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Abstract 

Background  The human gut microbiota (GM) is a diverse ecosystem crucial for health, impacting physiological 
processes across the host’s body. This review highlights the GM’s involvement in Non-Alcoholic Fatty Liver Disease 
(NAFLD) and explores its diagnosis, treatment, and management.

Main Text  The GM influences gut functionality, digestion, immunity, and more. Short-chain fatty acids (SCFAs), 
produced by microbial fermentation, regulate metabolism, inflammation, and immune responses. Bile acids (BAs) 
modulate the microbiome and liver functions, affecting NAFLD progression. Dysbiosis and increased gut perme-
ability contribute to NAFLD through bacterial components and metabolites reaching the liver, causing inflamma-
tion and oxidative stress. The microbiome’s impact on immune cells further exacerbates liver damage. Symptoms 
of NAFLD can be subtle or absent, making diagnosis challenging. Imaging techniques assist in diagnosing and stag-
ing NAFLD, but liver biopsy remains vital for accurate assessment. Promising treatments include FXR agonists, GLP-1 
agonists, and FGF19 and FGF21 mimetics, targeting various pathways associated with NAFLD pathogenesis. Fecal 
Microbiota Transplantation (FMT) emerges as a potential therapeutic avenue to restore gut microbiota diversity 
and alleviate NAFLD. Lifestyle interventions, such as dietary modifications, exercise, and probiotics, also play a pivotal 
role in managing NAFLD and restoring gut health.

Conclusion  Despite significant progress, the complex interplay between the gut microbiome, NAFLD, and poten-
tial treatments necessitates further research to unravel underlying mechanisms and develop effective therapeutic 
strategies.
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Introduction
The human gut microbiota (GM) is a complex and 
diverse ecosystem essential to human health and overall 
well-being. It comprises an immense number of micro-
organisms, including bacteria, fungi, archaea, viruses, 
and helminths [1]. Collectively, these microorganisms 
are referred to as the gut microbiota, and their combined 
genetic material is termed the gut microbiome [2]. These 
microorganisms consist of up to 5000 different species 
and weigh approximately 1% of an adult human’s body 
mass [3]. Indeed, the GM plays a vital role in support-
ing various physiological processes of the host. Its most 
significant contribution lies in supporting the intestine, 
which ensures optimal gut functionality across multiple 
aspects. These include aiding in digestion, harvesting 
energy from nutrients, enhancing mucosal immunity, 
maintaining the integrity of the intestinal barrier, defend-
ing against pathogens, and producing essential vitamins, 
neurotransmitters (NT), and potentially beneficial bioac-
tive compounds, such as short-chain fatty acids (SCFAs), 
which are valuable molecules for the host [4–8]. The 
human gut microbiome closely interacts with different 
organs within the host body, such as the gut responsible 
for food digestion, the liver for processing after absorp-
tion, and adipose tissue for storage. This significant level 
of integration has led numerous researchers to assume 
the human GM to a microbial organ of human body 
[9]. The gut microbiota consists mainly of four primary 
categories of microorganisms: Firmicutes, Bacteroides, 
Actinomycetes, Verrucomicrobia, and Proteus [10] 
Among these, the ratio of Firmicutes to Bacteroidetes 
is commonly used as a critical parameter in identifying 
potential gut health disorders [11]. In recent years, the 
field of gut microbiota research has experienced signifi-
cant progress, driven by advancements in molecular biol-
ogy, genomics, bioinformatics analysis technology, and 
high-throughput sequencing technology. This review 
elaborates on the involvement of the gut microbiome 
in chronic diseases like non-alcoholic fatty liver disease 
(NAFLD) and explores how it can be diagnosed, treated, 
and managed for prevention.

Gut microbiota dysbiosis in non‑alcoholic fatty liver 
disease
In gut, the microbiota community plays a crucial role in 
various physiological processes within the human diges-
tive system. Importantly, this community significantly 
contributes to functions like digestion, metabolism, and 
protective mechanisms. Several studies illustrate that 
different pathway of the gut microbiome are involved in 
the progression of NAFLD [12, 13]. The gut microbiota’s 
utilization of enzymes is vital for the efficient conversion 
of undigested polysaccharides into monosaccharides and 

the conversion of dietary fibers into short-chain fatty 
acids (SCFAs). This process is crucial as it provides essen-
tial energy support to the host cells. These SCFAs form 
a group of organic acids produced through bacterial fer-
mentation of dietary fibers within the colon (Fig. 1). They 
have attracted considerable interest due to their potential 
health benefits, particularly in regulating metabolism, 
immune responses, the absorption of electrolytes and 
nutrients, as well as exhibiting anti-inflammatory and 
antitumor characteristics [14]. The daily production of 
SCFAs in the colon varies based on the intake of dietary 
fiber, usually falling within the range of 500 to 600 mmol. 
Among these SCFAs, acetate, propionate, and butyrate 
are notable for being the most abundant within the intes-
tinal tract [15].

Acetic acid plays a significant role as a vital energy 
source for the body, contributing roughly 10% of the daily 
energy requirement. In contrast, butyric acid assumes a 
crucial function in providing energy to support epithe-
lial cells, thereby playing a vital role in upholding the 
integrity of the intestinal barrier. Furthermore, it acts as 
the primary metabolic substance for the gastrointesti-
nal microbiota, meeting at least 60–70% of their energy 
demands for growth and differentiation [16]. Moreo-
ver, butyric acid has the ability to hinder the activa-
tion of Carbohydrate response element binding protein 
(ChREBP) and sterol regulatory element binding pro-
tein 1 (SREBP-1), then, suppress the process of lipogen-
esis [17]. Propionic acid primarily undergoes catabolism 
within the liver, participating in the conversion of pyru-
vate to glucose. Furthermore, it has demonstrated the 
capacity to diminish lipid buildup in individuals dealing 
with excess weight and adiposity [18]. Unlike butyric and 
acetic acids, which serve as energy sources for host cells, 
propionic acid serves as a precursor for adipogenesis and 
gluconeogenesis. These latter processes hold greater sig-
nificance in the development of NAFLD [19]. Dietary 
fiber has gained recognition for its multitude of health 
advantages, especially in enhancing digestive well-being 
and overall vitality. The consumption of dietary fiber, 
irrespective of its origin, can exert favorable impacts on 
the intestinal tract, particularly benefiting individuals 
with insufficient dietary fiber intake [20].

The SCFAs trigger the activation of G protein-coupled 
receptors, namely GPR41 and GPR43, located within 
the intestinal and adipose tissues [21]. The stimulation 
of GPR41 leads to enhance the secretion of glucagon-
like peptide 1 and peptide YY (PYY) from enteroen-
docrine cells. This process, in turn, causes a reduction 
in intestinal motility while concurrently enhancing the 
absorption of nutrients. On the other hand, the activa-
tion of GPR43 hinders the differentiation of adipocytes 
and amplifies hepatic lipogenesis, thus fostering the 
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progression of NAFLD [22]. Bile acids constitute the 
principal elements of bile and can be categorized into 
primary and secondary forms. Hepatocytes manufacture 
primary bile acids (PBAs), which encompass cholic acid 
(CA) and chenodeoxycholic acid (CDCA), through the 
conversion of cholesterol. Subsequently, these PBAs are 
secreted into the bile duct. Bacteria located in the small 
intestine then facilitate the conversion of primary bile 
acids into secondary bile acids (SBAs), which comprise 
lithocholic acid (LCA), deoxycholic acid (DCA), ursode-
oxycholic acid (UDCA), and corresponding isoforms like 
isolithocholic acid. Primarily, bile acids play a significant 
role in regulating the balance of intestinal microbiota by 
directly preventing the proliferation of harmful bacteria, 
but they also function as natural activators of the intesti-
nal farnesoid X receptor receptor (FXR). This activation 
sequence, prioritized as CDCA, DCA, LCA, and CA, 
triggers the activation of protective genes in the mucosal 
lining of the ileum. As a result, this helps safeguard the 
intestinal epithelial cells from the corrosive effects of 

bacteria and other microorganisms, contributing to 
overall gut health [23]. Furthermore, FXR decreases the 
expression of liver X receptor (LXR) and sterol regula-
tory element binding protein-1c (SREBP-1c), leading to 
a reduction in the synthesis of fatty acids and triglycer-
ides within the liver. This, in turn, mitigates the processes 
of steatogenesis and gluconeogenesis. Additionally, FXR 
enhances hepatic glycogen synthesis by activating fibro-
blast growth factor (FGF) 15/19, PPARg, GLUT-4, and 
GLP-1, thereby enhancing insulin sensitivity [24].

The bile acid G-protein-coupled membrane receptor-5 
(TGR5) represents another conventional BA receptor, 
primarily triggered by SBAs (TGR5 activation sequence: 
LCA > DCA > CDCA > CA). Insufficient SBAs result in 
decreased FXR activity but heightened inflammation 
within the body, whereas excessive SBAs have the poten-
tial to induce harm to cellular DNA through the gen-
eration of reactive oxygen species (ROS), subsequently 
leading to the emergence of hepatocellular carcinoma 
(HCC). Research has demonstrated that the activation 

Fig. 1  The involvement of gut microbiota and their resulting substances in the progression of NAFLD. The products generated by gut 
microorganisms, encompassing monosaccharides, short-chain fatty acids (SCFAs), bile acids (BAs), and trimethylamine oxide (TMAO), assume crucial 
roles not only in the liver’s energy metabolism and the cellular lining of the intestines but also exert a direct influence on the production of liver fat 
and overall systemic inflammation. A range of molecular elements come into play, including adenosine monophosphate-dependent protein kinase 
(AMPK), carbohydrate-responsive element-binding protein (ChREBP), Cytochrome P450 7A1 (CYP7A1), farnesoid X receptor (FXR), glucagon-like 
peptide-1 (GLP-1), G protein-coupled receptor 41/43 (GPCR41/43), peptide YY (PYY), sterol regulatory element-binding protein 1 (SREBP-1), 
and Takeda G protein receptor 5 (TGR5). Collectively, these elements contribute to these effects
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of TGR5 through SBAs initiates the transcription of the 
type 2 iodothyronine deiodinase (Dio2) gene. This, in 
turn, facilitates the conversion of thyroid hormone (T4) 
to the more potent triiodothyronine (T3), consequently 
elevating basal metabolism and fostering energy utiliza-
tion in the brown adipose tissue and muscle of mice fed 
a high-fat diet (HFD) [25]. Stimulation of TGR5 within 
cells responsible for intestinal secretion through SBAs 
triggers the upregulation of GLP1 expression. This, in 
turn, enhances insulin production and release, lead-
ing to safeguarding against apoptosis of islet b-cells and 
enhancement of blood glucose regulation. Nevertheless, 
changes in gut microbiota and liver function directly 
impact the eventual compositions and quantities of BAs. 
As a result, distinct expression patterns of BA recep-
tors (such as FXR and TGR5) emerge at various stages 
of the NAFLD progression. In any case, both FXR and 
TGR5, the two BA receptors, have emerged as potential 
targets for addressing obesity and NAFLD. Trimethyl-
amine (TMA) and trimethylamine N-oxide (TMAO) are 
metabolites of choline and its derivatives synthesized by 
gut microbiota. These compounds not only contribute 
to the onset of atherosclerosis, but also have a significant 
effect on the metabolism of cholesterol and triglycerides 
[26]. Clinical trials have demonstrated that a decrease in 
choline levels can result in the accumulation of lipids in 
the liver. This occurs due to a reduction in the produc-
tion and release of very low-density lipoproteins (VLDL) 
in liver cells, which ultimately leads to the development 
of steatohepatitis. This outcome is commonly observed 
in rodents that are fed a diet deficient in methionine 
and choline (MCD). It has been established that foods 
containing dietary methylamine, choline, phosphatidyl-
choline, and carnitine undergo breakdown into various 
metabolites, including trimethylamine (TMA), through 
the degradation of trimethylamine lytic enzymes in bac-
teria of the Proteobacteria and Firmicutes phyla. TMA is 
transported to the liver through the portal vein. Within 
the liver, it undergoes conversion by flavin-containing 
monooxygenases, resulting in the formation of TMAO. 
This compound plays a pivotal role in fostering the 
buildup of activated leukocytes within human endothe-
lial cells. Consequently, this process leads to impaired 
functioning of endothelial cells, thereby substantially 
amplifying the susceptibility to atherosclerosis and car-
diovascular diseases [27, 28].

Influence of gut microbiota on intestinal and hepatic 
immune function
Research indicates that the advancement of NAFLD 
is associated with the decline in the integrity of the 
intestinal barrier [29, 30]. During the development 
and advancement of NAFLD, significant amounts of 

metabolites originating from gut bacteria, along with 
bacterial components and other potential hazards, enter 
the liver through the portal vein. This occurs due to the 
disruption of the intestinal mucosal barrier caused by 
various factors, leading to an increased permeability of 
the intestines (Fig. 2). These intrusions have the capabil-
ity to accelerate liver damage and fibrosis by amplifying 
inflammation, oxidative stress, and the accumulation of 
lipids [31]. The investigation through in  situ hybridiza-
tion discovered the presence of bacterial metabolites 
and DNA fragments from the gut in the livers of mice 
fed a high-fat diet (HFD). However, it remains unclear 
whether bacteria are present in the livers of patients with 
non-alcoholic steatohepatitis (NASH). In comparison to 
individuals with normal health, individuals with obesity 
or non-alcoholic fatty liver disease (NAFLD) exhibited 
a significant increase in the number of enteric bacteria, 
particularly Gram-negative types, which led to noticeable 
endotoxemia [32].

Abundant of lipopolysaccharides (LPS) trigger the 
activation of adenylate cyclase in the intestinal mucosa, 
which subsequently harms mitochondria and lysosomes 
within epithelial cells. This harmful cascade ultimately 
results in the necrosis of apical cells on intestinal villi and 
the autolysis of epithelial cells. Additionally, the inflam-
mation of the liver and its ongoing damage are primar-
ily driven by gut-derived LPS. These LPS molecules 
play a crucial role in initiating signaling through LPS-
dependent pattern recognition receptors, contributing 
to the inflammatory process [33]. LPS triggers the acti-
vation of TLR4 within endothelial cells and TLR9 within 
dendritic cells. This activation leads to the secretion of 
a significant array of pro-inflammatory cytokines like 
TNF-a, IL-1b, and IL-6 and chemokines such as CCL2, 
CXCL2, CXCL10, and CXCL16. These molecules collec-
tively drive inflammation and pathological harm to the 
liver [34, 35]. Consequently, LPS initiates inflammation 
and substantial metabolic alterations in the body, includ-
ing increased fat utilization, enhanced circulation of free 
fatty acids (FFA), and elevated triglyceride (TG) levels. 
This accumulation of FFA in the liver could also incite 
inflammation and insulin resistance (IR), thereby fur-
ther promoting the progression of NAFLD [36, 37]. Con-
versely, the gut microbiota has the capacity to modify the 
equilibrium between proinflammatory and anti-inflam-
matory cytokines produced by M1 and M2 macrophages. 
This modulation occurs through the influence on the 
metabolism of short-chain fatty acids (SBAs), ultimately 
impacting the immune function of the liver [38]. Small 
amounts of SBAs produced by the gut microbiota can 
have the capability to decrease FXR activity and enhance 
inflammation in the body. On the other hand, high lev-
els of SBAs can result in the production of a considerable 
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number of ROS, leading to damage to the DNA of cells 
and promoting the development of HCC [39]. Addi-
tionally, PBAs can prompt an increased expression of 
CXCL16 in hepatic vascular endothelial cells. Subse-
quently, this process triggers the attraction of NKT cells, 
which are capable of eliminating tumor cells in a manner 
that relies on CD1d [40].

Symptoms of NAFLD
NAFLD often presents either mild or vague symptoms 
during its initial stages [41]. Some individuals may not 
perceive any noticeable symptoms at all. This lack of 
prominent indicators can create difficulties in identifying 
the condition without specific medical assessments. Cer-
tain individuals might not show any observable signs. The 
absence of notable symptoms can hinder the detection of 

the condition without particular medical examinations. 
Fatigue, discomfort in the upper right abdomen, enlarged 
liver (hepatomegaly), a skin condition with dark and 
thickened patches, (acanthosis nigricans), and accumula-
tion of excess fat (lipomatosis) might be experienced by 
some individuals. In certain cases, NAFLD can progress 
to more severe liver disorders, ultimately leading to cir-
rhosis. Patients with cirrhosis may exhibit symptoms that 
are characteristic of end-stage liver disease.

Diagnosis of NAFLD
Different imaging techniques can be used in NAFLD to 
support the diagnosis. However, these imaging modali-
ties are not routinely employed to differentiate between 
the histological subtypes of NAFLD. Following are some 
diagnostic tools utilized for detecting hepatic steatosis.

Fig. 2  Gut dysbiosis disrupts the integrity of the intestinal barrier, enabling the passage of bacterial endotoxins into the liver. This, in turn, amplifies 
the inflammatory processes and the accumulation of fat, contributing to the development of NAFLD. Unhealthy lifestyle choices, such as a high-fat, 
low-fiber diet, alter the composition of the gut microbiota. This alteration increases the permeability of the gut, leading to the production 
of various proinflammatory molecules, including LPS, TMAO, SBAs, and bacterial 16sDNA. These proinflammatory molecules further exacerbate 
liver inflammation and fibrosis, potentially accelerating the progression of NAFLD. Various interventions, such as treatment with FXR/TGR5 agonists, 
and probiotics play a crucial role in strengthening the tight junctions within the intestinal barrier. They also regulate glucose and lipid metabolism 
by activating FXR and TGR5 signaling pathways, while simultaneously inhibiting the TLR4/NF-kB and JAK1/STAT6 pathways
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Ultrasound
Ultrasound emerges as the primary imaging modal-
ity for evaluating patients diagnosed or suspected with 
NAFLD. B-Mode ultrasound images show the poten-
tial to improve diagnostic accuracy for detecting and 
grading hepatic steatosis. It proves to be an exceptional 
tool for identifying moderate to severe steatosis among 
NAFLD patients [42].

Computed tomography (CT)
Clinical CT shows significant promise in detecting inci-
dental steatosis and aiding in understanding the typical 
course of NAFLD. Dual-energy CT (DECT), utilizing 
different energy levels, offers potential to distinguish 
diverse tissue compositions, such as fat, thereby pro-
viding improved diagnostic accuracy for hepatic steato-
sis compared to traditional single-energy CT [43].

Magnetic resonance imaging
MRI technology, particularly multiparametric methods 
like PDFF, T2 and T1 mapping, and MR elastography, 
is continuously being integrated into clinical practice. 
This comprehensive approach to liver imaging shows 
potential in managing NAFLD by accurately measuring 
fat content, iron levels, and fibrosis, essential features 
of the disease [44].

Transient elastography (FibroScan)
assist in diagnosing liver diseases and provide infor-
mation about the fat presence and liver stiffness, they 
cannot substitute for a liver biopsy when it comes to 
accurately determining the histological subtypes and to 
guide appropriate clinical management and monitoring 
[45].

Vibration‑controlled transient elastography (VCTE)
VCTE is a non-invasive medical imaging technique 
used to assess the stiffness or elasticity of the liver [46, 
47]. This quick and painless procedure offers valuable 
information on liver fibrosis and cirrhosis. VCTE also 
aids in guiding treatment decisions and monitoring 
disease progression. However, it does not identify the 
underlying cause of liver disease.

Liver biopsy
Liver biopsy plays an important role as a diagnostic tool 
in differentiating between simple fatty liver and NASH 
and in assessing the state of fibrosis in NAFLD patients. 
This enables assessment of the degree of fibrosis, which 
provides valuable prognostic information and improves 
the clinical management of NAFLD [48–50]. However, 
it carries some risks and discomfort for the patient. 

Therefore, non-invasive methods are also employed 
to assess liver health and fibrosis in NAFLD patients. 
These non-invasive techniques include imaging studies 
such as transient elastography and blood tests (Fibro-
sis-4 Index and enhanced liver fibrosis tests) [51]. These 
methods offer valuable information about liver stiffness 
and fibrosis levels without the need for a liver biopsy, 
and they play a significant role in the clinical evaluation 
of NAFLD patients, providing an alternative or comple-
mentary approach to liver biopsy when appropriate.

Loomba etal. investigated the potential correlation 
between the gut microbiome and liver disease associated 
with obesity [52]. To explore this connection, Loomba 
analyzed two distinct sets of patients. The initial group 
encompassed 86 patients who were diagnosed with non-
alcoholic fatty liver disease (NAFLD) via biopsy. Among 
them, 72 had mild to moderate NAFLD, while 14 had 
advanced-stage disease. The team employed sequencing 
techniques to scrutinize the microbial genes derived from 
stool samples provided by each participant. This allowed 
them to pinpoint the species present and their relative 
proportions. Noteworthy findings emerged, as they iden-
tified 37 bacterial species that could differentiate between 
mild/moderate NAFLD and advanced-stage disease. 
Remarkably, this differentiation accurately predicted 
advanced-stage disease in patients with an impressive 
93.6% accuracy. To validate this discovery, a subsequent 
study involving 16 patients with advanced NAFLD and 
33 healthy individuals as a control group was conducted. 
This phase revealed nine bacterial species that set apart 
NAFLD patients from the healthy volunteers, achieving 
an accuracy rate of 88%. Notably, seven of these bacterial 
species aligned with the previously discovered 37. The 
study demonstrated that patients with advanced NAFLD 
exhibited a higher prevalence of Proteobacteria and a 
lower presence of Firmicutes in their stool compared to 
those with early-stage NAFLD. At a more specific level, 
the abundance of E. coli was notably three times higher 
in patients with advanced NAFLD compared to those in 
the early stages of the disease.

Treatment
In recent years, a multitude of trials have investigated 
diverse medications with varying mechanisms of action 
in the context of NAFLD/NASH, yielding encouraging 
results. Within this specific context, we aim to provide a 
comprehensive overview of key clinical findings, along-
side stratified pharmacological mechanisms designed 
to specifically target NAFLD. Effective drugs like vita-
min E and Pioglitazone exist for treating and preventing 
NAFLD [53]. Pioglitazone has shown efficacy in cases 
involving advanced NASH patients with type 2 diabe-
tes; However, this underscores the lack of reliable clinical 
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data to fully support its use in this particular context. 
Vitamins E and D show certain effectiveness although 
uncertainty remains regarding their long-term safety and 
therapeutic efficacy. On the other hand, Statins can lower 
serum LDL levels and mitigating cardiovascular prob-
lems, but they do not address the progression of liver 
disease. Currently, there is no FDA-approved treatment 
for NAFLD. However, targeted therapies are in differ-
ent phases of clinical trials. Table 1 outlines a number of 
encouraging drug contenders at various stages of clinical 
development for NAFLD.

Fecal microbiota transplantation (FMT)
FMT presents a novel approach for restoring and rebal-
ancing the diversity of the gut’s microorganisms, aiming 
to address various diseases, including Clostridioides diffi-
cile infection [79]. Additionally, FMT has shown promise 
in treating metabolic diseases, tumors, autoimmune dis-
orders, and hepatic encephalopathy [80–82]. Studies on 
animals have indicated that FMT can effectively improve 
the manifestations of NAFLD by addressing gut micro-
biota dysbiosis [83–85]. As a result, FMT has become an 
appealing option for NAFLD patients. However, there 
have been only a limited number of studies exploring the 
clinical efficacy of FMT in NAFLD treatment. One ran-
domized control trial revealed that FMT has the poten-
tial to reduce small intestinal permeability in NAFLD 
patients [86, 87]. Moreover, FMT from healthy donors 
has been found to impact hepatic gene expression and 
plasma metabolites related to inflammation and lipid 
metabolism, demonstrating the significant interplay 
between gut microbiota composition and NAFLD.

Management of gut dysbiosis
Patients with NAFLD often follow high-calorie diets rich 
in carbohydrates and fats, contributing to obesity. Miti-
gating NAFLD risk involves replacing saturated and trans 
fats with healthier unsaturated fats, particularly omega-3 
fatty acids. Opting for low-glycemic index foods such as 
fruits, vegetables, and whole grains is recommended as 
they have a milder effect on blood glucose compared to 
high-glycemic index foods like white bread and potatoes. 
Sugary beverages, notably high in sucrose and fructose, 
are linked to NAFLD and should be avoided [88, 89]. 
NAFLD’s connection to obesity emphasizes the need for 
gradual weight loss through balanced eating and exer-
cise. Shedding 7 to 10% of body weight through diet and 
physical activity notably improves NAFLD and its more 
severe form, NASH, decreasing liver fat content and 
addressing fibrosis.

Regular physical activity, aiming for 150  min of mod-
erate-intensity or 75  min of vigorous-intensity exercise 
weekly, positively impacts gut microbiome and liver 

health [90]. Emerging research indicates the significance 
of probiotics, prebiotics, and synbiotics in gastrointesti-
nal health. These therapies target disrupted gut micro-
biota, which plays a pivotal role in NAFLD development. 
Probiotic and prebiotic supplementation have shown 
promise in reducing liver enzymes AST and ALT in dam-
aged liver patients [91–94]. The intricate gut microbiota 
is essential for digestion, vitamin synthesis, immune 
training, and pathogen prevention. Antibiotic use, par-
ticularly fluoroquinolones, can disrupt this ecosystem, 
leading to reduced diversity and opportunistic infections.

Conclusion
The human gut microbiota plays a crucial role in main-
taining various physiological processes and overall health. 
The intricate interactions between the gut microbiome, 
liver function, and immune responses have significant 
implications for the development and progression of 
non-alcoholic fatty liver disease (NAFLD). The dysbiosis 
of gut microbiota, characterized by alterations in micro-
bial composition and metabolic activity, has been asso-
ciated with NAFLD through its influence on digestion, 
energy metabolism, inflammation, and immune function. 
This review article has highlighted the role of short-chain 
fatty acids (SCFAs), bile acids, and gut-derived endo-
toxins in the development of NAFLD. SCFAs, produced 
by the fermentation of dietary fibers, have been shown 
to influence energy homeostasis, lipid metabolism, and 
inflammation. Bile acids, beyond their role in digestion, 
regulate various aspects of liver health, including lipid 
metabolism and inflammation. Dysbiosis-related altera-
tions in SCFAs and bile acids contribute to liver inflam-
mation and lipid accumulation, pivotal factors in NAFLD 
progression. Moreover, the disruption of the intestinal 
barrier integrity allows the translocation of bacterial 
products, including lipopolysaccharides (LPS), into the 
liver. This initiates an inflammatory response and oxida-
tive stress, further promoting liver damage. The inter-
play between gut microbiota and the immune system has 
been shown to impact the progression of NAFLD, with 
dysbiosis promoting inflammation through the activation 
of pattern recognition receptors.

Diagnosis and management of NAFLD have also seen 
advancements in recent years. Non-invasive techniques 
such as transient elastography and blood tests have 
emerged as alternatives to liver biopsy for assessing liver 
fibrosis. Targeted therapies, including FXR agonists and 
antagonists, GLP-1 agonists, and thyroid hormone recep-
tor agonists, are being investigated for their potential to 
address NAFLD at the molecular level. Furthermore, the 
potential of fecal microbiota transplantation (FMT) has 
garnered attention as a novel approach to restoring gut 
microbiota balance in NAFLD patients. Promising results 
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from animal studies and limited clinical trials suggest that 
FMT could influence gut-liver crosstalk and potentially 
mitigate NAFLD-associated conditions. Lifestyle inter-
ventions remain crucial for managing NAFLD. Dietary 
modifications, physical activity, and weight loss continue 
to be cornerstones of NAFLD management, as they can 
positively impact gut microbiota composition and diver-
sity. Probiotics, prebiotics, and synbiotics also hold prom-
ise in improving gut health and mitigating NAFLD risk.

In summary, the intricate relationship between gut 
microbiota, liver health, and NAFLD underscores the 
importance of understanding these interactions for the 
development of targeted therapeutic strategies. Advances 
in diagnostic techniques, treatment options, and life-
style interventions are paving the way for a compre-
hensive approach to managing NAFLD by addressing 
gut microbiota dysbiosis and its implications for overall 
health. Further research in this field holds the potential 
to revolutionize our approach to preventing and treating 
NAFLD, a growing global health concern.
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