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Abstract

The expansion of the Internet of Things has resulted in new creative solutions, such as
smart cities, that have made our lives more productive, convenient, and intelligent. The
core of smart cities is the Intelligent Transportation System (ITS) which has been inte-
grated into several smart city applications that improve transportation and mobility.
ITS aims to resolve many traffic issues, such as traffic congestion issues. Recently, new
traffic flow prediction models and frameworks have been rapidly developed in tandem
with the introduction of artificial intelligence approaches to improve the accuracy of
traffic flow prediction. Traffic forecasting is a crucial duty in the transportation industry.
It can significantly affect the design of road constructions and projects in addition to
its importance for route planning and traffic rules. Furthermore, traffic congestion is

a critical issue in urban areas and overcrowded cities. Therefore, it must be accurately
evaluated and forecasted. Hence, a reliable and efficient method for predicting traffic
is essential. The main objectives of this study are: First, present a comprehensive review
of the most popular machine learning and deep learning techniques applied in traffic
prediction. Second, identifying inherent obstacles to applying machine learning and
deep learning in the domain of traffic prediction.

Keywords: [TS, Al, Traffic prediction, Traffic congestion, Machine learning, Deep
learning

Introduction
In recent decades, the demand for the development of ITS-based solutions for precise
traffic prediction and mobility management has increased as cities have gotten
increasingly crowded and congested [1]. ITS is an advanced technology for delivering
transportation by utilizing advanced data communication technologies through the
integration of communications, computers, information, and other technologies and
applying them to the transportation industry. This process aims to create an integrated
system of people, roads, and vehicles [2]. ITS can construct a comprehensive, real-time,
accurate, and effective transportation management system [3]. Furthermore, it has the
potential to significantly reduce hazards, high accident rates, traffic congestion, carbon
emissions, and air pollution, while also improving safety and dependability, travel
speeds, traffic flow, and passenger satisfaction [4].

Precise traffic flow prediction is essential to the ITS as it can help traffic stakehold-

ers (Individual passengers, traffic administrators, policymakers, and road users), shown
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Fig. 2 Benefits of traffic flow forecasting

in Fig. 1, utilize transport networks more safely and intelligently [5, 6]. The efficacy of
these systems depends on the quality of traffic data; only then, an ITS will be successful.
According to the World Health Organization’s (WHO) 2018 report on the universal sta-
tus of road safety, road traffic deaths continue to rise, with 1.35 million deaths recorded
in 2016, making the study of traffic forecasting a valuable method for reducing conges-
tion and ensuring safer, more cost-effective travel [7, 8]. The benefits of traffic flow fore-
casting are illustrated in Fig. 2.

Historically, traffic flow forecasting was dependent on parametric models such as time
series analysis derived from historical data. In time series, a collection of observed read-
ings x is recorded at a specific time t. The objective is to recognize temporal patterns
in past traffic data and use these results for forecasting. Another model for mobile sto-
chastic problems capable of resolving regression concerns and minimizing variance to
achieve optimal results was the Kalman Filtering method for time-series analysis [9].
Also, the Auto-Regressive Integrated Moving Average (ARIMA) model is a well-known
and standard framework for predicting short-term traffic flow [10]. Numerous modifi-
cations to the ARIMA model were implemented, and the results ensured an enhanced
performance [11-14].

Because traffic flow is stochastic and nonlinear, nonparametric models such as Ran-
dom Forest (RF) Algorithm, Bayesian Algorithm (BA) approach, K-Nearest Neighbor
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(KNN), Principal Component Analysis (PCA), and Support Vector Algorithms [9] have
recently been employed in traffic flow prediction. In addition, neural networks became
popularly employed for predicting traffic flow [15]. In the era of big data, a shallow Back-
Propagation Neural Network (BPNN) [16] showed promising results. Thus, deep learn-
ing emerged, employing several layers to extract more complex properties from raw
input. Convolutional Neural Networks (CNN) [17], Recurrent Neural Networks (RNN)
[18], Long Short-Term Memory (LSTM) [19], Restricted Boltzmann Machines (RBM)
[20], Deep Belief Networks (DBN) [21], and Stacked Auto-Encoder (SAE) [22] are some
examples of deep learning architectures.

The primary goals of this research are to conduct a comprehensive survey of the
key machine learning and deep learning techniques used in forecasting traffic flow in
addition to identifying the obstacles and future directions for machine learning and deep
learning in this field.

The rest of the paper is organized as follows: Section "Background"” gives a theoretical
background about traffic prediction problems, machine learning, and deep learning.
Section "Survey methodology” outlines the survey methodology and presents a literature
review of machine learning and deep learning approaches employed in traffic flow
prediction. Section "Challenges" covers the existing challenges in the topic of this survey.
Finally, Section "Conclusion" concludes the paper.

Background

ITS provides a bunch of high-resolution traffic data to be used in data-driven-based traf-
fic flow prediction techniques [23]. From this perspective, traffic flow prediction can be
considered as a time series problem in which the flow count at a future time is estimated
based on data received from one or more observation points during prior periods.
Traffic flow forecasting is a major component of traffic modeling, operation, and man-
agement. Accurately predicting traffic flows in real-time can give information and rec-
ommendations for road travelers to enhance their travel choices and decrease expenses,
in addition to supplying authorities with enhanced traffic control tactics to alleviate con-
gestion. Machine learning and deep learning as depicted in Fig. 3 are considered as sub-
sets of artificial intelligence (AI) that have witnessed exponential expansion over years
[24]. These approaches have been deemed successful in predicting traffic flow.

Artificial Intelligence

Leaming

Fig.3 Al, ML, and DL
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Machine learning
Machine Learning (ML) techniques are considered statistical models that are utilized

to make classifications and predictions based on the data provided [24]. ML is an area
of AI that focuses on the development of prediction algorithms depending on the fair
discovery of patterns within huge datasets and without being designed specifically for a
particular job [25]. ML models are classified into three categories according to the learn-
ing techniques they employ: supervised learning, unsupervised learning, and reinforced
learning (RL). In addition, ML algorithms might be further subdivided into several sub-

groups depending on distinct learning approaches, as shown in Fig. 4 [26].

Supervised learning
In the tasks that depend on supervised learning, a labeled dataset known as feature

vectors and their corresponding predicted output labels are supplied to the model.
The objective of these models is to create an inference function that maps feature vec-
tors into output labels. When the ML model training is complete, it can make predic-
tions based on new data. Continuous or discrete predictions can be generated using
supervised learning algorithms [24]. Support Vector Machine (SMV), KNN, Logistic
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Regression, Linear Regression, Decision Trees (DT), Random Forests (RF), and Naive

Bayes are examples of supervised learning approaches [25].

A. Support vector machine

SVM is a supervised learning methodology based on the classification approach. It can
be considered a non-probabilistic linear classifier. SVM is regarded as the state-of-the-
art machine learning algorithm. Margin calculation is the core concept underlying SVM.
In such an approach, each item of data is represented in n-dimensional space as a point,
where n is the features count and each feature represents the value of the coordinate. As
depicted in Fig. 5, the objective of this strategy is to examine the vectorized data as well
as create a hyperplane that distinguishes between the two classes [27]. Various margins
are then drawn between several classes, and a hyperplane is built that minimizes the
mean-squared error and maximizes the margin-to-class distance [28].

Once an optimal separating hyperplane is identified in the case of linearly separable
data, points of data that sit on its boundary are called support vector points, and the
solution is introduced as a linear combination of these points alone, as depicted in Fig. 6.
The other data values are disregarded [29]. Therefore, the SVM model’s complexity is
independent of the feature count found in the training data. So, SVMs are ideally suit-
able for learning missions involving many features relative to the number of training

cases.
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Despite the greatest margin that enables the SVM to choose through numerous nomi-
nee hyperplanes, SVM may be unable to locate any hyperplane that can separate hyper-
planes at all due to the misclassified instances contained in the data. One proposed
solution to this problem is to utilize a soft margin that allows certain training cases mis-
classifications [30]. SVMs are binary classifiers, so in the case of multi-class problems,
the problem needs to be reduced to a series of several binary classification problems.
Categorical data represent another challenge; however, with adequate rescaling, decent
results can be obtained [29].

B. K-nearest neighbors

KNN is considered a nonparametric classification technique that makes no assump-
tions about the basic dataset and is known for its efficiency and simplicity. In KNN, a
labeled training dataset is used to predict the class of unlabeled data [31]. KNN is typi-
cally employed as a classifier to classify data based on the nearest or most nearby train-
ing samples in a specific location. KNN is utilized in datasets where data may be divided
into distinct clusters to determine the new input’s class. KNN is more significant in case
there is no prior knowledge of the data used in the study [31].

KNN typically employs K variable values between 0 and 1 to calculate the number
of training data points with the closest distance. KNN employs numerous distance
functions, including Manhattan distance, Euclidean distance, Minkowski distance,
and Hamming distance. The Euclidean distance is employed to calculate its nearest
neighbors in the case of continuous data, but for categorical data, the Hamming distance
function is utilized [32].

The most challenging aspect of the KNN algorithm is choosing the K value, as it
affects the algorithm’s performance and precision. Small K values generate noise in class
label prediction, while large K values may lead to excess fitting likelihood. In addition,
it increases the computation time and affects the execution speed. The K value is
calculated according to (1):

K =n"(1/2) (1)

where # is the size of the dataset.

Cross-validation will be applied to training data with varied K values to maximize
the test results. The optimal value for test results will be decided based on the optimal
precision [32].

The KNN technique has the following benefits: it is a straightforward technique that is
simple to apply. It is a very adaptable classification technique that is ideal for multimodal
classes.

On the other hand, using the KNN algorithm to classify unknown data is quite costly.
It needs to calculate the distance between the k-nearest neighbors. As the size of the
training set increases, algorithm computations get increasingly intensive. Noisy or irrel-
evant characteristics will decrease accuracy. Moreover, KNN does no generalization
on the training data and retains them all. Consequently, greater dimensional data will
reduce the precision of areas. It computes the distance between k neighbors, so KNN is
a lazy learner [33].
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C. Logistic regression

Logistic regression is a supervised learning approach used to differentiate between two
or more groups [27]. It provides, in terms of 0 and 1, the likelihood that an event will
occur based on the values of the input variables (i.e., it gives the binomial outcome). For
instance, predicting whether or not an e-mail is categorized as spam is a binomial result
of Logistic Regression. In addition, Logistic Regression can produce multinomial out-
comes, such as predicting the preferred cuisine (Chinese, Italian, Mexican, etc.). In addi-
tion, Logistic Regression can produce ordinal results, such as rating a product from 1 to
5. Therefore, Logistic Regression is concerned with categorical target variable prediction
[33]. Logistic Regression provides several benefits, including ease of implementation,
computational efficiency, training efficiency, and regularization simplicity. In Logis-
tic Regression, input features do not require scaling. In addition, Logistic Regression is
immune to data noise and multi-collinearity. Logistic Regression, on the other hand, is
unsuitable for nonlinear problems since its decision surface is linear, and sensitive to
overfitting, and all independent variables must be recognized for it to work successfully
[33].

D. Linear Regression.

Regression is an example of a supervised learning technique in which the value of the
output variable is decided by the values of the input variable and the utilized labeled
datasets. Regression can be used to model and predict continuous variables. In linear
regression, an attempt is made to fit a straight hyperplane to the data set if the rela-
tionship between the variables of a dataset is linear [33]. Linear Regression is calculated
according to (2) [32]:

F(x) = mx+b+e (2)

where x is the independent variable, F(x) is the dependent variable, m is the slope of the
line, b is the y-intercept, and e is the error term.

The best prediction accuracy may be achieved using the Linear Regression algorithm if
the following steps are followed to prepare the training data [32]:

+ Assume that the dependent and independent variables are linear, i.e., apply any of the
available data transformation techniques to make the data linear.

+ Remove noisy data and outliers using a technique for cleaning data.

+ To minimize overfitting, do pair-wise correlation and exclude the most linked
variables.

+ Apply Gaussian distribution to the training data to generate more accurate
predictions.

+ Rescale inputs to improve the reliability of the prediction.

From the above discussion, it is clear that the Linear Regression algorithm is straight-
forward to comprehend. In addition, the ideal linear relationship between dependent
and independent variables is demonstrated. In contrast, Linear Regression can only pre-
dict the numeric output. It is inappropriate for nonlinear data and highly sensitive to
outliers. Also, data must be independent [32].
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E. Decision trees

Classifier-generating systems are one of the most popular strategies in data mining [34].
In data mining, classification algorithms are capable of processing vast quantities of data.
It can be used to create assumptions about categorical class names, categorize informa-
tion based on training sets and class labels, and classify newly accessible data [35].

DTs are one of the powerful approaches utilized in numerous domains, including ML,
image processing, and pattern recognition [36]. DT is a model that sequentially as well
as cohesively combines a set of basic tests in which a numerical characteristic is com-
pared with a threshold value [37]. In addition, DT is a common classification model in
Data Mining [38]. Every tree is composed of nodes and branches. Each node represents
an attribute inside a group to be categorized, and each branch provides a possible value
for the node [39]. Figure 7 illustrates the structure of DT.

DT algorithm is a supervised learning algorithm. It tries to build a training model
that may be used to predict the class or value of target variables by employing learning
decision rules learned from the training data [41].

The advantages and disadvantages of using the DT algorithm to solve regression and
classification problems [42—44] are outlined in Table 1.

E Random forest

RF is an ensemble classifier since it employs many DTs to compensate for the short-
comings of a single DT [45-49]. The ’vote’ of all trees is utilized to determine the final
class for each unknown. This eliminates the possibility that a single tree may not be
ideal. Therefore, adding numerous trees should result in a global optimum [50]. For the
formation of each tree in the "forest", the bootstrap approach is used for resampling.
In addition, on each node split, a subset of features is randomly selected, and the split
variable selection occurs over this subset. The projected value for classification is the
majority vote, and the average, for regressions [51-54]. On RF models, there are two
parameters for tuning: mtry, which is the number of features that are randomly picked
to consider in each split; and ntree, which is the trees count in the model. The mtry
parameter has a tradeoff: large values increase the correlation among trees but improve
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Table 1 DT benefits and drawbacks

Benefits

Drawbacks

1—Easy to understand

2—Rapidly transformed into a set of production
principles

3—Capable of classifying categorical and numerical
outcomes, but only capable of generating categorical
attributes

1—The ideal decision-making system can be thwarted,
resulting in wrong decisions

2—The decision tree has multiple levels, which makes
it confusing

3—The complexity of the decision tree’s calculations
may increase as training samples increase

Page 9 of 42

4—There are no a priori hypotheses on the validity of
the outcomes

the accuracy of each tree [51]. The unused elements are called the Out of Bag (OOB)
samples, which can be employed for validation in this case, each tree predicts over its
OOB samples, and the final result is an average over the outcomes of the trees [55].

There are two options for estimating the relevance of each variable and ranking
them accordingly. The initial choice is to utilize the OOB samples. In this option,
the accuracy is calculated over the set of each tree and its corresponding OOB sam-
ples, a variable is randomly permuted among samples, and the accuracy is recalcu-
lated on the new set. Applying this to the set of all trees and average for each variable
yields a metric for comparing relevance. This metric for comparison is known as
the Permutation Importance Index (PIM) or Variable Importance Measure (VIM).
The alternative is to calculate the split improvement for each tree and node using a
measure (e.g., the Gini Index) and use these values to compare the significance of the
variables [55].

RFs offer high flexibility and prediction rates. It also does not overfit the data
when the number of trees is considered. Alternatively, a graphical representation is
not feasible as in DTs [55].

G. Naive Bayes

The Naive Bayes technique, also known as the Bayes of Idiots, Bayes of Freedom, or
basic Bayes, is a fundamental probability-band classifier. Provided the class variable, it
is supposed that the existence or absence of a particular class feature has no significance
on the existence or absence of any other class feature [56].

The Naive Bayes technique is straightforward to implement since it does not
require complex recursive parameter estimation systems. Consequently, a naive
Bayes classifier can be useful for enormous datasets. Also, it requires minimal
training data to assess the restrictions. As independent variables rather than the
whole matrix of covariance are assumed, only the variances of the variables within
each class must be estimated [56].

Unsupervised learning

In unsupervised learning, there is no output label information contained in the data-
set. The purpose of these models is to infer the link between data and/or to uncover
hidden variables [25]. These strategies are mostly used to reduce the size of a dataset
by extracting key features. Reducing the number of features helps prevent problems
such as high computational cost and multi-collinearity [57]. Figure 8 depicts unsuper-
vised learning, in which the machine guesses the result according to past experiences
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and learns from information previously provided to anticipate the real-valued out-
come. Examples of unsupervised learning-based methods are K-Means Clustering,
Principal Component Analysis (PCA), and Latent Dirichlet Allocation (LDA) [25].

A. K-means clustering

K-means clustering is one of the unsupervised learning methods that automatically pro-
duces groups or clusters. Data with comparable properties are put into the same cluster.
K-means is the name of the method as it forms K different groups [28]. The purpose of
the K-means clustering is twofold: (1) to provide K-centroids, one for each cluster, and
(2) to minimize the square error function. The mean value is placed in the middle of the
cluster [27].

The k-means clustering technique has many advantages. First, it is computationally
more effective than hierarchical clustering for enormous variables. Second, it yields
tighter clusters than hierarchical clustering with global clusters and small k. Finally,
ease in implementation and comprehension of the clustering results. The order of
complexity of the algorithm is O(K*n*d), so it is computationally efficient [33].

On the other hand, the K value is not known and its prediction is complex. Degrades
in performance occur when clusters are global and when different beginning
partitions result in distinct final clusters. Also, when there is a difference in the size
and density of the clusters in the input data, the performance decreases. In addition,
the joint distribution of characteristics inside each cluster is spherical (spherical
assumption) and cannot be achieved as the correlation between features break it and
put extra weights on connected features. K-Means clustering can be susceptible to
outliers. Also, it is sensitive to local ideal and initial points, and a unique solution for
a specific K value does not exist—so K means needs to be run for a K value lots of
times (20-100times) and then, pick the results with the lowest J [33].

B. Principal component analysis
PCA is an unsupervised ML approach that reduces the dimension of the data. Therefore,
the computations are more efficient and quicker [27]. The two-dimensional data in PCA

are turned into one-dimensional data by transforming the collection of variables into
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new ones called principal components (PC) which are orthogonal. The data set of the
PCA algorithm must be scaled because the results are sensitive to the relative scaling
[28].

To explain the PCA mechanism, let us use an example of 2D data. When the 2D data
are plotted on a graph, it takes up two axes. Applying PCA to this data will turn it into
1D [27], as illustrated in Fig. 9.

C. Latent Dirichlet allocation

LDA is a statistics-based data mining technique that differentiates between classes of
objects in N-dimensional feature space by computing a sequence of k<N —1 linear
discriminant whose values can be used to describe the classes [59]. LDA and PCA are
similar [60] in that they describe the "most important” variations in the data and select
directions that maximize feature variance. LDA differs from PCA in that LDA makes
use of the class labels: it selects directions that can best differentiate the class means
relative to the sum of the class variances along that direction. It maximizes the ratio of
between-class scatters to within-class scatters. Intuitively, it detects lower-dimensional
descriptions of the data which push the class members together and pull members of
different classes out [61]. The k linear discriminants that correspond to the eigenvectors
are arranged by eigenvalue. The discriminants can be used to group new objects or for
dimension reduction [61].

To ensure the discriminant’s optimality, the LDA’s design makes the following two
assumptions: (1) the linear combination of any characteristics is normally distributed,
and (2) the classes have equal covariance matrices. Despite the danger of inferior out-
comes, LDA has been utilized routinely for dimension reduction and classification when
these assumptions are broken [61].

Reinforced learning

Unlike supervised and unsupervised learning, RL is a goal-oriented learning approach.
Learning occurs via reacting to the surrounding environments and detecting status
changes. RL is strongly tied to an agent (controller) responsible for the learning process
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Fig. 9 Data visualization before and after applying PCA [58]
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to attain a goal. In particular, the agent takes actions (control signals) and consequently,
the status of the environment is changed and rewards, which are special numerical
values, are returned either positive or negative. The agent aims to maximize the rewards
obtained over time. A task is a full specification of an environment, which determines
how the reward is generated [62]. Examples of RL-based techniques are Q-Learning
Algorithm and Monte Carlo Tree Search (MCTS).

A. Q-learning

Q-learning [63] is a straightforward way that enables agents to learn how to act opti-
mally in controlled Markovian domains. It represents an incremental approach to
dynamic programming which imposes low processing demands. It works by boosting
successively its ratings of the quality of specific acts at certain states. It can also be con-
sidered an asynchronous Dynamic Programming (DP) approach. It provides agents with
the possibility of learning to act optimally in Markovian domains by experiencing the
consequences of actions, without requiring them to generate maps of the domains [64].

Q-learning is applied in information theory, and related investigations are underway.
Recently, Q-learning and information theory have been applied to various disciplines
such as natural language processing, anomaly detection, pattern recognition, and
image classification [65—68]. In addition, a framework has been established to provide
a satisfying response based on the user’s speech using RL in a voice interaction system
[69], and a high-resolution prediction system for local rainfall based on DL has been
developed [70].

The advantage of the ant Q-learning approach is that it can identify the value of
the reward for a specific activity in a multi-agent environment successfully due to the
corporation between agents. The drawback of ant Q-learning is that its result can be
stuck at a local minimum when agents take just the shortest path [71].

B. Monte Carlo tree search

MCTS is a powerful technique for handling sequential decision problems. The plan
relies on a smart tree search that balances exploration and exploitation. Random sam-
pling is employed in MCTS in the form of simulations to save statistics of activities and
make more knowledgeable selections in each future iteration [72]. MCTS is a decision-
making technique that is utilized in scanning huge combinatorial spaces represented by
trees. In such trees, nodes represent states, also referred to as configurations of the prob-
lem, whereas edges denote transitions (actions) between states [72].

Formally, MCTS is directly applied to issues that can be described by a Markov
Decision Process (MDP). Certain modifications of MCTS make it possible to be applied
to Partially Observable Markov Decision Processes (POMDP) [73]. More recently,
MCTS paired with deep RL are considered the backbone of AlphaGo developed by
Google DeepMind which is documented in [74].

The basic MCTS procedure is conceptually so simple [75], as depicted in Fig. 10. A
tree is created in an incremental and unbalanced method. In each iteration, a tree policy
is utilized to get the most urgent node of the current tree.
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Fig. 10 The basic MCTS process [76]

The tree policy aims to balance the considerations of exploration and exploitation. A
simulation is then run from the specified node, and the search tree result is accordingly
updated. This involves the insertion of a child node that matches the action taken from
the selected node and an update of the statistics of its ancestors. Based on some default
policy, moves are being conducted during this simulation which in the simplest scenario
aims to make uniform random moves. A notable advantage of MCTS is there is no need
for the values of the intermediate states to be evaluated, which extremely minimizes the

amount of domain knowledge required [75].

Deep learning

About a decade ago, Deep Learning (DL) emerged as an effective ML technique and
achieved good performance in several application fields. The core idea of DL approaches
is to learn complicated characteristics extracted from data with low external contribu-
tion using Deep Neural Networks (DNN) [77]. These algorithms do not require to be
manually provided created features; they automatically learn additional complicated fea-
tures [78].

DL is an Al paradigm that has gained major interest from the academic community
and demonstrated higher potential over conventional methods [79]. DL is a more effi-
cient, monitored, time-consuming, and cost-effective technique than the ML technique.
Not only it is a specific approach to knowledge, but also it adapts to various method-
ologies and topographies that could be beneficial to a wide range of complicated prob-
lems. The approach learns the illustrative and differential properties in a relatively varied
method [80, 81]. Figure 11 demonstrates the procedure of ML and DL.

To generate high-level abstractions with many nonlinear transformations, DL is based
on a collection of ML techniques used to model data. The artificial neural network
(ANN) system runs on a DL technology [82, 83]. These networks include many layers
for collecting high-level characteristics and for eliminating problematic data, so the
performance of DL algorithms is higher than ML algorithms [84].

ML approaches have brought a huge impact on our daily life such as efficient web
search, self-driving vehicles, computer vision, and optical character recognition. Also, by
implementing ML approaches, the human-level Al has been improved as well [85-87].
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Nevertheless, the performance of classic ML algorithms is far from ideal when it comes
to human information processing mechanisms (e.g., voice and vision). The DL algo-
rithms concept was formed in the late twentieth century inspired by deep hierarchical
structures of human speech perception and production systems. Figure 12 displays a
timeline showing the evolution of deep models along with the classic model [26]. DL has
many architectures. Examples of such architectures are CNN, RNN, LSTM, and Recur-
rent CNN (RCNN).

A. Convolutional neural network

CNN s are a subtype of ANNs and are frequently utilized in face recognition, text analy-
sis, human organ localization, and biological image recognition [88]. CNN structure was
first introduced in 1988 by Fukushima [89]. It was not widely employed, however, due to
restrictions of computation gear for training the network. In the 1990s, LeCun et al. [90]
adapted a gradient-based learning algorithm to CNNs and provided successful results
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for the handwritten digit classification problem. After that, researchers progressively
enhanced CNNs and reported state-of-the-art results in different recognition tasks.

A CNN architecture includes three components: the input layer, hidden layer, and out-
put layer. The intermediate levels of any feedforward network are known as hidden lay-
ers, and their number varies based on the network architecture type. Convolutions are
executed in the hidden layers, which include dot products of the convolution kernel with
the input matrix. Each convolutional layer generates feature maps to be used as input by
the subsequent layers [91], as shown in Fig. 13.

In general, CNNs consist of two major components: Feature extractors and a classifier,
as shown in Fig. 14. In the feature extraction layers, each layer of the network takes as its
input the output of its immediate previous layer and transmits its output to be the input
to the next layer. The CNN design involves a combination of three types of layers: Con-
volution, max-pooling, and classification. In the low and middle level of the network,
there are two types of layers: Convolutional layers and max-pooling layers. Convolu-
tions are the even-numbered layers, whereas the odd-numbered layers are for max-pool-
ing operations. The output nodes of the convolution and max-pooling layers are then
arranged into a 2D plane named feature mapping. Usually, the plane of each layer is pro-
duced by the combination of one or more planes of the previous levels. The nodes of a

plane are connected to a small section of each connected plane of the previous layer.
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Each node of the convolution layer extracts the features from the inputs by convolution
operations on the input nodes. As the features propagate to the highest level, the dimen-
sions of the features are lowered based on the kernel size of the convolutional and max-
pooling processes correspondingly.

For ensuring classification accuracy, the number of feature maps is increased for
expressing better features of the input. The output of the last CNN layer is used as the
input to a fully connected network called the categorization layer. In the classification
layer, the extracted features are used as inputs concerning the size of the weight matrix
of the final neural network. At the topmost classification layer, and using a soft-max
layer, the score of the respective class is calculated. According to the highest score, the
classifier produces output for the corresponding classifications [92].

CNN s have various advantages including being more like the human visual processing
system, having a highly optimized structure for processing 2D and 3D images, and being
effective in learning and extracting abstractions of 2D information. The max-pooling
layer of CNNs is successful, particularly at absorbing shape variations. Furthermore,
CNNs contain much fewer parameters than a fully connected network of the same size
as it is constructed of sparse connections with coupled weights. In addition, CNNs are
trained with the gradient-based learning technique that suffers less from the diminishing
gradient problem. Given that the gradient-based technique trains the full network to
reduce an error criterion directly, CNNs can generate highly optimized weights [92].

B. Recurrent neural network

Developed in the 1980s, RNN is one of the most widely used DL models [93]. These
kinds of networks have a memory that stores the information they have seen so far and
have various types. Moreover, RNNs are powerful models for time series analysis, and
they use the prior output to predict the next output. In this situation, the networks
themselves contain repeating loops in the hidden layers, which allow the storing of pre-
vious input information for a while, so that the system can predict future outputs. The
output of the hidden layer is retransmitted t times to the hidden layer. The output of a
recursive layer is only sent to the next layer when the number of iterations is completed.
In such a circumstance, the output is more global, and the preceding knowledge is main-
tained for longer. Finally, the errors are returned backward to update the weights [94].
RNN is employed mostly in the fields of speech processing and Nature Language Pro-
cessing (NLP) settings [95, 96].

Unlike CNN, RNN employs sequential data in the network. As the embedded struc-
ture in the data sequence gives useful information, this property is fundamental to a
range of various applications such as NLP. Thus, RNN can be considered as a unit of
short-term memory, where x is the input layer, y is the output layer, and s represents
the state (hidden) layer [97]. For a specific sequence of input, a typical unfolded RNN
diagram is presented in Fig. 15. In addition, a deep RNN was introduced to minimize the
learning difficulty in the deep network and brings the benefits of a deeper RNN depend-
ing on three different deep RNN techniques, namely "Hidden-to-Hidden", "Hidden-to-
Output”, and "Input-to-Hidden" introduced by Pascanu et al. [98].

One of the main challenges with RNN is its sensitivity to the expanding gradient and
vanishing problems [99]. More specifically, the reduplications of many large or small
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derivatives during the training phase may cause exponentially explode or decay of the
gradients. With the introduction of new inputs, the network stops thinking about the
original ones; hence, its sensitivity decays over time [97].

C. Long short-term memory

LSTM is a special case of RNN as it has internal memory and multiplicative gates. The
diversity of LSTM cell layouts has been described in 1997 when the first LSTM was
launched [100]. LSTM contributed to the development of well-known services like Siri,
Cortana, Alexa, Google Translate, and Google voice assistant [101]. LSTM is a module
in an RNN network that addresses missing gradient problems. Generally, RNN employs
the LSTM network to avoid propagation errors. This allows the RNN to learn across
multiple time steps. LSTM includes cells that keep information outside of a recurrent
network. Like the memory in a computer, the cell is deciding when the data have to
be stored, written, read, or erased using the gate [102]. A simple RNN cell depicted in
Fig. 16(a) was enhanced by adding a memory block which is controlled by input and
output multiplicative gates. Figure 16b shows the LSTM architecture of the jth cell ¢;.
The main component of a memory block is the self-connected linear unit s, termed con-
stant error carousel (CEC) which protects LSTM from the drawbacks of regular RNN.
An input gate and output gates consist of corresponding weight matrices and activation
functions [101].

Generally, it can be concluded that the LSTM cell comprises one input layer, one
output layer, and one self-connected hidden layer. The hidden layer may contain
‘conventional’ units that can be fed into the next LSTM cells. However, a conven-
tional LSTM cell also met some limits due to a linear form of s_. It was specified that
its steady expansion may induce saturation of the function hand converted into an
ordinary unit. Therefore, an additional forget gate layer was inserted [103], as illus-
trated in Fig. 16(b), which permits undesirable information to be wiped and forgotten.

Bidirectional LSTM, Hierarchical LSTM, Convolutional LSTM, Grid LSTM, LSTM
Autoencoder, and Cross-modal LSTM are the most advanced network topologies that
use the LSTM gating mechanism [104].

Bidirectional LSTM type networks send and receive the state vector in both direc-
tions. As a result, bi-directional time dependencies are taken into account. As a
result of reverse state propagation, future expected correlations can be included in
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Fig. 16 a Original LSTM cell architecture; b LSTM cell includes forget gate [101]

® © ®© © 0-©

-’ o '~  pmceises I sacwas | e ~

H H i !

1 [H " H

i i i i

H i H ! (BD)LSTM (BD)LSTM (BD)LSTM

- LsT™ i LSTM i LSTM Forwdd T

i
Bad(ward i H H

T LSTM <& LSTM 1 LSTM «}

\ L § N\ y - .
: 4 Xk ) X )= Null xetl)
Xiy Xt | X 4

Fig. 17 (Left) Bidirectional LSTM and (right) filter mechanism for processing incomplete data sets [105]

the network’s generated outputs. Hence, more time dependencies can be detected,
extracted, and resolved using bidirectional LSTM networks more precisely than uni-
directional LSTM networks. LSTM networks can encapsulate geographically and
temporally dispersed information and harmonize partial data using a flexible connec-
tion mechanism for the propagation of the cell state vector [105]. Based on the data
gaps discovered, this filter method redefines the connections between cells. Figure 17
depicts the architecture of Bidirectional LSTM.

Hierarchical LSTM networks resolve multidimensional problems by splitting
the overall problem into sub-problems and hierarchically structuring them. This is
achieved by adjusting weights inside the network which obtains the power to produce
a specific degree of attention.

Using a weighting-based attention mechanism that handles and filters input
sequences, hierarchical LSTM networks could be utilized to predict long-term
dependencies [106]. Convolution LSTM can be used to filter and reduce input infor-
mation obtained over a longer time period using convolution operations built into
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LSTM networks or directly into the LSTM cell structure. Convolution methods that
are directly incorporated into the cell can also be used to extend the usual LSTM cell.
Correlations are extracted by convolving current input sequences, recurrent out-
put sequences, and weight matrices. The newly created features are received as new
inputs by the network gates [107]. Figure 18 depicts this strategy.

Moreover, convolutional LSTM networks are considered ideal for expressing a wide
range of quantities, including spatially and temporally distributed relations. Never-
theless, as a reduced feature representation, various values can be collectively fore-
casted alone. Layers’ deconvolving must predict different output quantities based on
their original units rather than as features [104]. An autoencoder structure is com-
monly used to realize information deconvolution and convolving. A layered LSTM
autoencoder handles the challenge of high dimensional input data and the forecast-
ing of high dimensional parameter spaces in [108]. In [109], a method for directly
integrating an autoencoder into the LSTM cell structure was proposed. This multi-
modal prediction approach was proposed by extending LSTM. To compress input
data as well as cell states, encoders and decoders were integrated directly into the
LSTM cell structure. This optimization maximizes information flow in the cell and
leads to an enhanced cell state update mechanism for both short-term and long-term
dependencies.

Grid LSTM is an LSTM cell with a matrix structure [110]. The Grid LSTM has connec-
tions for the input sequences’ spatial and temporal dimensions. As a result, connections
in various dimensions within cells extend the normal information flow. As a result, the
Grid LSTM is appropriate for the parallel prediction of a wide range of output quantities
that can be either linearly independent or nonlinearly dependent. Figure 19 compares a
two-dimensional Grid LSTM network to a standard stacked LSTM network [110].

Cross-modal LSTM is a modern method for predicting various quantities collabora-
tively. It combines a number of regular LSTMs that were previously used to separately
simulate the individual quantities. The LSTM flows interact via recurrent connections
to handle the quantity dependencies. In other streams, the outputs of defined layers
are used as extra inputs for previous and subsequent layers. As a result, a cross-modal
prediction can be identified. Figure 20 depicts cross-modal LSTM [111].

P, € b ] s s

X1 X Xy41

Fig. 18 Convolution operations within LSTM cells [107]
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D. Recurrent convolution neural network
In recent years, a new class of CNNs, RCNN, inspired by rich recurrent connections
in the visual systems of animals, was introduced. The main component of RCNN is the
recurrent convolutional layer (RCL), which integrates recurrent connections across neu-
rons in the normal convolutional layer. With the increasing number of recurrent com-
putations, the receptive fields (RFs) of neurons in RCL expand unboundedly, which is
incongruous with biological realities [112]. The traditional RCNN model was proposed
in [113, 114]. The RCNN architecture is presented in Fig. 21, in which both feed-forward
and recurrent connections have local connectivity and shared weights across distinct
locations. This architecture is quite close to the recurrent multilayer perceptron (RMLP)
which is generally used for dynamic control [115, 116] (Fig. 21, middle). The main dif-
ference is that the full connections in RMLP are replaced by shared local connections,
similar to the difference between MLP [117] and CNN.

RCNN integrates a stack of RCLs, optionally interleaved with max-pooling layers, as
seen in Fig. 22. Here, layer 1 is the traditional feed-forward convolutional layer without
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Fig. 22 RCNN with one convolutional layer, four RCLs, three max-pooling layers, and one softmax layer [113]

recurrent connections, followed by max pooling. Furthermore, four RCLs are employed
with a max-pooling layer in the middle. There are only feed-forward connections among
nearby RCLs. Both pooling operations have stride 2 and size 3. The output of the fourth
RCL follows a global max-pooling layer, which yields the maximum across every feature
map, providing a feature vector describing the image. Finally, a softmax layer is utilized
to categorize the feature vectors into C categories. [113].

RCNN has various advantages from the computational perspective. First, the recurrent
connections in RCNN allow every unit to include context information in an arbitrarily
broad region in the current layer. Second, the recurrent connections improve the
depth of the network and at the same time keep the number of changeable parameters
constant by sharing weight. This is compatible with the tendency of the current CNN
architecture. Third, unfolded RCNN is a CNN with numerous paths from the input layer
to the output layer, which facilitate learning. On one hand, the existence of longer paths
makes the model capable of learning more complicated features. On the other hand, the

existence of shorter paths may improve gradient backpropagation during training [113].

Page 21 of 42
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Survey methodology

The articles reviewed in this paper have been published in high-quality conferences and
journals of IEEE, Elsevier, Springer, and IOP publishing. Machine learning, deep learn-
ing, traffic flow prediction, traffic flow forecasting, traffic speed prediction, short-term
traffic prediction, short-term traffic forecasting, and ITS are some of the search terms
used to find these articles. The articles examined in this survey are directly relevant to
the application of ML and DL approaches in traffic flow prediction. Both empirical and
literature reviews on the abovementioned subjects were considered for this work.

Survey organization

This survey compares various forecasting techniques for traffic flow. It follows a dual
structure with ML techniques used for traffic flow prediction and DL techniques utilized
for traffic flow prediction. This study provides a detailed discussion of the approaches
and algorithms which are utilized for predictions, performance measurements, and tools
used for these procedures.

The prediction of traffic flow has become one of the primary tasks in the ITS field
[118]. Statistical methods, Al, and data mining techniques have been widely employed
recently to evaluate road traffic data and anticipate future traffic indicators [119].
Previous findings demonstrated that no single technology could evaluate enormous
datasets only by itself. Therefore, according to the data structure and its volume, the
proper technology must be applied to extract the best insight from the collected data
[120].

ML techniques for traffic flow prediction

In [121], the authors developed an ML-based traffic flow prediction paradigm employing
a regression model implemented by several libraries including Pandas, Numpy, OS,
Matplotlib, Keras, Sklearn, and Tensorflow. Traffic prediction in this study involves the
prediction of next year’s traffic data based on previous years’ traffic data which eventually
offers the accuracy and mean square error. The traffic information was predicated on
a basis of 1-hour time gap. Data in this study were acquired from the Kaggle dataset.
Two datasets were obtained, in which one is the 2015’s traffic data which contains the
date, time, number of cars, and number of junctions. The other one is the 2017’s traffic
data with identical specifications to compare easily without any confusion. This study
needs to investigate more aspects that affect traffic flow prediction and employ other
prediction approaches like deep learning and big data.

In [122], the authors aimed to address the traffic control problem with the assistance
of an ML algorithm to deal with traffic challenges. The authors employed the Q-learning
RL technique for managing traffic lights and developed an artificial environment named
Simulation of Urban Mobility (SUMO) for simulation purposes. In SUMO, the cars in
motion can be watched, the vehicle’s delay time can be controlled, and the delay time
can be adjusted.

In [123], the aim of this paper was to set the foundation for adaptive traffic con-
trol, either by controlling traffic lights remotely or by applying an algorithm that
adjusts the timing according to the predicted flow based on the integration of ML
(RE, Linear Regression, and Stochastic Gradient Regression) and DL (MLP-NN, RNN)
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algorithms. The collected findings showed that the proposed ML algorithms had the
worst performance.

In [124], the authors concentrated on a critical component of ITSs known as the
ability to predict lane changes in vehicular traffic flow. The predictive accuracy to
detect changes in lanes was measured using high-fidelity data on vehicular traffic
flow gathered by the US Federal Highway Administration (FHWA) for Peachstreet,
Atlanta, GA, based on four ML models, namely SVM, NB, RF, and DT. The accuracy
and performance measurements revealed that SVM outperforms the other three ML
models in terms of precise and accurate prediction of vehicle lane shifts.

In [125], a prediction approach that is based on type-2 fuzzy logic was introduced
using the conceptual framework of fuzzy logic and an urban traffic flow time series.
The interval type-2 fuzzy system prediction approach was developed, and the Back
Propagation (BP) technique was utilized to update the antecedent’s coefficients and
fuzzy rules’ consequent. The effectiveness of the technique proposed in this study
was validated using measured data from road networks and compared to other fuzzy
approaches. The BP technique and SVM with that type-2 fuzzy logic system have a
higher prediction accuracy, according to the testing results.

In [126], the authors investigated the problem of predicting the traffic flow of
a road based on historical data. The methodology depended on the decomposition
of the canonical polygonal tensor (CP) of the traffic data. This move extracts the
normal features of a traffic light on daily and weekly bases in addition to the typical
spatial allocation of traffic, while greatly minimizing the amount of data required
to represent it. Then, the key elements are extended into the future, and the traffic
data are regenerated from the decomposition. The data used here are from the M62
motorway in northern England, from October 1, 2019, to October 28, 2019, at 15-min
intervals. These data are reported as the number of passing cars per hour. Using 4
parameters, the prediction captures 90 percent of the signal’s power, which exceeds
the current rolling average prediction algorithms. The authors indicated that they
evaluated 4 variables in traffic flow forecasts but did not mention them.

In [127], the authors developed an intelligent traffic monitoring system based on
ML (ML-ITMS) to estimate traffic jams in roadside units to improve ITS perfor-
mance. A short-term traffic flow ML-based model was developed, and SVM param-
eters were optimized to enhance traffic flow prediction. In the proposed ML-ITMS,
SVM and RF were specifically designed for long-range wide area networks (LoRa)
in a single query. The proposed ML-ITMS improved the accuracy estimate for traf-
fic flow and nonparametric processes by using mathematical models. As feedback for
the proposed ML-ITMS, a data processing method has been used. The platform was
then passed through ML-ITMS services, including public safety and security for cit-
ies, medical facility provision, traffic prediction by light and range detection (LIDAR),
and parking control. Thus, as the experimental results revealed, the proposed ML-
ITMS can improve traffic monitoring to 98.6% and can enhance traffic flow prediction
systems better than other existing methods.

In [128], the authors proposed a Gravitational Search Algorithm optimized Extreme
Learning Machine, called GSA-ELM. It has been suggested to unleash the performance
of short-term traffic flow forecasts. ELM avoids the cumbersome process of BP by
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defining the best solution analytically. The proposed search technique generally inves-
tigates the optimal settings for ELM. The proposed search technique’s prediction per-
formance has been measured on four standard data sets by comparing several recent
models. The four standard datasets were real-world traffic flow data from the Al, A2,
A4, and A8 motorways along the Amsterdam Ring Road. The Mean Absolute Percent-
age Errors (MAPEs) for the GSA-ELM model on the used data sets are 11.69%, 10.25%,
11.72%, and 12.05%, respectively, while the Root Mean Square Errors (RMSEs) were
287.89, 203.04, 221.39, and 163.24, respectively.

In [120], supervised ML, as a method of Big Data analytics, to forecast various
indicators of the traffic volume were examined and conducted through two case studies.
In both experiments, for training and testing prediction models, traffic data provided
by chosen automatic traffic counters on the roadways in the Republic of Serbia, in the
period from 2011 to 2018, were employed.

In [129], the authors proposed reconstructing traffic flows from the expected travel
time using an ML method. They examined the capabilities of the Gaussian Process
Regressor (GPR) to handle this issue. After obtaining the expected travel time on a
specific route, a clustering method shows that travel time profiles in each day can be
associated with "different types of the day". Then, various regression factors were
trained to estimate traffic flows from the duration of travel. In this study, two situations
were studied. In the 'multi-model’ variance, the regression factor was trained for each
day profile. In the ’Single Model’ variation, only one Regressor was trained (the day
profile was not considered). The proposed method is a unique method to predict and
reconstruct traffic flow in route networks using an ML method from aggregated floating
vehicle data (FCD). Two main problems can be identified from this work. The first
relates to using non-dispersed algorithms on the input data which can be problematic
with longer evaluation sequences, producing a more complex trained model. The other
problem is a traditional issue of every ML solution, and it has to do with the dependence
on the quality of the input data.

In [130], a hybrid model incorporating ELM and ensemble-based technologies was
developed to predict the future hourly traffic on a road section in Tangiers, a city in
northern Morocco. The suggested model was built based on a high-speed ML technol-
ogy that uses a kind of Single-Layer Feed-forward Neural Network (SLEN). The data set
in this study was a set of traffic flow recorded over 5 years from 2013 to 2017 from the
Moroccan Center for Road Studies and Research. This study needs to consider addi-
tional relevant information related to traffic, such as special events, weather conditions,
and traffic characteristics on adjacent roads that may affect a particular road.

In [131], the power of various ML techniques was investigated to predict traffic con-
ditions. Preliminary data were collected over two weeks of monitoring in Bandung,
Indonesia, to be capable of determining future traffic conditions. The collected features
used in the dataset are days, hours, origins, destinations, route view, traffic conditions,
weather, and weather locations. The study investigated neural networks, NB, DT, SVM,
DNN, and DL. There are two main issues in this work. First, the size of the training data
was very small. Second, the change in the training data means that the training process
must be reapplied to reflect the newer data set, which takes additional time.
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In [132], the prediction accuracy of four ML models was examined using probe data
gathered from the road network of Thessaloniki, Greece. The utilized ML models were
RF, Support Vector Regression (SVR), Multilayer Perceptron (MLP), and Multiple Linear
Regression (MLR). There are two key concerns in this work. First, it has low accuracy in
real-time speed prediction. Second, it needs to be tested on different datasets.

In [7], the authors suggested a preliminary method for assessing a realistic data set
of road traffic accidents utilizing graphical representations and dimension reduction
methods. The data set was subjected to PCA analysis and linear discrimination, and
the resulting performance measures provided some comprehensive insights into the
patterns of road traffic accidents. The authors developed the preliminary framework
by utilizing dimensionality reduction techniques on realistic road traffic accident data
from Gauteng Province, South Africa (SA). Furthermore, classification was carried
out using the NB, Logistic regression, and K-NN methods. The processed data were
post-processed, and model performance measures, precision, and RMSE were used to
evaluate each classifier.

In [133], the authors introduced a novel framework for stepwise regression in an idea-
drift environment, with ensemble learning as the primary solution for modernizing dis-
tribution representation. The regression problem for predicting traffic volume was first
converted into a binary classification problem. Second, the Regression to Classification
(R2C) method was used to create a more precise classification-type loss function for
ensemble learning. Finally, the regression function’s incremental learning was modeled
as an incremental update to the hyper-resolution level. The proposed R2C architecture
for motion volume prediction has the disadvantage of not accounting for motion volume
spatial dependencies.

To summarize all previous related works, Table 2 compares among them in terms of
methodology, data set, approaches, and their main findings.

DL techniques for traffic flow prediction

In [134], it was proposed to construct a traffic prediction system using four DL
approaches namely: Deep Autoencoder (DAN), DBN, RF, and LSTM. This technique
is mostly used to estimate the traffic flow in more populated locations. The essential
parameters used in this study were zone type, weather condition, day, road capacity, and
vehicle types. There is no mention of the used dataset in this work.

In [135], the major objective was to predict trip duration from point A to point B on
a route using neural networks. Several DL and neural network algorithms were utilized
such as the color clustering algorithm (K-Means algorithm) combined with several
parameters to compute and estimate travel duration. The dataset utilized in this study
was obtained using Waze Live Map APIs. The authors need to examine other factors
such as weather conditions to boost the efficiency and reliability of their job.

In [136], a short-term strategy for traffic flow forecasting based on a recurrent mix-
ture density network, which is a mix of RNN and mixture density network (MDN), was
proposed. Traffic flow data generated by sensors placed on road networks in Shenzhen,
China, were used as the data set used in this study. It was divided into two periods: from
January 1, 2019, to March 31, 2019, and from October 1, 2019, to December 21, 2019.
The modest size of the data set used is a critical issue in this study.
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In [137], the authors aimed to enhance the DBN, a DL approach, performance for
accurate traffic forecasting under bad weather conditions. First, bad weather and traf-
fic data were gathered from the IoV, rather than from the inductance coils in the usual
methods. Subsequently, the SVR technique was utilized to improve the traditional DBN.
The optimized DBN consists of two layers: the primary structure is the traditional DBN
that unsupervised learning the basic aspects of traffic data, and the topmost layer is an
SVR that implements supervised traffic forecasting. Two types of data sets were used
in this study. First, traffic data from a highway control center, and second, weather data
from local monitoring stations. The main issue in this study was that the computing time
of the upgraded DBN requires optimization.

In [138], the authors proposed an urban traffic light control system that combines
optimized traffic light scheduling techniques with traffic flow forecasting techniques.
The goal was to reduce the number of vehicles that were stopped at all signal
intersections on the road network. First, a framework was proposed for an urban traffic
control system, which included traffic flow predictions and signal control optimization.
Second, to alleviate traffic congestion, an interactive traffic light approach was used.
Experiments were carried out on real-world traffic data provided by the Aliyun Tianchi
platform to validate the proposed system. The comparison results showed that both the
proposed system and the signal control optimization technique work well.

In [139], the authors developed a technique for constructing a traffic congestion index
by extracting free-stream speed and flow. The author proposed the Traffic Congestion
Index (TCI), which can synthesize changes in traffic flow and speed data to assess traffic
congestion, and discussed how it is generated. Considering the correlation properties of
road links in the road network, the authors introduced the technique of grouping road
links based on the sub-graph to pre-train the DL model and realize information sharing
across road links. A traffic congestion prediction model called SG-CNN was proposed
by integrating the characteristics of the traffic data and the CNN model, and the training
process was improved by the road segment aggregation method. To make the TCI more
accurate, the authors must consider more information (such as weather, pedestrians,
road conditions, etc.) that affects traffic congestion. Furthermore, designing a more
efficient algorithm while accounting for the time complexity of the segment aggregation
algorithm is an intriguing topic.

In [140], based on DL, the authors proposed a real-time data-driven queue length pre-
diction technique. They considered a connecting corridor on which information would
be transmitted from car detectors (placed at the intersection) to successive intersections.
The length of the queue for crossing points in the next cycle was expected to be deter-
mined by the length of the queue for the target intersection and two upstream inter-
sections in the current cycle. Data from the adaptive traffic control system InSync were
used to train an LSTM neural network model that extracts time-dependent patterns of
a signal queue. To reduce overfitting and to select the optimal hyperparameter combi-
nations, the authors used a Sequential Model-Based Optimization (SMBO) technique
to determine the appropriate dropout in different stacked layers. For this investigation,
they obtained adaptive traffic light data from InSync between December 18, 2017, and
February 14, 2018. The Alafaya Trail (SR-434) data for East Orlando, FL, were collected
from Lake Waterford. McCulloch Road intersection includes 11 intersections. The
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InSync database provides two types of data: (1) Turning Movement Counts (TMC); the
number of vehicles per stage and lane per 15 min; (2) Historical data with details of each
movement with time, duration, queue, and waiting time for each stage. Due to the lack
of data sources, it was not possible to obtain information about the movements of the
vehicles in different directions with high accuracy (30-60 s). If this information is avail-
able, the performance of the model may improve further.

In [141], the authors presented an Attention-Based Multi-Task Learning (AST-MTL)
model for predicting multi-horizon traffic flow and velocity at the road network scale. To
learn related tasks while improving generalization performance, this approach integrates
a fully connected neural network (FNN) with a multi-headed attention mechanism.
To extract the Spatiotemporal aspects of traffic states, the model incorporates
graph convolutional networks (GCNs) and GRUs. FNN begins by collecting and
analyzing several related functions to derive a common representation. To extract
relevant information and empower the model’s predictive performance, the attention
mechanism also considers task-specific and shared representations. The experiments
used new sets of GPS data, called On Board Unit (OBU) data, to make traffic forecasting
in highway and urban contexts. This study struggles with finding the right strategy for
explicitly maximizing task learning.

In [142], the authors proposed feature-injected RNNs (FI-RNNs), which incorporate
temporal-sequential data with contextual elements to extract the potential correlation
between traffic context and state. In this model, the stacked RNN was utilized to learn
aspects of the traffic data sequence. Meanwhile, a sparse automatic encoder has been
trained to increase contextual features, which are high-level abstract representations
and coding of contextual elements. Subsequently, a fusion technique was developed
that injects contextual information into sequence features to produce fusion features.
Finally, new built-in features have been sent to the forecaster to learn traffic patterns
and estimate future speed. In this study, the accuracy and performance of the proposed
model should be improved by investigating more feature extraction and merging
techniques. Also, the examination of other influencing elements is needed.

In [143], a traffic situational awareness array technology was developed, which
takes advantage of various core models. In that approach, a graph convolution was
implemented on a network of traffic detectors to extract the spatial patterns encoded in
the traffic flow. After that, the retrieved features were utilized to build a weight matrix
to aggregate the predictions of the base models according to their performance under
a given condition. Traffic flow data obtained by Caltrans PeMS were used as a data set
for this study. The main observation in this study was the need to improve the network
structure and parameter options.

In [144], a traffic congestion model was proposed to predict the traffic of
neighborhoods within an area using a DL model. The model was depending on the
LSTM and Graph-CNN architectures. It predicts the degree of crowding, defined as
the ratio of vehicle accumulation within a neighborhood to the trip completion rate.
An abbreviated version of the San Francisco Bay Area Highway Network was used as
a data set for this study.

In [145], a strengthened Bayesian Combination Model (BCM) with DL (IBCM-DL)
for traffic flow prediction was presented to tackle the error amplification phenomenon
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of classical summation methods and to improve prediction performance. The revised
model was built up on the BCM framework proposed by Wang [146]. Real-world
traffic data were obtained by microwave sensors placed on highways in Beijing,
China, provided the dataset for this study. Additional information, such as weather
conditions, traffic accidents, speed, and occupancy, should be included to enhance
the model’s reliability.

In [147], the authors addressed the complexity of predicting urban traffic when an
ECD is available. Four DL methods have been compared to highlight the ability of a
neural network approach (recursive and/or convolutional) in handling the problem of
traffic prediction in an urban context. In particular, the authors investigated two RNN
approaches (LSTM and GRU), as well as the spatiotemporal RCN (SRCN) model and
the High-Order Graph Convolutional LSTM Neural Network (HGC-LSTM) methods.
To generate basic FCD inputs, the proposed solutions use a traffic simulation
approach. The original FCD was created with Aimsun (2018), a microscopic traffic
simulator tool for simulating each vehicle’s interactions as well as collecting data
from them individually. At each pre-set period, a record (vehicle ID, speed, section,
and lane) is collected from the simulation for each associated vehicle. The assembly
period was 10 s. In this study, the authors evaluated the performance of prediction
models using two distinct urban traffic networks in Spain: Camp Nou, a small area
of Barcelona with 4 nodes and 22 divisions, and Amara, a district of San Sebastian
with 105 nodes and 192 sections. The results of the experiments conducted revealed
that these methods can estimate traffic speeds with good performance. Specifically,
recursive algorithms (LSTM and GRU) present fewer errors than convolutional ones
(SRCN and HGC-LSTM). On the other hand, FCD can sometimes be insufficient
to cover all sections of the network, and ML prediction of a variable without any
historical data is meaningless.

In [148], the authors proposed deep artificial neural network (Deep ANN) and CNN
traffic speed prediction models for upstream highway segments, including those on
connected highways, under work area conditions. The proposed models can recognize
congestion on the associated links as well as the upstream mainline segments. The
suggested models predict traffic velocity under work zone conditions based on the
volume of traffic approaching the work area, speed during normal conditions, work
area capacity, distance from the work area, the vertical gradient of the road, down-
stream traffic volume, and type of highway section. The proposed models utilized a
dropout regulation to address the ANN overfitting problems. The generated CNN
model to predict traffic velocity under working zone conditions should be improved
in the following aspects. Discovering additional sources to update the traffic volume
to reflect the real traffic volume would enhance the accuracy of the CNN model. Fur-
thermore, the use of a simulation model to predict the capacity of the working area
can advance the generated CNN model. Automating databases via warehouses would
facilitate the analysis of data for new goods and developments. Additionally, provided
the availability of high-resolution data, the model can be modified to anticipate traffic
congestion in the opposite direction of traffic.

In [149], the authors proposed (1) an efficient and city-wide data acquisition scheme
by taking a snapshot of the Seoul Transport and Information Service (TOPIS), an
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open-source web-based traffic congestion map service, and (2) by integrating CNN,
LSTM, and Transpose-CNN, a hybrid neural network architecture was created to
retrieve Spatiotemporal information from the input image and predict network conges-
tion. In the proposed design, an LSTM network was inserted between the convolutional
encoder and the convolutional decoder. The convolutional encoder initially converts the
input image sequence into low-resolution latent state sequences. The LSTM network
then learns to represent time series from sequences, and the convolutional decoder
finally converts the latent state to the original precision. To further enhance forecast
accuracy, external factors such as weather information (rain, snow, and fog) must be
addressed. Moreover, the performance of the proposed model should be enhanced. Also,
more information from many data sources must be added to get more accurate forecasts.

In [150], the authors suggested an LSTM-based traffic jam prediction technique based
on correcting missing temporal and spatial information. Before making predictions, the
proposed technique performs a pre-processing consisting of extrinsic removal using the
average absolute deviation of traffic data and correction of Spatiotemporal values using
temporal and geographic trends and pattern data. While data with time-series features
are not effectively learned, the suggested prediction technique utilized the LSTM
model to learn time-series data to tackle this problem. The precision of forecasting
traffic congestion in low-speed areas and urban areas using the proposed technique
should be enhanced. Moreover, the authors need to build a model with improved user
performance.

In [151], the authors suggested a deep and embedding learning (DELA) technique
that could help explicitly learn accurate traffic information, road structure, and weather
conditions. The original highway traffic data set contained traffic flow information for
approximately 3 months (from July 19, 2016, to October 17, 2016) which was formally
provided by Knowledge Discovery and Data Mining Tools Competition (KDD CUP
2017). The proposed model has poor explanatory power for the selected DL models.
Also, it has a limited learning ability of the embed component.

In [119], an innovative and comprehensive technique for large-scale, faster, and
real-time traffic forecasting has been suggested. It has integrated four complementary
advanced technologies: big data, DL, in-memory computing, and graphics processing
units (GPUs). Deep networks were trained by employing more than 11 years of
data provided by the California Department of Transportation (Caltrans) [152]. The
suggested approach has poor prediction accuracy, in addition to the use of a small size
data set.

In [153], the authors created a distinctive traffic prediction approach with the least pre-
diction error based on DL and introduced the LSTM model. Real-world traffic big data
of performance measurement system (PeMS) were used as the dataset of this research.
The count of optimized parameters employed in this study needs to be expanded. Also,
the model training time needs to be regulated.

In [154], a pathway-based DL framework was presented. It can provide superior traf-
fic velocity forecasts on a citywide scale. Furthermore, the model was reasonable and
interpretable in the urban transportation context. The study area was a road network
consisting of 112 road sections. The dataset used was obtained from Automated Vehicle
Identification (AVI) detectors in the core area of Xuancheng, China. More essential path
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selection criteria were investigated. Also, raising the interpretability of a DL model for a
transport application is an open topic.

In [155], using refined GPS trajectory data, the level of traffic congestion was fore-
casted. The Hidden Markov model has been utilized to match GPS trajectory data to
the road network. The actual speed of road segments can even be calculated using GPS
trajectory data from nearby locations. To predict congestion levels, four DL approaches
namely CNN, RNN, LSTM, and GRU in addition to three classical ML models (ARIMA
model, SVR, and ridge regression) were used. This study had some limitations that were
highlighted. First, the GPS trajectory data collected were insufficient. Also, more GPS
data must be considered. In addition, the structure of the CNN network can be altered
to improve model performance.

In [156], the authors proposed a spatiotemporal model for the short-term prediction
of the level of crowding at each part of the route (CPM-ConvLSTM). The suggested
model was developed on a geographical matrix that includes both the congestion
propagation pattern and the spatial correlation between road segments. The traffic data
set was obtained from Helsinki, Finland. Considering the historical spatiotemporal
matrices’ time series, the authors applied the newly popular ConvLSTM DL model by
using the time series of historical spatiotemporal matrices as input and predicting the
future short-range spatiotemporal matrix. To enhance forecasting performance, the
authors need to incorporate external parameters, such as points of interest, weather, and
the surrounding environment.

In [157], the authors created a DL-based methodology for directly forecasting traffic
status based on a time—space diagram using CNN. The time—space diagram is directly
fed into the traffic forecasting model, which employs a CNN. This technique has three
significant benefits: (1) It allowed the time—space diagram to be used as the input with
no need for abstraction or aggregation; (2) This methodology was created through a
learning mechanism that focuses on learning the key features of the time—space diagram
required for effective forecasting. These features seriously affect the dynamic behavior
of traffic flow and vehicle interactions, which may have an impact on future traffic
conditions; and (3) This approach addressed the problem of nonparametric models’
transferability by introducing location-specific solutions that needed to be re-calibrated
for another location. Compared with the existing nonparametric models, that is, SVR,
MLP, and ARIMA, the suggested CNN model provided a higher generalization in traffic
state prediction in different regions of the main diagram. The suggested CNN model was
trained using simulated data and a real-world dataset (NGSIM US-101). However, this
study did not look into the effects of lane changes on traffic flow dynamic behavior and
prediction accuracy.

In [158], a new method based on fuzzy CNN (F-CNN) was proposed to predict traf-
fic flow more accurately. When uncertain information about traffic accidents is entered
into CNN for the first time, a fuzzy approach is used to represent traffic accident fea-
tures in this method. First, to extract the Spatiotemporal features of the traffic flow data,
this study divided the whole region into 32 x 32 small blocks and created three direc-
tion sequences with inward and outward flow types. Second, by applying a fuzzy infer-
ence mechanism, the uncertain traffic accident information was derived from the real
traffic flow data. Then, the information about the trend sequence, the information of
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unconfirmed traffic accidents, and the external information can be trained by imple-
menting the F-CNN model. Moreover, pre-training and tuning procedures were
designed efficiently to learn FCNN parameters. Finally, the Beijing taxi real route and
meteorological data sets were applied to ensure that the proposed method has superior
performance compared to the latest methods. The authors need to explore additional
influential aspects in traffic flow forecasting and use more efficient DL models.

In [159], a model for short-term traffic forecasting was proposed. This model incor-
porates Spatiotemporal analysis and the GRU. Before applying an algorithm for spati-
otemporal feature selection to determine the ideal input time window and spatial data
size, the proposed model applied temporal and spatial correlation analyses to aggregated
traffic flow data. Simultaneously, the desired traffic flow information is extracted from
the actual traffic flow data and converted into a two-dimensional matrix containing Spa-
tiotemporal traffic flow information. Finally, the GRU was employed to analyze the Spa-
tiotemporal features of the internal traffic flow matrix to achieve the prediction goal.
There are some issues with this work, such as other factors (for example, weather condi-
tions) that are not included in the traffic flow, and only the traffic flow is expected for a
specific section of the road.

To summarize all previous related works, Table 3 compares them in terms of
methodology, data set, approaches, and their main findings.

Challenges

Traffic flows must be carefully anticipated and predicted due to the risk impact of traffic
congestion, particularly in populated areas. As a result, realistic and efficient road traffic
prediction techniques are required.

The publication gap in traffic flow forecasting addressed in this survey includes a
lack of computationally effective methodologies and algorithms. Furthermore, there
is a limitation of high-quality training data. Because of using matched city traffic flow
statistics, non-exhaustive data contents were used to train network models. These
characteristics were discovered to constrain the development of traffic flow prediction
using ML and DL approaches.

Because of the complicated link features between road sections and traffic congestion
patterns or congested areas, the gap is created by the underutilization of dynamically
acquired Spatiotemporal correlations in the DL. Furthermore, a lack of computing power
and distributed storage constraints traffic forecasts. A future study should investigate
this issue.

The current study has several limitations, including being limited to the approaches
and algorithms included in the list of articles investigated. Other strategies that were
not addressed in this study could exist. Future research should focus on popularly used
DL techniques (CNN and LSTM), which are thoroughly covered in the literature review.
This is possible by using traffic data collected in various local urban areas to provide
broader data patterns for model training. As a result, traffic forecasting in small cities
will improve, as will the accuracy of the ML and DL algorithms used to predict traf-
fic flow. The researchers’ biggest challenge will be collaborating with the local urban
authority to contribute the volume of vital big data. The rules and regulations for sharing
traffic data with local municipal governments will be another impediment.
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The installation of sensors to collect traffic data for training ML and DL may result
in connected IoT settings that increase cybersecurity risks. A framework should be
developed to address the cybersecurity issues of ITS in smart cities. This leaves plenty of
room for future investigation.

Conclusion

The present study is aimed to present a comprehensive review of the most significant
ML and DL techniques used in traffic forecasting, as well as the problems associated
with using ML and DL in traffic forecasting. A total of 40 articles were chosen and
thoroughly reviewed after a rigorous selection process. According to the preceding
discussion, traffic forecasting is an important task in the transportation industry due to
its significant influence on road construction, route planning, and traffic rules. This work
advances research in the field of traffic flow forecasting using ML and DL approaches.
Contributes to the literature and future studies by serving as a resource for other
academics and researchers.
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