also realize the delay [55]. At the same time, multistage

or more complex time division multiplexing are adopted, which greatly improve the in-

formation processing speed and gain better information processing results [55]. In

order to explore the multiplexing ability of light, it is verified in [56] that two optical
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modes can be used to carry out two independent information processing tasks simul-

taneously in the same reservoir pool.

Based on the above researches, T. Cheng et al. proposed an optical neural network

system for optical reservoir computing based on optical fiber communication system in

October 2019 [53]. The RC optical system is composed of input layer, reservoir layer

and output layer. The schematic diagram is shown in Fig. 7(c). The input weight matrix

of the input layer is Win, which is implemented by the directional coupler. The input

layer is used to scale the size of the input data to the size of the reservoir layer corre-

sponding to the matrix W. The reservoir layer is composed of multiple neurons, and its

function is similar to the hidden layer in the neural network. Each neuron is composed

of two directional couplers, optical fiber and EDFA. The structure diagram is shown in

Fig. 7(d). It has two outputs, one of which serves as the output of optical neurons, and

the other can be connected back to the feedback of the same optical neurons or to

other optical neurons to achieve signal reproduction and interconnection between op-

tical neurons. The specific structure is shown in Fig. 7(e). The output layer has an opto-

coupler consisting of a Mach-Zehnder phase modulator and a directional coupler to

implement the readout matrix Wout, which converts the results of the reservoir layer

into the output of the RC system. The directional coupler realizes the weight setting

among neurons, and the fiber establishes the connection among neurons, realizing the

linear operation among neurons together. However, due to the existence of optical

fiber, directional coupler and EDFA, such a fiber network is limited in dimension and

scale. In order to expand the dimension of the photonic neural network, time can be

exchanged for space and scale of the neural network can be expanded in the case that

the computing speed is not reduced too much. A serial electro-optical neural network

(TS-NN) based on time-domain stretching is proposed by Chen Hongwei’s research

Fig. 7 The neural networks with reservoir computing function realized by optical fiber. a Optoelectronic
reservoir computing [51]. b All-optical reservoir computing [52]. c, d, e respectively describes the principle
of reservoir computing, and the structures of the neuron and neural network constructed based on the
optical fiber communication system [53]. f A serial electro-optic neural network based on time-domain
stretching [54]
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group from Tsinghua University [54]. The system structure is shown in Fig. 7(f). This

system is a loop system, and n-1 loop times can realize a n-layer network. In each cycle,

two operations are involved——linear computation (matrix multiplication) and nonlin-

ear transformation. Linear operation mainly adopts the time stretching method, which

make the ultrashort period pulse broadened and flattened by means of dispersive fiber

and wavelength converter. Then the weight matrix is used to modulate the processed

pulse, and the output of the last time is used as the input of this time to modulate the

modulated pulse again, so as to realize the optical multiplication of input vector and

weight matrix. Finally, DSP uses signal processing algorithm to process the results. This

method realizes the photoelectric hybrid fully connected neural network through the

parallel-to-serial scheme, which can realize the large-scale neural network. Although it

is not an optical neural network, such an idea of expanding the network scale by ex-

changing time for space is worthy of our reference.

Whether as optical wave transmission or communication, optical fiber is a very po-

tential development direction in the future. At present, optical fiber has a very mature

performance in WDM technology, broadband amplifier technology such as erbium-

doped fiber amplifier EDFA, dispersion compensation technology, soliton WDM trans-

mission technology and so on. In the aspect of optical network, the traditional optical

networks have realized all-optical among nodes, but electrical devices are still used at

network nodes, which limits its development. All-optical network that replaces elec-

trical nodes with optical nodes will be the important development direction of optical

fiber in the future. The combination of optical fiber and optical network in 5G era to

realize a real all-optical network is an engineering technology that can be further

studied.

In the neural network, another typical application of WDM technology is the all-

optical spiking neural network in 2019. The working mechanism of neurons used in

this network is similar to synapses mechanism of human brain neurons, it can simulate

the spike discharge and naturally reflect the actual situation of biological neurons,

known as spiking or pulse neuron. The proposal of spiking neurons began in 1997,

when W. Maass first proposed spiking neural network [57], which used impulse func-

tion to simulate signal as the way of information transmission between neurons. Neu-

romorphic silicon photonics was put forward by Alexander N. Tait from Princeton

University in December 2017, which is the world’s first photonic neural network [58],

as shown in Fig. 8(a). Each node in the network works under a specific wavelength of

light, the light from each node will be detected and summed by total power before it is

sent to the laser, then the laser output will be fed back to the node to create a feedback

loop with nonlinear characteristics. Such a photonic network can be used to solve dif-

ferential equations and is demonstrated in which nodes is similar to the trigger mech-

anism of human brain neurons, called pulse or spiking neurons.

In fact, the neural network mentioned above abstracts the input of the network into

matrix or vector, and the neuron mainly performs matrix multiplication operation.

Whereas biological neurons process information in the form of impulses, so these net-

works only retain the structure of neural networks, greatly simplifying the neuron

model, which is better described as “units” rather than neurons. In contrast, pulse/spik-

ing neurons are closer to the biological model of human brain neurons, which exist in

two states——activated and inactive. They are activated only when their membrane
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potential reaches a threshold, thus they are not activated in every iteration propagation,

a bit like dropout regularization in artificial neural networks. When a neuron is acti-

vated, it produces a signal and transmits it to other neurons, raising or lowering mem-

brane potential of its cascaded neurons. In a pulse/spiking neural network, the current

activation level of the neuron is usually modeled as some kind of differential equation,

and it will rise and continue for a period of time after the arrival of the stimulus pulse

and then gradually decline. Spiking neural network enhances the ability to process

spatial-temporal data: on the one hand, the neurons in such neural network are only

connected with nearby neurons to process input blocks respectively, thereby enhancing

the processing capacity of spatial information; on the other hand, because the training

depends on the time interval information of pulses, the information lost in the binary

encoding can be retrieved in the pulse time information, thus enhancing the processing

capacity of the time information. It turns out that pulse/spiking neuron is more power-

ful computing unit than traditional artificial neuron, which is a major development

trend in the future. However, owing to the difficulties in the training method and hard-

ware implementation of pulsed neural network, it has not been widely used yet, and

most of the researches about pulsed neural network is still focused on the theoretical

research and the verification of simple structure. But more and more researchers are

now devoting themselves to training algorithms and hardware (optical) implementa-

tions of pulsed neural networks.

In 2016, Prucnal’s research team in the Princeton University proposed a spike pro-

cessing system based on the activated graphene fiber laser, in which the activated gra-

phene fiber laser plays the role of spiking neuron [59], as a basic component of spike

information processing. In 2018, a neural mimicry photonic integrated circuit based on

distributed feedback (DFB) laser structure was proposed [62]. The laser has two photo-

detectors, which can generate both inhibitory and excitatory stimuli at the same time.

The system is compatible with the broadband-and-weight (B&W) protocol [63]. In the

same year, superconducting photoelectric spike ring neurons were designed, known as

Loop Neurons [64]. These neurons are composed of single-photon detectors, Josephson

junction and light-emitting diodes. Josephson junction detects event integration and

Fig. 8 Optical spiking neural networks realized by WDM principle. a The structure of the first photonic
neural network [58]. b Graphene spiking neuron [59]. c Bipolar integration-firing neuron with GST [60]. d
The all-optical spiking neurosynaptic network structure formed based on the principle of WDM realized by
PCM and MRR array [61]
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converts it into supercurrent, and finally store it in the superconducting circuit. Also in

2018, a new spiking neuron equipment——a bipolar integration-firing neuron [60] was

introduced, including integral unit that consists of two double bus ring resonator with

embedded phase change materials (PCM) (i.e., Ge2Sb2Te5 (GST)), which controls the

propagation in the loop, sums the output of the resonator, and is used to stimulate the

ignition unit that is composed of a photon amplifier, a circulator and a rectangular

waveguide with a GST component on the top. This spiking neuron can be connected

with photon synapse to form an all-photon spiking neural network. We show graphene

spiking neurons and bipolar integration-firing neurons in Fig. 8(b) and (c), respectively.

Based on this, Feldmann J et al. mentioned an all-optical spiking synaptic realization

using PCM in May 2019 [61]. The structure of this photonic neural network is shown

in Fig. 8(d). It’s a fully connected network. When inputting the pulse, the PCM unit on

the waveguide is used for weighting in each neuron, and the MRR array is used as

WDM for summation; The spiking mechanism is implemented by the PCM on the ring

resonator. The PCM crystal is a special unit in which has two states, crystalline and

amorphous, have different effects on the input pulse. Because of this, PCM can modu-

late the pulse and realize the weighting operation. For amorphous PCM cells, the syn-

aptic waveguide is highly transmissive and can achieve strong connections between

neurons. In the crystalline state, most of the light transmitted to the PCM is absorbed,

leading to weak connections among neurons. After the pulses are weighted by PCM,

they are integrated and sent together by WDM to a ring resonator integrated with

PCM cells to realize the summation. In this way, the linear operation in ONN is

achieved.

The optical realization of nonlinear activation function
In the previous chapter, we discussed the optical realization of linear operations in

neural networks, but it is not enough to have linearity in neural networks. It also re-

quires the processing of nonlinear activation functions, similar to the function of synap-

ses in the brain nervous system. Nonlinear function can accelerate the convergence

speed of the network and improve the recognition accuracy, which is an indispensable

part of the neural network. Without it, no matter how much the network layer is, it

can be attributed to a huge linear operation, however, most problems are nonlinear.

The introduction of the activation function provides the nonlinear factors for neurons,

making the neural network approximate any nonlinear function, so that neural network

can be applied to many nonlinear models.

In the electronic neural network, we can use the existing nonlinear activation func-

tion, or define a function to carry out the nonlinear operation. However, in the pho-

tonic neural network, this becomes a bottleneck for its development. The reason is that

nonlinear optical components need to match the high-power laser, which is more diffi-

cult to realize nonlinear functions than electronic devices, and the nonlinear functions

realized by them have many non-ideal characteristics. In 1967, Seldon et al. proposed a

saturated absorber model or an electronic module [65] to realize nonlinear operations

in the photonic neural network, but this method is difficult to accurately control and

requires the conversion of optical signals into electrical signals through photodiodes,

thus reducing the computing speed. At present, there are two ways to realize the non-

linear operation in the photonic neural network: one is to use the electronic or
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photoelectric methods, and the other is to use the nonlinear effects of some special ma-

terials. In the following chapter, we will first describe nonlinear optical effects in detail,

and then introduce different activation implementations and corresponding optical

neural networks according to different effects.

Nonlinear optical effect

Nonlinear optical effect is the effect caused by the nonlinear polarization of the

medium under the action of strong light, which originates from the nonlinear

polarization of molecules and materials, and is manifested as the nonlinear relationship

between the effect of light on the medium and the response of the medium [66]. Under

the action of incident light field, the motion state and charge distribution of the atoms,

molecules or ions that make up the medium must change in a certain form to form an

electric dipole, generate an electric dipole moment and then radiate a new light wave.

In this process, the electric polarization intensity vector P of the medium is an import-

ant physical quantity. P has a nonlinear relationship with incident light vector E:

P ¼ ε0χ
1ð ÞE þ ε0χ

2ð ÞE2 þ ε0χ
3ð ÞE3 þ⋯

where χ(1) 、 χ(2) 、 χ(3) respectively referred to the first order (linear), second order

and third order (nonlinear) polarizability of the medium. The studies showed that χ(1)

、 χ(2) and χ(3) were reduced in turn.

In the case of ordinary incident light, the second- or higher- order electric

polarization intensity can be ignored, the medium only shows linear optical properties,

and its electric polarization intensity P has a simple linear relationship with the incident

light field intensity E. while is incident with a strong monochromatic laser, the order of

magnitude of the light field intensity E can be compared with or close to the average

electric field intensity ∣E0∣ within the atom. The contribution of the second-order or

third-order electric polarization intensity cannot be ignored; the electric polarization

intensity P and the incident light field intensity E show a power series relationship, and

the nonlinear optical effect occurs at this time.

There are many kinds of nonlinear optical effects, which can be divided into second-

order, third-order and higher-order nonlinear optical effects according to the relation-

ship between electric polarization intensity and electric field. Of course, we generally

only study second-order and third-order nonlinear optical effects. According to the

interaction mode between laser and medium, that is, whether there is energy exchange

between them, it can be divided into active nonlinear optical effect and passive nonlin-

ear optical effect; according to the changed parameters, it can also be divided into op-

tical frequency conversion effect, optical nonlinear absorption, optical Kerr effect and

self-focusing, optical bistability effect, optical phase conjugation effect, stimulated scat-

tering effect, etc.

Implementation of nonlinear activation in photonic neural network

In the current studies on photonic neural networks, we find that optical nonlinear acti-

vation does not exist in some networks or is simulated electronically. For example, in

diffraction network D2NN, there is no activation function. In the serial photonic neural

network based on time-domain stretched, its nonlinear transformation is realized by

nonlinear functions such as non-negative s-type function simulated by the electronic
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devices in the system. There are also some networks taking advantage of nonlinear ef-

fects for nonlinear activation designs. At present, saturation absorption, optical bistabil-

ity and Kerr effect have been considered as potential activation functions in ONNs.

Nonlinear optical absorption

Optical absorption means that when a photon enters a medium, atoms and molecules

absorb the energy of the photon and happen the energy level transition [67]. In this

process, if the photon energy is strong enough, the absorption coefficient of the

medium will change with the light intensity. The change can be linear or nonlinear,

namely linear and nonlinear optical absorption, respectively. The two main optical

mechanisms of nonlinear optical absorption are saturation absorption, anti-saturation

absorption and two-photon absorption.

When the laser is incident into the medium, the absorption coefficient of the medium

decreases with the increase of the light intensity in the medium. When the intensity of

the input light wave exceeds the threshold value, the absorption property of the

medium begins to become saturated. This nonlinear optical behavior is called saturable

absorption. Saturation absorption is caused by the transition of the particles constitut-

ing the medium from the ground state level to the first excited state level. In the case

of saturated absorption, the relationship between the absorption coefficient of the

medium and the light intensity I in the medium can be expressed as: αðIÞ ¼ α0
1þI=Ic

, as

shown in Fig. 9(a). Correspondingly, the relationship curve between transmittance and

light intensity is opposite, similar to the curve of sigmoid function, as shown in Fig.

9(b).

On the contrary, anti-saturated absorption is the effect of increasing the absorption

coefficient with the increase of light intensity. Its absorption characteristic curve is

somewhat similar to the sigmoid function curve, and it is not commonly used in non-

linear activation. Two-photon absorption, as the name suggests, is that an atom in a

medium absorbs two photons at the same time, then goes from the ground state to the

excited state. When two light beams with frequencies ω1 and ω2 pass through a nonlin-

ear medium, if value of ω1 + ω2 is close to a certain transition frequency in the medium,

the two beams will attenuate at the same time. Two-photon absorption is a third-order

nonlinear optical effect.

Optical nonlinear absorption can be realized by both optoelectronic devices and op-

tical methods. Saturation of optoelectronic devices such as optical attenuation ampli-

fiers, erbium-doped fiber amplifiers, and semiconductor optical amplifiers, etc. can be

used as nonlinear activation. In the all-optical reservoir computing implementation

based on semiconductor optical amplifier array on the chip proposed by F. Duport

et al., the saturation gain effect of semiconductor optical amplifier is utilized to realize

the network nonlinear function. In the reservoir computing based on the optical fiber

communication system, each neuron is composed of two directional couplers, optical

fiber and erbium-doped fiber amplifier, while the erbium-doped fiber amplifier realizes

the nonlinear function and each neuron has such nonlinear activation function. In

terms of optics, saturable absorbers, such as optical dyes, graphene, C60, etc., can be

used to play the role of nonlinear activation. In the 2014 optical reservoir computing

[69], graphene saturable absorbers or two-photon absorption [70] were used as optical

Liu et al. PhotoniX             (2021) 2:5 Page 21 of 39



nonlinear units. In 2016, the Prucnal’s research group in the Princeton University pro-

posed a spike processing system based on an activated graphene fiber laser, which also

uses graphene as a saturated absorber to perform nonlinear activation functions. In the

coherent nanophotonic circuit in 2017, its nonlinear unit ONU is realized by a satur-

ation absorber that can be integrated into the nanophotonic circuit, such as fuel mole-

cules, semiconductors, graphite saturated absorbers and saturation amplifiers. For the

incident light Iin, emergent light Iout is given by nonlinear equations: Iout = f(Iin), using

the model of saturated absorber is στsI0 ¼ 1
2

ln ðTm=T0Þ
1 − Tm

. Once I0 is given, Tm(I0) can be

solved by this formula, and the emission intensity can be obtained by Iout = I0 Tm(I0). In

2020 Nanophotonic media network system, the nonlinear activation function is also

achieved by making dopants composed of dye semiconductors or graphene saturable

absorbers. These dopants can perform distributed nonlinear activation, which mainly

reflects the ReLU function, allowing signals with an intensity higher than the set

threshold to pass and obstructing signals below the threshold.

Optical Bistability

When the light beam passes through the optical system, there is a nonlinear relation-

ship between the incident light intensity and the transmitted light intensity, thereby

achieving the optical switch. For instance, optical restriction, optical bistability, various

interference switches and so on. In electronics, bistability is a unit circuit that has two

different resistance values for the same input electrical signal. In photonics, bistable

state is an optical element, which has two transmittances with different levels for the

same incident light intensity, which is called optical bistable state. It is of great signifi-

cance for understanding the storage, operation and logical processing of optical

information.

In a nonlinear optical system, when the input light intensity is small, the output light

intensity of the system is also small. When the input light intensity increases to a cer-

tain critical light intensity value, the output light intensity of the system will jump to a

certain high light intensity state, as if a switch is turned on. After that, if the input light

intensity is further reduced, the system will no longer return to the low light intensity

state at the original critical value, but there will be another critical value at the lower

Fig. 9 a, b Absorption coefficient and transmittance curves of saturation absorption. c The structure of Kerr-
type network [68]. d Phase change material PCM realizes nonlinear activation [61]
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light intensity, making the system jump from high state to the low state. In this process,

the “hysteresis” phenomenon appears in the input-output transfer relationship in the

optical system, similar to the hysteresis loop in electromagnetism.

Optical bistable equipment may be used in high-speed optical communication, op-

tical image processing, optical storage, optical limiter and optical logic elements. In par-

ticular, optical bistable devices made of semiconductor materials, with the

characteristics of small size, low power and short switching time (10–12 s) and so on,

are likely to become the logic components of optical computers in the future. Optical

bistability has become a very active research field because of its great potential applica-

tion value.

In reservoir computing, in addition to the saturated absorption being used to design

as the activation function, we can also combine the bistability [71] with ring resonator

according to the characteristics of bistability, to realize nonlinear activation structure of

neural network [72]. This point is reflected in [73]. In coherent nanophotonic networks,

the nonlinear activation function of ONU element can be realized by bistable nonlinear

effect in addition to saturation absorption.

Optical Kerr effect

Kerr effect [74], is the third-order nonlinear effect. Under the action of electric field,

the refractive index n// and n⊥ of polarized light waves along parallel and perpendicular

to the electric field direction change differently in the medium, and the difference Δn

between them is proportional to quadratic power of the electric field, resulting in in-

duced birefringence. Generally, the applied electric field is a direct current or low fre-

quency alternating electric field. If the light/optical frequency electric field replaces the

applied electric field, the same phenomenon will occur when the light is strong enough.

At this time, Δn is proportional to the intensity of laser beam acting in the medium,

where Δn is a nonlinear phase shift, which is called optical Kerr effect. If the parameter

to be optimized is the phase, the optical Kerr effect can be used to realize nonlinear ac-

tivation. Aiming at the nonlinear of Kerr medium, S.R. Skinner proposed an innovative

structure of all-optical neural network using Kerr-type nonlinear optical materials in

1994 [68]. Figure 9(c) depicts the all-optical feedforward artificial neural network struc-

ture with Kerr media, which uses thin material layers separated by free space to realize

weighted connection and nonlinear neuron processing, that is, the network consists of

thin layer of nonlinear medium and thick layer of linear medium, namely free space.

Linear layer in which light propagates to realize weight connection; nonlinear optical

layer, used as a weight layer except the first one is the input layer, and performs nonlin-

ear processing. Hence, there are two formulas as follows: 1. Eiþ1ðβÞ ¼ jCi

π

R
Ωi
F iðαÞ

e − jCiðβ − αÞ2dα;where ¼ Ci ¼ k0
2ΔLi

, which describes transmission of light from the coord-

inate α = (x, y) at the beginning of the i-th layer to the coordinate β = (x∗, y∗) before the

nonlinear layer of (i + 1)-th layer; 2. FiðαÞ ¼ EiðαÞe − jk0ΔNLin2ðjΓiðαÞj2þjEiðαÞj2Þ;where Γ0ðαÞ
¼ IðαÞ; Γi>0ðαÞ ¼ WiðαÞ , describing the effect of the nonlinear layer, Ei(α) is the light

entering the i-th nonlinear layer at the coordinate of α = (x, y).

Such a hierarchical network can not only process forward computation signal, but

also realize the error backward propagation. This nonlinear method has advantages

over other optical implementations because of the fast response speed of the Kerr-type
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nonlinearity in the material, and the network can be proved to be simple. Other optical

networks usually require separate and specific optical hardware for weighted connec-

tions and neuron processing.

Taking into account of the fast response of Kerr nonlinear materials and the third-

order nonlinear optical effect of two-photon absorption, the researchers combined the

Kerr effect with two-photon absorption to establish a nonlinear mechanism and used it

in conjunction with the InGaAsP ring resonator to realize all-optical reservoir comput-

ing [75].

In the example of quantum optical neural network (QONN) architecture proposed

by G. R. Steinbrecher in 2019 [76], the input is the single-photon Fock state, the unit

nonlinearity is assigned to the Kerr-type interaction, and the quadratic phase is applied

to the number of photons. The readout is provided by the photon number resolution

detector, which measures the number of photons in each output mode. The single-

mode Kerr interaction achieves photon coherence nonlinearity.

Other nonlinear activations

In 2018, R. Amin and J. George et al. pointed out that electro-optic absorption modula-

tion could realize nonlinear modulation of light waves [77–79], discussed the method

of mapping nonlinear activation function to transfer function of electro-optic modula-

tor, and also pointed out that different functional activation functions could be imple-

mented by making use of different electro-optic materials. For example, the ReLU

function can be realized by utilizing the inverted filling light absorption mechanism of

quantum dots (QD) [80].

In the same year, M. Iscuglio et al. designed a kind of optical nonlinear, which de-

pends on the reversible transparent sensitivity caused by Fano resonance in the plasma

oscillator subsystem and the nonlinear response of Buckyball (C60) membrane——anti-

saturation absorption [81], realizing the fast and effective all-optical nonlinear, improv-

ing the throughput of the neural network, and reducing the delay and power

consumption.

In May 2019, in the paper called “an all-optical spiking neurosynaptic network” on

the “Nature”, it is mentioned that the construction of the network with the help of

phase change material nonlinear PCM many times [61]. PCM combines with MRR

achieve weight modulation, and integrates with ring resonator to realize peak function

as nonlinear activation function. If the power of input pulse summation exceeds a cer-

tain threshold, the state of the PCM will change, producing peak/impulse. Otherwise,

the probe pulse resonances with ring resonator, which is similar to the nonlinear re-

sponse represented by ReLU function.

In addition, the two-layer AONN [34], designed by the Hong Kong team, proposed a

special nonlinear activation function based on electromagnetic induced transparency

(EIT)——a photo-induced quantum interference effect between atomic transitions, in

laser-cooled atoms with electromagnetic induced transparency. The EIT nonlinear op-

tical activation function is implemented by laser-cooled 85Rb atoms in the dark-line

two-dimensional magneto-optical trap (MOT), as shown in Fig. 10(a). The atomic en-

ergy level is shown in Fig. 10(b). Atoms are prepared in the ground state ∣1>. The out-

put beam after linear operation——the circular polarized coupled beam ωc resonates
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with ∣2 > ∣ 3>, incident to the electron cloud transversely, and back-propagation

probe beam ωp resonates with ∣1 > ∣ 3>. In the absence of a coupled beam, the

atomic medium is opaque to the resonant detection beam, which is absorbed to the

maximum extent by the atom as shown in the implementation of transmission

spectrum in Fig. 10(c). In contrary, in the presence of a coupled beam, quantum inter-

ference between the transition paths leads to the EIT [82] spectral window, as shown in

the dashed curve in the figure. The resonance peak transmission and bandwidth are

controlled by coupling laser intensity, and the output of the resonance probe laser

beam can be expressed as: Ip;out ¼ Ip;ine
− OD

4γ12γ13
Ω2
cþ4γ12γ13 ¼ φðΩ2

cÞ . It can be seen that the

probe output beam is a nonlinear realization of the coupled nonlinear input beam.

In January 2020, a nonlinear activation function structure of the optical neural net-

work was proposed [83], which achieves the optical-to-optical nonlinearity by convert-

ing a small part of the optical input power into voltage. As the original optical signal

passes through the interferometer, the remainder of it is modulated by the phase and

amplitude of this voltage. For the input signal with an amplitude of z, the resulting

nonlinear optical activation function f(z) is the response of the interferometer under

modulation and the result of elements in the electrical signal path. The schematic

structural diagram is shown in Fig. 10(d). In addition, he demonstrated another imple-

mentation of the activation function, which could include a nonlinear MZI in which an

arm has a material with a Kerr nonlinear optical response. Two different kinds of im-

plementation methods were also conducted experimental demonstration analysis and

comparison, highlighting that the lower activation threshold can be achieved by the

electro-optic activation structures.

Training, experimental demonstration and analysis
For a neural network, training is a crucial and indispensable step, which affects the

performance of network. The process of training is to calculate the target loss

function by gap between the network output and the actual output and make it

Fig. 10 a, b, c represents the preparation, energy level diagram, and transmission diagram of laser-cooled
85Rb atom, respectively [34, 82]. d An electro-optical nonlinear activation function structure can be used to
realize the optical nonlinear element ONU [83]
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minimize to optimize the network parameters and achieve the effect of network

convergence. When the network performs the prediction task finally, the desired

results can be achieved. In electronic neural networks, training is divided into two

categories: supervised learning and unsupervised learning. In the process of opti-

mizing parameters, we can make use of back propagation, adopt gradient descent,

Adam, momentum and other methods to minimize the cost function of the net-

work. Since training involves gradient calculation and even more complex calcula-

tion, how to train the network is a difficult and important step in optical neural

network. At present, training in most of ONNs is implemented through software

to obtain weight parameters, so as to complete inference in ONN architecture.

However, the training in the electrical field has shortcomings of pertinence and de-

pendence. We can customize the training methods according to the optical archi-

tecture of ONN, making full use of the photonic technology, although it will be

more complicated. Next, training methods in ONNs will be introduced through

different training or gradient calculation methods.

Backpropagation algorithm

Backpropagation algorithm is a learning algorithm suitable for multi-layer neural

networks, based on gradient descent method. The main idea is: after ANN has

completed the forward propagation process, the error between the estimated

value and the actual value of the network is calculated, and the error is back

propagated from the output layer to the hidden layer until it is propagated to

the input layer; In the process of back propagation, the values of various param-

eters are adjusted according to the errors, and the above process is iterated con-

tinuously until the network converges. In the training of D2NN type network,

the function of back propagation algorithm is greatly exerted.

In the all-optical machine learning D2NN structure [24], the output layer will

have a photoelectric detector array to detect the output light intensity, which

makes difference with the target light intensity. The loss function is defined by

mean square error, with the help of back propagation algorithm and stochastic

gradient descent to update the amplitude or phase of the entire network. This is

the training process of this network, which is completed on the electronic com-

puter. And then, the trained parameters of each layer are modeled and 3D

printed out. Finally, the light source, the fabricated 3D diffraction modulation

layer and the detector array are used to construct the photonic neural network

for reasoning and prediction. In order to test the inference ability and perform-

ance of the network, the author carried out experiments on the MNIST dataset

and the Fashion-MNIST dataset, and reached a high accuracy on the network

structure which had designed the 5-layer D2NN and increased the number of

diffraction layers on this basis. The specific experimental results are shown in

Table 1. Later, the researchers of the research group analyzed in detail the

architecture of the diffraction neural network and different parameter designs,

and used five phase-only diffraction modulation layers for handwriting number

recognition and fashion product recognition, achieving 97.18% and 89.13% rec-

ognition accuracy respectively. In addition, the influence of learning loss
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function on the performance of optical neural network and the mitigation of

gradient disappearance in error back propagation are also analyzed [84].

Replacing 3D layers with diffraction gratings also realized the network training by the

above method [25]. Finally, optimized parameters were used for grating design, and the

corresponding diffraction grating was etched through semiconductor processing tech-

nology. The phase values of neurons have the following relationship with ladder thick-

ness of etched diffraction grating, that is, the height of Ge: Δz ¼ λϕ
2πΔn ¼ 0:5618ϕ . In

order to train and test the D2NN classifier, MNIST dataset was used for experiments,

with obtaining higher recognition accuracy. Table 2 shows the specific experimental

results.

In the neural network system which implements logical operation, metamaterial is

used as the diffractive modulation layer [26]. Each layer of metasurfaces is composed of

the array of scatterers, the size of which can control the amplitude and phase of the

scattered light. The above network architecture is still used for training in the same

way, and then the parameters trained are converted to the size of the scatterer, to

modulate the amplitude or phase of transmitted light after each layer. At First, three

basic logical operations, NOT, OR, and AND are experimentally demonstrated, and the

accuracy can reach 100%. Then, a three-layer phase-only diffraction neural network is

used to realize all seven optical logic gates in an optical system. By calculating the in-

tensity distribution of two specified areas, the accuracy is still satisfactory. In addition,

the team proposed a possible scheme for cascading optical logic gates and pointed out

that expect for multilayer metasurfaces, there could be other platforms to promote op-

tical logic gates, such as metamaterials/nanophotonics. As shown in Fig. 11(a).

From the above description, it can be concluded that for deep diffraction network

D2NN, computer learning and training of network hyperparameters, no matter using

3D printing diffraction layer, matrix grating or metasurface, are identical in physical es-

sence; and the network parameter training is all completed by computer, using the

same set of complete architecture. Besides, once the task you want to accomplish

Table 1 Experimental Results for D2NN

five layers seven layers ten layers

MNIST 91.75% 93.39% –

Fashion-MNIST phase-only 81.13%
complex-valued 86.63%

– 86.60%

Table 2 Experimental Results of Diffraction Grating Network System

MNIST data set, recognition of number 7

Number of neurons
(10 mm,5 layers)

100*100 85.75%

200*200 88.2%

Layers of network
(200*200 neurons, 10 mm)

2 74.1%

3 79.1%

5 88.2%

Distance between layers
(200*200 neurons, 5 layers)

5 mm 74.1%

10mm 88.2%

20mm 79.1%
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changes, the network needs to be trained again. According to the computer configur-

ation parameters given in the paper, it will spend a long time training the network and

remake the diffraction layers. These operations will consume a lot of time and

resources.

In June 2020, Dai Qionghai team proposed a SLM cascaded neural network, which

uses 4f system and SLM to achieve optical field measurement, and utilizes the error

measurement module to realize network training [85], as shown in Fig. 11(b). The cas-

caded SLM is used as the hidden layer. Based on the principle of light reciprocity and

phase combination, the gradient of the loss function relative to the weight of the dif-

fraction layer is accurately calculated by measuring the forward and backward propa-

gating light fields. The high-speed spatial light modulator is then programmed to

update the diffraction modulation weight to minimize the error between the prediction

and the target output, and perform inference tasks at the speed of light. This study not

only realizes the SLM diffraction modulation layer, but also has one of the biggest fea-

tures. In the realization of the back propagation algorithm, that is, it uses optical

methods to carry out the back propagation algorithm to train linear and nonlinear dif-

fractive optical neural networks in situ, thereby speeding up the training speed and im-

proving the energy efficiency of the core computing module. Therefore, it not only

realizes the optics of the network structure, but also realizes the optics of the training

process and real-time programming.

In addition to the diffraction network, in the training of coherent nanophotonic cir-

cuit, the author also used the traditional back propagation algorithm and stochastic

Fig. 11 a Possible solutions for optical logic gate cascading and other possible implementation platforms
[26]. b Describes a SLM cascade neural network, and uses 4f system and SLM to realize optical field
measurement, thereby carrying out optical training of diffraction ONN [85]
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gradient descent method to update the parameters, and constructed a two-layer fully

connected neural network for speech recognition experiment. The recognition accuracy

is only 76.7%, while equivalent electronic neural network can achieve accuracy of

91.7%. There is still much room for improvement in this method.

Forward propagation on Chip

Despite the backpropagation algorithm is widely used, and it is currently the most com-

monly used and most effective algorithm for training artificial neural networks. How-

ever, for some ANNs, when the number of effective parameters greatly exceeds the

number of different parameters, especially RNNs and CNNs, the use of backpropaga-

tion for training is notoriously inefficient. To be exact, due to the recurrent nature of

RNN, ANN becomes an extremely deep neural network, which the depth of the net-

work is equal to sequence length, hence the problem of gradient disappearance is more

common and especially serious. Meanwhile, in the CNN, the parameter sharing method

of extracting features by using the same weight parameters repeatedly in different parts

of the image runs through the whole network.

In addition to using back propagation for training in the coherent nanophotonic cir-

cuit, the research team has also proposed a way to directly obtain the gradient of each

different parameter by only using forward propagation and finite difference methods on

ONN [36]. The method of obtaining the gradient can be specifically described as the

following process: first of all, calculating two forward propagation steps J(Wij) and

J(Wij + δij) in a constant time, then calculating ΔWij = (J(Wij + δij) − J(Wij))/δij, that the

gradient of different weighting parameters ΔWij can be acquired only by forward

propagation.

Of course, this kind of on-chip forward propagation method is essentially a simple fi-

nite difference method. Although it is simple in form and convenient in use, it requires

to carry out a forward propagation for each independent parameter, including two cal-

culations of loss function and one calculation of division. When there are many param-

eters, the efficiency is very low.

In-situ Back propagation and Adjoint method

As an all-optical neural network, the coherent nanophotonic circuit mentioned above,

whose linear operation and nonlinear activation can be effectively completed by optical

path, has good forward propagation speed and power efficiency, and has a good devel-

opment prospect. Its training can either use the traditional back propagation algorithm

or only using the forward propagation to directly train the neural network on the pho-

tonic chip, so as to realize the programmable optical neural network. However, Mach-

Zehnder interferometer, directional coupler and phase modulator occupy a large space,

so it is difficult to construct the optical network with more than 1000 neurons. In

addition, due to the precision encoding phase, phase shift between thermal crosstalk

and optical detection noise of MZI and other factors, the identification accuracy cannot

reach the expected effect, and the accuracy is far lower than the equivalent electronic

neural network. Therefore, this kind of inefficient training method cannot be applied to

the neural network based on integrated photonic platform, and it is difficult to achieve

the goal of large-scale, fast, programmable and high-precision photonic neural network.
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In 2018, Tyler W. Hughes et al., from Stanford University, proposed a method of

training neural network efficiently and locally to obtain parameters of optical path in

backward propagation through the method of adjoint variables, which is similar to the

means of calculating gradient in the common neural network [86]. Moreover, these

gradients can be obtained by measuring the strength of the device.

As shown in Fig. 12(a), the transmission matrix W between the input and output of

each layer is determined by the dielectric constant εl of the phase shifter of that layer.

Using the mean square error (MSE) as the loss function L of the system, we first calcu-

late derivative of the dielectric constant εl of the last layer corresponding to the loss

function, and then compute recursively the gradient of each layer by the chain rule.

The next is to calculate the gradient by electromagnetic adjoint variable method. The

derivative of dielectric constant εl corresponding to the loss function of can be

expressed as another form including the original quantity oj and the adjoint quantity aj:
dL
dεl

¼ k20Rf
X
r∈rϕ

eajðrÞeojðrÞg.

The last term in the intensity pattern due to the interference of eog and eaj is the

amount needed to calculate the gradient: I = |eog|
2 + |eaj|

2 + 2R{eogeaj}, thus as long

as eaj in OIU can be generated, the measurement of gradient can be achieved sim-

ply by measuring light intensity. Figure 12(b) shows the experimental method for

measuring the gradient. First, in step (1), input the original field Xl − 1 in the for-

ward direction and record the intensity at each phase shifter, i.e. |eog|
2. Then, input

the difference between the actual output and the ideal output in step (1) in the re-

verse direction and record the intensity of each phase shifter, namely je�ajj2. In step

(2), reverse output is a time-reverse adjoint field, which can be calculated by X�
TR

¼ Ŵ
T
l δl . As shown in step (3), when inputting the original field and the time-

Fig. 12 a, b A kind of efficient and locally raining method for neural network [86]. c Wave physical
simulation of recursive network layout [87]. d Neuron pattern with unsupervised learning [61]
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inverse field at the same time, interference occurs, and record the intensity of each

phase shifter, subtract the constant intensity term in steps (1) and (2) and multiply

with them to obtain the gradient.

Furthermore, in situ backpropagation algorithm and adjoint method for gradient

measurement are also used in the training of NNM [48], but its training parameters are

different. The training of nanophotonic neural medium NNM is controlled by nonlin-

ear Maxwell’s equations, that is, an input image is used as the light source to solve the

iterative process of nonlinear Maxwell’s equations. Before the training, the electric field

is randomly initialized to E0, thus the dielectric constant could be calculated. The new

electric field E1 could be obtained by solving the equations with FDFD, then use E1 to

update ε and iterate continuously until the field convergences. Next, solve the gradient

of the loss function to the dielectric constant until the structure of NNM is updated,

and the training of one picture is also finished. In the end, repeat the above process

with different pictures. At the beginning of training, dopants are randomly distributed;

with the advancement of the training process, dopants begin to move, merge, and fi-

nally converge together. The dividing line is gradually generated during the training

process. The training process seems to be training and updating dielectric constant ε,

but it is actually changing the distribution of dopants in it, in other words, changing

the material density of the entire material.

However, Maxwell’s equations describe not only light waves, but also all types of

waves belonging to electromagnetic waves. The discovery and development of electro-

magnetic wave are inseparable from the research of mechanical waves such as water

waves and sound waves. Mechanical waves and electromagnetic waves have different

generation mechanisms and their own characteristics. However, they are all waves, and

there are many common rules, for instance, all of them can produce reflection, refrac-

tion, interference, diffraction and other phenomena; wave speed, wavelength and fre-

quency have the same relationship; vibration law and energy distribution are similar to

electromagnetic wave. Therefore, the training of light waves in NNM can be extended

to the training of other waves with similar characteristics, such as sound wave, so as to

realize the deep learning tasks in other fields.

In December 2019, Tyler W. Hughes et al. conducted an analysis and research

on the neural network constructed by wave physical simulation [87]. First, they

proved that the dynamics of the wave equation is conceptually equivalent to the

dynamics of RNN, and then designed an inhomogeneous medium to demonstrate

how to train the dynamics of the wave equation through the construction of the

nonhomogeneous material distribution to classify vowels. The specific system lay-

out is shown in Fig. 12(c). For demonstration, a binary system consisting of two

materials is realized. As with NNM, the initial distribution of wave velocity is com-

posed of uniform material area with velocity between the two materials that make

up the system. When the system is trained, the wave equation model is used to

carry out back propagation, and the gradient of the cross-entropy loss function of

the measured output with respect to material density of each pixel in the trainable

area is calculated. This method is mathematically equivalent to the adjoint method.

Then, we used the Adam optimization algorithm to update the material density

with this gradient information, and repeated the process until the final structure

converged. The experimental results show that the structure can be used to
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identify the vowel indeed. The average accuracy of system on the training data set

is 92.6 ± 1.1%, and the average accuracy on the test data set is 86.3 ± 4.3%. The

prediction performance of the system for acoustic emission vowels is almost per-

fect, the system can distinguish between iy vowels and ei vowels, but accuracy is

poorer, especially in samples not shown in the test dataset.

Although the neural network system combining scattering and deep learning can per-

form classification and recognition tasks, there are some difficulties in material produc-

tion. It is not easy to obtain active tumor slices, and the size of nanophotonic medium

is also on the order of micron millimeter after calculation, and its fabrication is not

simple. However, the materials of scattering media can be diversified and easy to ob-

tain. For linear materials, in the optical platform, linear dopants such as pores can be

used; in an acoustic environment, the distribution of materials may include air with a

sound velocity of 331 m/s and porous silicone rubber with a sound velocity of 150m/s

[88]. For nonlinear materials, in the optical platform, utilizing the Kerr nonlinearity is

the most direct method to realize the nonlinear wave velocity. Silicon (Si) and chalco-

genide glass (such as As2S3) are two kinds of widely used nonlinear optical materials on

the integrated platform, and chalcogenide glass has one of the highest damage thresh-

olds [89]. Another commonly used optical nonlinearity is saturation absorption, which

consists of the intensity-dependent absorption/damping, mathematically defined as: ðuÞ

¼ b0
1þð u

uth
Þ2 . One possible way to achieve this effect is to place graphene or other absorb-

ent 2D materials on the linear optical circuit etched on a medium such as silicon.

Acoustically, many fluids, especially those containing bubbles such as carbonated water,

exhibit strong nonlinear responses. Not only light waves and sound waves, but also

waves similar to Maxwell’s equation can be used to construct network system by mak-

ing use of inhomogeneous media for training and learning.

Training spiking neural network (SNN) with STDP mechanism

In all-optical spiking neural network, not only supervised learning of simple image

recognition is carried out, but also unsupervised learning is demonstrated [61]. In

the supervised learning experiment, the synaptic weight of the network is trained

based on the computer, adopting the back propagation algorithm. Here, a set of

training data consisting of input mode pair and expected output pair is given. Ac-

cording to the deviation between expected output and actual output, the synapse

weight in the network is adjusted for optimization until the deviation is optimal

and the network converges. In the unsupervised learning, the network can auto-

matically update its weight through a feedback loop and adapt to specific patterns

in this way, without the need for external computer control. The specific unsuper-

vised neuron pattern is shown in Fig. 12(d). Unsupervised learning uses spiking

timing dependent plasticity (STDP) criteria to update the weight, that is, the

change in the weights of two synapses is related to the time difference between

the pre-synaptic and post-synaptic neuron pulses [90]. If an input signal arrives

just before the output peak, then the input signal is likely to have reached the trig-

ger threshold and the corresponding weight will be increased. If the input pulse ar-

rives after the output pulse, the weight of the synapse is reduced. The increase or
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decrease of the weight is a function of the time difference between the input peaks

and output peaks. Eq. (3) and (4) show the weight update of two mainstream un-

supervised STDP learning algorithms:

Two − phase STDP : Δwi ¼
Aþ exp

Δti
τþ

� �
;Δti < 0

A − exp
− Δti
τ −

� �
;Δti≥0

8>><
>>: ð3Þ

There − phase STDP : Δwi

¼ Aþ exp
− Δti − 15ð Þ2

200

 !
−A − exp

− Δti − 15ð Þ2
200

 !
ð4Þ

In 2020, Shuiying Xiang proposed the hardware architecture of a multi-layer photonic

spiking neural network [91], which uses a vertical cavity surface emitting laser embed-

ded with a saturated absorber as the pulse neuron, with two polarization modes. If the

polarization pattern between the two is the same, it is considered as an excitatory syn-

apse. If it is orthogonal polarization, it is considered as an inhibitory synapse. In

addition, applying the photonic STDP criterion, a supervised learning algorithm based

on Tempotron rule and photonic STDP rule is designed, which is suitable for multi-

layer photonic spiking neural network. The neuromorphic neural network can solve

the classical XOR problem, and consider the influence of physical parameters of pho-

tonic neurons on training convergence. Furthermore, the multi-layer photonic SNN is

further extended to realize other logical tasks.

Pseudo-inverse matrix method for reservoir computing

Reservoir computing based on WDM technology is a special neural network system, in

which training parameters and training methods are also different from other neural

networks. RC system has a fixed reservoir, the so-called hidden layer, and its input

matrix and internal connection matrix of the reservoir are given randomly and fixed.

Thus, RC only needs to train the output matrix between the reservoir layer and the

output layer. The existing training methods include pseudo-inverse matrix method,

ridge regression, and least square method, the most commonly used training method is

pseudo inverse matrix method. We take the RC system based on optical fiber commu-

nication as an example to illustrate the application of pseudo-inverse matrix method in

the training of reservoir computing [53].

RC system is a recursive system subject to the time-limited internal state x(n). Its

neurons can be described as the function of input current and previous calculation re-

sults, expressed in the following way:

~x nð Þ ¼ f W in 1; u nð Þ½ �;Wx n − 1ð Þ� �
x nð Þ ¼ 1 − αð Þx n − 1ð Þ þ α~x nð Þ

The output of the network can be expressed as: y(n) =Wout[1; u(n); x(n)]. By collect-

ing training data [1; u(n); x(n)] and training target signal, the readout matrix waveform

can be obtained by using the pseudo-inverse matrix method. When estimating the dif-

ference between the theoretical output and the system output, an indicator such as the

normalized root mean square error (NRMSE) is used. The specific form is as follows:
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In order to evaluate the performance of the optical RC system, the simulation experi-

ment was carried out to identify the input signal waveform using the commercial soft-

ware of the optical fiber communication system, and the experiments of without

interconnection and with interconnection were compared. The pseudo-inverse matrix

method used in the training process is replaced by the optical delay tuning of the phase

modulator (PM) between the optical neuron and the output layer directional coupler,

and the output data is optimized by obtaining the lowest NRMSE. The final results

show that ONN can provide better performance in recognition of input signal wave-

forms, and reservoir computation in the neural network with randomly connected op-

tical neurons can provide better performance. In addition, the performance of RC

system when performing linear and nonlinear operation in EDFA is also studied. Fi-

nally, it is proved that optical neurons should be activated by nonlinear activation func-

tion in the RC system, so as to obtain the ability of signal recognition.

Discussion and outlook
ONN is a promising alternative to ENN with two obvious advantages. Firstly, the

matrix multiplication which ANN relies on can be performed at the speed of light in

ONN and detected at a rate of over 50 GHz [92]; Secondly, after training, ONN is pas-

sive, and the calculation of optical signal can be realized with the minimum power con-

sumption [48]. A large number of different types of ONNs have been reported at

present, including ONNs based on diffraction optics and free space optics, integrated

photonic circuits based on interference optics and synaptic mechanisms of spiking dis-

charge, and even neural networks that utilize the principle of wavelength division mul-

tiplexing for reservoir computing. Here, we will summarize and discuss the network

technologies involved in this paper, and point out the current challenges and the pos-

sible development directions in the future for the implementation of optical neural

network.

In the study of diffraction neural network, it makes good use of the phenomenon of

light diffraction, and realizes the full connection of neurons among all layers, so that

the learning ability of the model will be better. But their research lacks an important

part, which is nonlinear activation, and the researchers also suggest that their process

does not involve nonlinear activation functions. In the future, we can try to implement

such optical diffraction neural networks and add nonlinear work, such as using nonlin-

ear optical media such as photorefractive crystals and magneto-optical traps, or using

existing nonlinear activation functions that have been studied, to compensate for its ab-

sence through experiments. Beyond that, this kind of network and ONNs based on

Fourier transform belong to free-space connection networks. Due to some heavy op-

tical elements such as diffraction element and lens, it is challenging to scale and scale a

large number of neurons. Scattering-based neural network is a type of neural network

that is worth studying. Due to the disorder of scattering, light may be scattered from all

directions. Therefore, the light passing through the scattering medium is equivalent to

many computations, which is likely to surpass the previous hierarchical feedforward
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network. And because of the particularity of nano scattering medium, we can realize

many different real-time trainings. Optical neural network with chips as the main-

stream, such as coherent nanophotonic circuit and spiking network, can offer a

CMOS-compatible, scalable approach to achieve optical deep learning tasks, have huge

advantages in device miniaturization and expanding the network size, and they work

under light, with the strong computing power and minimal resource consumption.

However, the cost of chip-type network is extremely expensive and the technical re-

quirements are strict, requiring a lot of manpower material resources to support. So

even though it has excellent development prospects, there are still technical challenges

to be overcome.

Nonlinear operation is the root of the strong expression ability of ANN, it enables

the neural network to learn complex mapping between the input and output, speeds up

the convergence of the network and improves recognition accuracy. It’s an indispens-

able component of the neural network. Graphene, PCM, EIT and other excellent non-

linear activations have emerged nowadays, however, there are huge challenges to

implement the nonlinear function in the optical domain, Firstly, the optical nonlinearity

is relatively weak, and its generation generally requires very high optical power, greatly

increasing the energy consumption. At the same time, due to the high optical power,

other optical devices in the system will be damaged. Secondly, the optical nonlinearity

needs to be balanced with the working bandwidth, and the information processing cap-

ability of ONN will be limited. In addition, many elements in an optical circuit main-

tain a consistent resonant response between each other, requiring additional control

circuits to calibrate each element [93]. Thirdly, in the architecture of photonic artificial

intelligence chip, the flexibility of nonlinear activation function is high, and it is difficult

to control the optical nonlinear effect. In the manufacturing process of nonlinear de-

vices, the response tends to be stable, which cannot meet the need of flexibility. Mean-

while, there are many problems in the integration of nonlinear optical units on chip in

terms of process compatibility and device consistency. In summary, how to realize the

optical nonlinear activation function with low power consumption, high speed, easy

realization and rich expression forms is a technical problem urgently to be solved by

the technicians in this field.

Apart from seeking a breakthrough in the aspects of linear operation and nonlinear

activation, we can also put our energy into the neural networks training. At present,

many networks complete the training process on the computer, and then complete the

identification and classification tasks in the optical system, such a method is inevitably

too targeted. Therefore, it is extremely important to find a training method that can

train in optical mode and realize real-time training. The coherent nanophotonic circuit

realizes a forward-propagation programmable training and also proposes an efficient

local training method. The training of nano scattering medium is a good example, too.

It can change the dielectric constant of the material by controlling the electric field,

thereby controlling the distribution of internal dopants and finally achieve stability.

Furthermore, depending on the task or goal, the training can be repeated many times.

Of course, the successful implementation of ONN cannot be separated from the

combination of technologies in other fields. For instance, the fabrication of 3D diffrac-

tion layer in the D2NN uses 3D printing technology and Poisson surface reconstruction

technology. Grating diffraction layer uses semiconductor processing technology for
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etching, as well as silicon photonic integration technology is needed for coherent nano-

photonic circuit, spiking network and nanometer neural medium carried on chip.

There is even cooperation with the fields of metamaterials, scattering imaging, etc. Not

only that, in order to realize nonlinear activation, it is also necessary to have knowledge

reserves related to chemistry and materials.

Conclusions
In this paper, we introduce and analyze the advanced field of deep learning——optical

neural network in detail. Firstly, we introduce how to realize the linear connection and

optical nonlinear activation in ONN, and then describe how to train ONN in term of

different training or gradient calculation methods. At last, we also conduct and discuss

the optical neural network techniques, and point out the current challenges and future

developments. For some typical applications, simple data analysis and comparison are

also carried out. As an interdisciplinary product of photonic technology and artificial

intelligence technology, photonic neural network can combine the advantages of pho-

tonic technology and artificial intelligence to build a high-speed, low-power, large-

bandwidth network structure, breaking through the bottleneck of traditional electronic

neural network. However, the photonic neural network still needs to overcome prob-

lems such as real-time training, implementation of nonlinear activation function, scale

and application expansion, etc. It is believed that in the near future, the photonic neural

network can better play the advantages brought by the combination of optoelectronic

technology and artificial intelligence technology, so as to better build a green intelligent

world.
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