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Abstract 

Acoustic Emission (AE) has emerged as a popular damage detection and localization tool due to its high performance 
in identifying minor damage or crack. Due to the high sampling rate, AE sensors result in massive data during long-
term monitoring of large-scale civil structures. Analyzing such big data and associated AE parameters (e.g., rise time, 
amplitude, counts, etc.) becomes time-consuming using traditional feature extraction methods. This paper proposes a 
2D convolutional neural network (2D CNN)-based Artificial Intelligence (AI) algorithm combined with time–frequency 
decomposition techniques to extract the damage information from the measured AE data without using standalone 
AE parameters. In this paper, Empirical Mode Decomposition (EMD) is employed to extract the intrinsic mode func-
tions (IMFs) from noisy raw AE measurements, where the IMFs serve as the key AE components of the data. Continu-
ous Wavelet Transform (CWT) is then used to obtain the spectrograms of the AE components, serving as the “artificial 
images” to an AI network. These spectrograms are fed into 2D CNN algorithm to detect and identify the potential loca-
tion of the damage. The proposed approach is validated using a suite of numerical and experimental studies.
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Introduction
Civil structures are prone to damage due to structural 
ageing, faulty construction, natural disasters, acciden-
tal loads or lack of adequate, timely maintenance. Their 
existing condition can be monitored using sensor-driven 
structural health monitoring (SHM) strategies to avoid 
any catastrophic failure [18]. SHM involves data-driven 
technology to monitor and detect the damage and pro-
vide the infrastructure owners opportunities for timely 
maintenance. Over the last several years, Acoustic Emis-
sion (AE) has shown great promise to detect and localize 
different internal damage patterns such as crack, fatigue, 
corrosion in civil structures [32]. In general, AE is defined 
as a transient elastic wave generated as an outcome of 
a material deformation due to damage initiation and 

propagation [27]. Depending on the nature of structures 
and loading conditions, a suite of AE parameters such as 
duration, signal strength, amplitude, rise time, counts, 
and energy indices reflect their as-is state and detect any 
anomalies. However, these parameters are often sensi-
tive to operational conditions, the severity of damage and 
measurement noise present in the data. In this paper, an 
improved damage detection and localization technique is 
developed using a deep learning method augmented with 
the time–frequency decomposition of AE data.

Over the last several years, AE technique has been 
applied to detect and localize damage in various struc-
tural elements such as beam, slab, wall, and full-scale 
structures [1, 2, 5, 9, 41]. For example Abouhussien and 
Hassan [3], proposed an AE monitoring system to evalu-
ate the performance of bonds of reinforcement rebars 
subjected to corrosion in reinforced concrete structures. 
The traditional AE parameters were considered to detect, 
quantify, and classify the bond damage. The delamination 
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defects in concrete containment structures were identi-
fied using the AE-based technique [12]. AE parameters 
obtained from an instrumented concrete wall were con-
sidered to detect and classify the damage using a novel 
clustering and visualization approach. Quy and Kim [26] 
proposed a method based on AE data to detect and local-
ize the defect in pipeline systems. The time–frequency 
decomposition method was used to detect the AE event 
as well as localize the AE source by determining the time 
difference of arrival. An experimental test was conducted 
on a pipeline system subjected to internal pressure while 
collecting AE data using AE sensors. It was concluded 
that the proposed method could be applied for both 
offline and online monitoring of ageing pipelines.

In a recent study, Manthei and Plenkes [22] provided 
a comprehensive review of AE-based structural con-
dition assessment in underground structures. In this 
research, the AE technique was applied to detect the dif-
ferent levels of deformation in mines. On the other hand, 
Calabrese and Proverbio [10] provided a review of the 
AE techniques to detect the damage due to corrosion in 
various engineering systems. In addition, the study dis-
cussed the importance of the AE technique as a damage 
detection and localization tool for material or systems 
subjected to corrosion-induced damage. On the other 
hand, Verstrynge et  al. [39] discussed the application 
of AE-based methods to detect, assess, and identify the 
severity of damage in masonry structures. The study pro-
vided a detailed discussion regarding the current chal-
lenges, findings, and future works that can be conducted 
to improve the performance of AE-based methods as a 
damage detection tool for masonry structures.

Ma and Du  [23] integrated AE parameters into an 
advanced deep neural network to detect cracks in pre-
stressed concrete elements. A set of experimental and 
full-scale studies were undertaken to extract the crack 
signature of the prestressed concrete samples using AE 
features. In a recent study, Wang et al. [42] developed a 
new technique based on AE measurements to evaluate 
the damage in concrete elements. The wavelet packet 
transform method was utilized to decompose the meas-
ured AE signal into a set of frequency bands, followed by 
calculating the energy of the coefficient in each frequency 
band. The variation in energy across various coefficients 
was used to estimate the damage level. On the other 
hand, Barbosh et al. [8] applied a new feature extraction 
technique by combining EMD with Shannon Entropy in 
AE data to detect and localize minor damage. The pro-
posed technique was used to monitor and evaluate the 
existing condition of the walls in a dam under various 
operational conditions. However, most of these studies 
are either based on pattern recognition or signal process-
ing techniques that require a computationally intensive 

suitable selection of features to identify the severity and 
location of the damage using AE data.

With the advancement in deep learning (DL)-based 
Artificial Intelligence techniques, the SHM researchers 
have explored various Convolutional Neural Networks 
(CNNs) for crack localization [11, 35]. In these methods, 
the actual images of the crack can be used as the train-
ing data for the identification and classification of cracks 
without requiring any specific feature selection. Recently, 
fast Fourier transform (FFT) and various other time–fre-
quency (TF) methods such as short-term Fourier trans-
form (STFT), wavelet transform (WT) [4, 28], empirical 
WT (EWT) [13,  43] transform (HHT [6, 15] empirical 
mode decomposition (EMD) [7, 31], and synchro-squeez-
ing transform (SST) [19,  24,  34], have been explored to 
obtain TF images that were fed into DL techniques in 
both mechanical and structural systems [38]. explored 
three different TF methods (i.e., STFT, WT and HHT), 
and the resulting TF images of bearing diagnostic data 
were used as the input to the CNN. It was shown that 
the resizing of TF-images greatly minimized the training 
time but significantly reduced the classification accuracy 
[40]. used eight different TF methods, and the TF images 
were used as the input to AlexNet-based DL architec-
ture. Two bearing datasets with different loads and 
speeds have been used to validate the proposed method. 
Whereas STFT provides low-resolution TF images due to 
the fixed window size, CWT can provide high-resolution 
images in both time and frequency domain due to its self-
adaption of window size [29, 38, 40].

Pandhare et  al.  [25] used spectrograms as the input 
to the CNN. The performance of CNN was compared 
with conventional machine learning methods [14]. 
used EWT to convert current signals of a three-phase 
induction motor to 2D grayscale images, which were 
used in CNN to classify several types of faults, includ-
ing bearing axis deviation, stator and rotor friction, 
rotor aluminum end ring break, bearing noise and poor 
insulation. Sun et  al.  [36] adopted Multi-SST to ana-
lyze time-varying signals for obtaining TF matrices 
that could accurately reflect the raw signal information. 
Sparse Feature Coding and Dictionary Learning were 
then implemented to extract the low dimensional and 
most discriminative features. Liu et  al. [20] proposed 
a fault diagnosis method based on CNN and transfer 
learning, where CWT was used to extract the features 
of the sampled signal data, and the resulting scalograms 
were used as input to the LeNet-5 CNN architecture. 
It was shown that the results of CNN converged very 
fast with reasonable accuracy. Zhang et al. [44] used 2D 
spectrograms which were used as input to the LeNet-5 
CNN structure. It was demonstrated that the proposed 
method had a high fault-diagnosis accuracy rate and 
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strong classification ability for various health condi-
tions. In another study, Kumar et al. [17] implemented 
grayscale scalograms of an accelerometer installed on 
a bearing housing as the input to the CNN. Shao et al. 
[33] proposed a DL-based multi-signal fault diagno-
sis method in which the acquired data was converted 
into scalograms that were used as input to the CNN. 
However, most of the research associated with TF 
image-based deep learning has been explored only in 
mechanical systems; there has been a very limited focus 
on SHM.

Contrasting machine health monitoring, there has 
been minimal research conducted in SHM where the TF 
images were fed into CNN for damage or anomaly detec-
tion. Tang et al. [37] proposed a data anomaly detection 
method based on a 2D CNN. FFT was implemented to 
generate frequency domain images of the segmented 
time series, which were analyzed in CNN for data anom-
aly classification. The results showed that the proposed 
approach could detect the multipattern anomalies (such 
as outlier, minor, missing data, trend and drift) of SHM 
data with high accuracy. Acceleration data of a real long‐
span cable‐stayed bridge was used for validation, and 
the results were compared with a deep neural network-
based framework. Li et al. [21] used SST to represent the 
energies of AE signals in the TF domain. A multi-branch 
CNN model with Adam parameter optimization algo-
rithm was developed as the feature extractor and clas-
sifier to automatically distinguish multiple types of AE 
waves resulting from crack, impact and operational con-
ditions. The proposed model utilized the TF energy dis-
tribution features of AE waves in a rail track and achieved 
higher accuracy than the traditional CNN models. How-
ever, most of these applications were employed directly 
using the vibration data, which are only suitable for 
global damage detection and have a limited application 
with respect to localized damage detection such as crack 
localization.

This study aims to propose a new AE data-based 2D 
CNN model to automate the detection and identifica-
tion of the potential location of the damage. In this paper, 
an EMD-based TF method is developed to eliminate the 
presence of noise and extract the key AE components 
of the measured data obtained from limited AE sensors. 
Continuous Wavelet Transform (CWT) is then used 
to extract the spectrograms of the key AE components. 
The resulting spectrograms form the training and testing 
database to validate the proposed 2D CNN, which can 
serve as a damage detection and classification tool with-
out considering the standalone AE parameters and fea-
ture extraction. The paper is outlined as follows. A brief 
background of CWT and 2D CNN is presented first, fol-
lowed by the proposed method. A suite of numerical and 

experimental studies is conducted next to show the per-
formance of the proposed method.

Proposed AE‑based damage localization method
Continuous wavelet transform
WT provides an improved TF representation of the sig-
nals in a multi-resolution framework. Continuous wave-
let transform (CWT) is considered one of the powerful 
signal processing techniques that are applied in various 
applications such as image compression, noise removal, 
and pattern recognition [29] CWT of a signal x(t) is 
defined as:

The inverse CWT (ICWT) can be determined as 
follows:

where Cϕ can be expressed as:

where r and m represent scale and translation of the 
mother wavelet, respectively. The basis function is called 
mother wavelet ψ(t) , where superscript (∗) denotes its 
complex conjugate. With the appropriate choice of r 
and m , CWT utilizes the shifted and scaled versions of 
ψ and subsequently estimates its inner product with x(t). 
In this paper, CWT is applied to generate spectrograms 
of key AE components (i.e., IMFs) that are used to feed 
the CNN model to detect and identify the potential loca-
tion of the damage. A mixture of sine signals with three 
different frequencies, including f1 = 1.4 Hz, f2 = 3.5 Hz, 
and f3 = 7.0 Hz is considered to show the performance 
of CWT as shown in Eq. 5. CWT is applied to the mixed 
signal using two popular mother wavelet basis func-
tions (i.e., Morse and Morlet) to investigate and compare 
the resolution of extracted CWT spectrograms of both 
basis functions. Figure 1 (a) shows the Fourier spectrum 
of the mixed-signal X(t), whereas Fig. 1 (b-c) represents 
the spectrogram of X obtained from CWT using Morse 
and Morlet function as a mother wavelet, respectively. 
It can be seen that the signal contains three frequencies, 
which appear in the FFT and spectrogram. Moreover, it 
can be observed in Fig. 1 (b) that the CWT spectrogram 
of Morse wavelet provides a better resolution compared 
with the spectrogram of Morlet wavelet, as shown in 
Fig.  1 (c). Therefore, this study uses the Morse wavelet 
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as the mother wavelet to extract the CWT spectrograms 
herein.

Convolutional neural network
A Convolutional Neural Network (CNN), as depicted in 
Fig. 2, is a Deep Learning algorithm that assigns learnable 
weights and biases to various features present in 1D and 
2D data in order to differentiate them from one another. 
The architecture of CNN is similar to that of the con-
nectivity pattern of neurons in the human brain, and it 
was inspired by the organization of the visual cortex. The 
three major parameters, including local receptive fields, 
weight sharing and sub-sampling in the spatial domain, 
make CNN highly suitable for feature extraction from 2D 
data such as images. A typical CNN architecture com-
prises feature extraction layers, including convolution 
layers, batch-normalization layers, activation layers, and 

(4)
x1 = sin

(

2π f1t
)

, x2 = sin
(

2π f2t
)

, x3 = sin
(

2π f3t
)

(5)X = x1 + x2 + x3

classification layers consisting of fully connected layers, 
softmax layers and classification output layers.

The convolution layer is the first layer of feature extrac-
tion from an input image using the convolution operation 
between an image and a filter (or kernel). A 2D convo-
lution layer applies to slide convolution filters to the 
input. The layer convolves the input by moving the filters 
along the input vertically and horizontally and comput-
ing the dot product of the weights and the input, and 
then adding a bias term. The convolution operation is an 
element-wise product of images and filters, followed by 
the summation of these values. The output of the convo-
lution operation represents a low-dimensional invariant 
feature space of high-level feature data. The batch nor-
malization layer normalizes each input channel across 
a mini-batch. In order to speed up the training of CNN 
and reduce the network initialization sensitivity, batch 
normalization layers are used between convolution layers 
and nonlinearities such as Rectified Linear Unit (ReLU) 
layers. The layer first normalizes the activations of each 
channel by subtracting the mini-batch mean and divid-
ing by the standard deviation of the mini-batch. Then, the 

Fig. 1  (a) Fourier spectrum of the mixed-signal and (b) and (c) its spectrogram obtained from the CWT using Morse and Morlet basis functions, 
respectively
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layer shifts the input by a learnable offset ‘β’ and scales it 
by a learnable scale factor ‘γ’.

Activation layers are implemented to verify the activa-
tion of various elements of the feature space in the pres-
ence of specific features at a given spatial location. This 
is accomplished by introducing nonlinearity to the layers 
through the use of an activation function. Various acti-
vation functions have been used in literature, such as 

sigmoid or hyperbolic tangent function; however, ReLUs 
are often used to introduce nonlinearity. A ReLU layer 
performs a threshold operation to each element of the 
input, where any value less than zero in this layer is set to 
zero. Mathematically, it can be expressed as follows:

(6)f (x) =

{

0 for x < 0

x for x ≥ 0

Fig. 2  An example of a typical CNN architecture

Fig. 3  The proposed modified VGG-16 architecture used in the study
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The objective of a fully connected layer is to take the 
results of the convolution process and use them to clas-
sify the images into labels. The output of a convolution 
is flattened into a 1D feature vector of values, each rep-
resenting a probability of a certain feature belonging to 
a label and is fed into a fully connected layer such as a 
neural network. The fully connected layer multiplies the 
input by a weight matrix and then adds a bias vector. In 
this layer, softmax function is provided as an activation 
function to determine the probability of feature clas-
sification for the data analyzed. The softmax function 
is a normalized exponential function that transforms 
a vector of K real values into a vector of K real values 
that sum to 1. If the input vector of K real numbers is 
applied to the softmax layer, it normalizes into a prob-
ability distribution comprising of K probabilities. The 
input values can be positive, negative, zero, or greater 
than one, but the softmax function transforms them 
into values between 0 and 1 so that they can be inter-
preted as probabilities. If one of the inputs is small or 
negative, the softmax function turns it into a small 
probability, whereas if the input is large, it turns it into 

a large probability, but it will always remain between 0 
and 1. A classification layer computes the cross-entropy 
loss for multiclass classification problems with mutu-
ally exclusive classes. This layer determines the number 
of classes from the output size of the preceding layer. 
This layer takes input from the softmax function and 
allocates each input to one of the mutually exclusive 
classes using the cross-entropy loss function.

Proposed methodology
The proposed methodology explores the capability of 
TF signal processing methods (e.g., EMD and CWT) 
to extract key AE components along with the feature-
free classification capability of a deep learning algo-
rithm in a unified manner. First, EMD is undertaken 
to eliminate the presence of noise in the measured AE 
data and decompose it into a set of IMFs that repre-
sent the undamaged and damaged AE signals. The time 
response of the AE signal is considered non-station-
ary, which can be decomposed using EMD due to its 
capability of analyzing nonlinear and non-stationary 

Fig. 4  Flowchart of the proposed method
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Fig. 5  (a) CWT spectrogram of y(t), and (b) IMF-1, (c) IMF-2, and (d) IMF-3 of y(t) obtained from EMD

Fig. 6  Training stage: (a) performance and (b) loss evaluation of the proposed CNN architecture using CWT TF images
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Fig. 7  Confusion matrices for (a) validation and (b) testing data of the sine signal

Fig. 8  (a) AE monitoring system and the experimental setup: (b) actual and (c) schematic
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Fig. 9  Time-history of the measured AE data collected from sensors A1 and A2 of damage at D

Fig. 10  Spectrograms of IMFs using (a) undamaged, (b) damaged AE data obtained from A1, and (c) undamaged, (d) damaged AE data from A2 for 
damage at D



Page 10 of 24Barbosh et al. J Infrastruct Preserv Resil             (2022) 3:6 

signals [15]. More details such as the systematic steps 
and criteria of EMD and its performance can be found 
elsewhere [7]. Once the IMFs belong to the crack are 
identified, their spectrograms can be obtained from the 
CWT method. Subsequently, the extracted spectro-
grams are fed into the 2D CNN model to automate the 
process of detection and localization of the damage.

Assume x(t) is a measured AE signal, which is decom-
posed using EMD. For a given AE sensor, a number of 
IMFs are extracted from EMD using Eq. 7.

CWT is then applied to each IMF obtained from EMD 
as expressed in Eq.  8, where Hi(i = 1, 2, 3, ……,n ) is the 
IMF of the original signal and vn is a residue.

(7)x(t) =

n
∑

i=1

Hi(t)+ vn(t)

(8)crm(Hi) =

∫ ∞

−∞

Hi(t)ψ
∗(
t −m

r
)dt

Fig. 11  Training stage: (a) performance and (b) loss of the proposed method using CWT images of undamaged and damaged cases

Fig. 12  Comparison of clusters for training and testing datasets for wooden beam
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The resulting CWT images of each IMF are then fed 
into 2D CNN to localize the damage. In this study, a 
modified VGG-16   [30], as depicted in Fig. 3, is used to 
classify the CWT images obtained from AE data. The 
architecture is comprised of five network blocks that 
consist of a varying number of convolutional layers that 
are finalized with a max-pooling layer. The first two net-
work blocks consist of two convolutional layers followed 
by a max-pooling layer, while the three network blocks 
consist of three convolutional layers followed by a max-
pooling layer. The number of filters of each convolutional 
layer from the traditional VGG-16 network is reduced 
by a factor of 16 as the number of classifications and 
complexity of the features are dramatically reduced as 

compared to the original network. Additionally, the num-
ber of filters for each network block increases by a fac-
tor of 2, starting with 4 filters in the first network block 
and ending with 32 filters in the final network block. 
Zero padding is introduced in the convolutional layers 
to ensure that the input and output layer sizes remain 
constant regardless of the convolutional operation. Each 
convolutional layer is followed by a Batch Normaliza-
tion (BN) layer and ReLU to normalize and activate the 
extracted features. The max-pooling layer has a kernel 
size of 2 × 2 with a stride value of 2 to reduce the inputted 
size to half through the max-pooling operation. Moreo-
ver, the length of intermediary fully connected layers is 
reduced from 4096 to 512, with the fully connected layer 

Fig. 13  Confusion matrices (a-b) for validation and testing using damaged and undamaged data from A1 and (c-d) for validation and testing using 
damaged and undamaged data from A2
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having a length equivalent to the number of classes used 
in the study. Each fully connected layer is proceeded by a 
ReLU layer, and a dropout layer with a probability value 
set to 0.2 was implemented to reduce overfitting during 
the training process. The proposed method is illustrated 
using the flowchart, as shown in Fig. 4.

Numerical Illustration
The mixed-signal shown in Eq. 5 is added with random 
noise to develop a suite of training databases required for 
a 2D CNN model, as shown in Eq. 9:

(9)y(t) = (x1 + x2 + x3)+ ε

Fig. 14  Time history of AE data of a typical segment for damage at D

Fig. 15  Training stage: (a) performance and (b) loss of the proposed method using the experimental data
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where ε is a noise component that is a time-series 
sequence of a normal random variable. Then, EMD is 
applied to y(t) to decompose the signal and extract the 
mono-component IMF. Finally, a spectrogram of each 
IMF is obtained, which belongs to each frequency class. 
Figure 5a shows the spectrograms of the mixed-signal y
(t), and Fig. 5b-d shows the spectrograms of IMF-1, IMF-
2, and IMF-3 obtained from EMD, respectively. It can be 
seen that EMD is able to decompose the mixed-signal 
and extract the mono-component signal.

In this study, 1000 images of each of the three fre-
quency classes (i.e., a total of 3000 images) are used 
in the training, validation and testing process. 70% of 
the images are used for training, 20% are used for val-
idation, while the rest, 10%, are used for testing. This 
resulted in 2100 images, 600 images and 300 images for 
training, validation and testing, respectively. The train-
ing is conducted over 30 epochs using a Stochastic Gra-
dient Descent with Momentum (SGDM) solver with an 
initial learning rate of 0.0005, minibatch size of 128 and 
L2-regularization of 0.0005. The parameters of the CNN 
were determined by conducting a grid search of the 
parameters and comparing the training accuracy across 
all iterations to determine which parameters resulted 
in the most robust and accurate model. All numerical 
simulations and CNN training and classifications are 
conducted using a Lenovo ThinkStation with NVIDIA 
Quadro GPU and 32 GB RAM. Figure 6 shows the vari-
ation of the accuracy and loss throughout the train-
ing and validation process. The network is trained for 
30 epochs resulting in 63 minibatch iterations. It can 

Fig. 16  Confusion matrices for (a) validation and (b) testing data of the wooden beam

Table 1  Performance indicators calculated from the 
classification of CWT images of close (A1) and far damage (A2)

Performance Indicator Validation Testing

Accuracy (%) 93.7 93.2

Recall 0.93 0.93

Precision 0.95 0.94

F1 Score 0.94 0.93

Fig. 17  Experimental setup of the plate
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be observed that due to the high performance of the 
network, the accuracy reaches 100% relatively quickly 
while minimizing the loss function. The trained net-
work is tested using 100 images of each frequency class. 
The confusion matrix is shown in Fig.  7 (a-b), repre-
senting the classification accuracy for the validation 
and testing datasets, respectively. The CNN model is 

able to achieve 100% classification accuracy for all fre-
quency categories.

The selected AE data acquisition system
Figure  8(a) illustrates a typical setup of the proposed 
AE monitoring system used in the experimental study. 
The AE system is used to record AE signals from a 

Fig. 18  Time history of the measured AE data collected using sensors A1 and A2 of damage at D

Fig. 19  Spectrograms of IMFs using (a) undamaged, (b) damaged AE data obtained from sensor A1, and (c) undamaged, and (d) damaged AE data 
from sensor A2 for damage at D
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wooden beam and plate subjected to minor damage 
using AE sensors. Two AE sensors with a characteristic 
frequency band extending from 20–450 kHz are placed 
on the specimen, as shown in Fig.  8(b). A pre-amplifi-
cation of the AE signals is added using preamplifiers 
with 34—40  dB gain and plug-in bandpass filters from 
2.5–2400  kHz to magnify the AE signal. A decoupling 
box is utilized to connect the preamplifier with the data 

acquisition (DAQ) system to collect the AE data. It is 
also attached with a direct current supply to power the 
AE sensor. The DAQ is used to transfer the measured 
AE signals to the computer. It has a sampling rate of 
200 Msamples/s, which is capable of dealing with high-
frequency AE data collected by the sensors. In the pro-
posed experimentation, the sampling frequency of the 
sensors is set to 20 kHz.

Fig. 20  Comparison of clusters for training and testing datasets of the wooden plate

Fig. 21  Training stage: (a) performance and (b) loss of the proposed method using CWT images of undamaged and damaged conditions of the 
wooden plate
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Damage identification in a one‑dimensional 
structural member
In order to evaluate the performance of the proposed 
method, a wooden beam is considered in the experi-
mental study. The beam has a dimension of 62  cm 

length, 6.5 cm width, and 2 cm thickness. Two AE sen-
sors (A1 and A2) are used to collect AE data from the 
beam. The damage location is considered close to A1 to 
check the capability of the proposed method for local-
izing the damage (e.g. location D). Figure 8(b-c) shows 
the location of sensors and damage on the beam. The 
damage is created by simulating a hole using a drill-
ing machine, while the data was collected using the AE 
sensors.

Damage detection
In order to validate the performance of the proposed 
method as a damage detection tool, the proposed 
method is applied to the AE data of the undamaged and 
damaged system. Figure  9 shows the time-history of 
AE data collected from wooden beam using A1 and A2. 
It can be seen that the damage progression begins near 

Fig. 22  Confusion matrices (a-b) for validation and testing using damaged and undamaged data from A1 and (c-d) from A2

Table 2  Performance indicators calculated from the 
classification of CWT images of undamaged and damaged 
conditions

Performance indicator Validation Testing

Accuracy (%) 100 97.5

Recall 1.00 0.98

Precision 1.00 0.98

F1 Score 1.00 0.98
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t = 5  s. Therefore, the AE data collected between 0–5  s 
is considered as an undamaged state and data collected 
after 5  s is considered as a damaged state. The AE sen-
sors have produced big data due to the higher sampling 
frequencies that can be used to create enough datasets to 
feed the CNN model. Therefore, AE data of undamaged 
and damaged conditions is divided into a finite number 
of segments. EMD is applied to each segment separately 
to extract the IMFs. Then, the CWT is used to generate 
the spectrogram of each IMF obtained from EMD. The 
spectrograms of IMFs have a size of 936 × 1920, which 
are used as the training and testing data of the 2D CNN. 

Fig. 23  Training stage: (a) performance and (b) loss of the proposed method using the experimental data

Fig. 24  Confusion matrices for (a) validation and (b) testing data of the wooden plate for damage at D1

Table 3  Performance indicators calculated from the 
classification of CWT images of close and far damage

Indicator Damage localization

Validation Testing

Accuracy (%) 90.0 87.5

Precision 0.90 0.80

Recall 0.90 0.95

F1 Score 0.90 0.86
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Figure  10 shows a typical spectrogram of IMFs using 
undamaged and damaged AE data collected from (a-b) 
A1 and (c-d) A2, respectively.

In this study, 195 randomly selected images of undam-
aged and damaged conditions collected using A1 are used 
in the training process, as shown in Fig. 11. An additional 
56 images and 28 images of each case are used in the vali-
dation and testing process.

To ensure that the training, validation and testing 
datasets were diverse, each dataset was represented by 
a 2D cluster and compared with each other to deter-
mine the diversity of the datasets. To convert each 3D 
image matrix to a 2D point for clustering, the RGB 
images were first converted to grayscale images by con-
verting the pixel intensity using,

where P is the intensity of any pixel of the grayscale 
image represented as an integer from 0 to 255 and PR, 
PG and PB is the intensity of any pixel of the RGB image 
for the red, green and blue channel, respectively. Once 
the images were converted, the grayscale image was 
converted to a 3D point by determining the centroid of 
the image. The centroid of the image can be considered 
a point in 2D image space at which all pixel intensities 
are balanced. To determine the width, height, and pixel 
intensity which represents the centroid, the following 
equation can be used:

(10)P = 0.2989PR + 0.5870PG + 0.1140PB

(11)xC =

∑

xmP
∑

P

(12)yC =

∑

ynP
∑

P

where xc is the centroid value along the width of the 
image in pixels, yc is the centroid value along with the 
height of the image in pixels, xm is the centroidal value 
of the width at pixel m. yn is the centroidal value of the 
height at pixel ‘n’, P is the pixel intensity for the pixel 
located at the 2D location represented by the integers ‘m’ 
and ‘n’, and N is the number of pixels in the image. For 
example, at a pixel location of (m,n) = (1,1), the values of 
yn and xm would be considered 0.5 pixels, respectively, as 
we assumed each pixel is a unit pixel in width and height. 
Once all the 3D points have been determined, the cen-
troid of each cluster is determined by the average of all 
values across each of the dependent variables represented 
in Eqs. 10–12 as represented by Fig. 12.

From the figure above, it can be observed that the cen-
troids of both the training and testing datasets along the 
x and y-axis of the image are consistent with each other, 
which suggests that the images belong to the same clus-
ter. Though these images belong to the same cluster, the 
spread of the images around the centroid point of the 
datasets suggests that the datasets are sufficiently diverse 
and that though the testing dataset has similar features to 
the training dataset, they do not have significantly similar 
features that would result in overfitting.

The resulting confusion matrix is shown in Fig.  13(a-
b), displaying the classification accuracy for the valida-
tion and testing datasets extracted from AE data using 
A1. The same process is used to detect the damage using 
AE data collected from A2. Figure 13(c-d) shows the con-
fusion matrices that display the classification accuracy 
for the validation and testing datasets obtained from AE 
data collected using A2. It can be observed that the CNN 

(13)PC =

∑

P

N

Fig. 25  (a) Experimental setup of the concrete beam and (b) AE monitoring system
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model is able to achieve ~ 100% classification accuracy 
for damaged and undamaged categories. Therefore, the 
proposed method can be considered a reliable tool for 
damage detection in structural elements.

Damage localization
Figure 14 shows the time-history of measured AE data 
of a typical segment for damage at D. It can be observed 
that the amplitude of undamaged and damaged signals 
significantly overlap. Subsequently, the raw amplitude 
of the time-history of AE data will provide faulty infor-
mation for the damage location, which motivates the 
need for the proposed method to automate the process 
of identifying the potential location of the damage. The 
spectrogram of IMFs of each AE segment is extracted 
from CWT. These spectrograms are then used to feed 
the CNN model to identify the location of damage in 
the structural element. The proposed method is applied 
to identify the approximate location of damage in 

structural elements using a limited number of AE sen-
sors (e.g., two sensors). The damage location is identi-
fied by using the term damage-close or far with respect 
to the sensor location. In order to identify the potential 
location of damage at D, spectrograms obtained from 
A1 are treated as damage-close, whereas spectrograms 
from A2 are treated as damage-far.

In this study, 473 randomly selected images of each 
sensor class are used in the training process. An addi-
tional 135 images and 67 images of each sensor class are 
used in the validation and testing process. The training 
process is shown in Fig. 15. The confusion matrix shown 
in Fig. 16 (a-b) shows the classification accuracy for the 
validation and testing datasets. The accuracy, recall, pre-
cision and F1 scores of the validation dataset and test-
ing dataset are summarized in Table 1. The performance 
indicators calculated from the confusion matrices sug-
gest an excellent generalization of the CWT images by 
the proposed algorithm.

Fig. 26  Time history of the measured AE waveforms and first five IMFs extracted from sensors A1 and A2
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Damage identification in a two‑dimensional 
structural member
In this section, an experimental study using a 2D struc-
tural element such as a wooden plate is undertaken to 
validate the performance of the proposed method. The 
dimensions of the plate are 1 m length, 1 m width, and 
2  cm thickness, respectively, as shown in Fig.  17. Two 
sensors (A1 and A2) are used to measure the AE signal 
while the plate is subjected to active damage. The plate 
is subjected to damage at location D. Figure 17 shows the 
proposed location of sensors and damage on the plate. A 
drilling machine is used to simulate the damage by creat-
ing a hole, while the signal is measured using the selected 
AE sensors.

Damage detection
In this study, the proposed method is applied to undam-
aged and damaged AE signals to classify the undamaged 
and damaged cases of the wooden plate. Figure  18 rep-
resents the time-history of AE data collected from the 
wooden plate using A1 and A2. It can be observed that 
the damage progression begins near t = 1  s and ends at 
t = 19 s. Therefore, the AE data collected between 0–1 s 
is considered as undamaged and between 1–19 s is con-
sidered as damaged data. Then, the CWT is used to gen-
erate the spectrogram of each IMF obtained from EMD. 

The spectrograms are used as the training and testing 
data of the 2D CNN. Figure  19 shows a typical CWT 
spectrogram of IMFs using undamaged and damaged AE 
data collected from (a-b) A1 and (c-d) A2.

In order to verify the capability of the 2D CNN model 
for classifying the undamaged and damaged state of the 
wooden plate, 140 images of undamaged and damaged 
conditions collected using A1 are used in the training 
process. An additional 40 images and 20 images of each 
case are used in the validation and testing process. As 
per the process described in Sect.  5.1, the centroid of 
each image was determined the clusters for the training 
and testing datasets were compared as shown in Fig. 20. 
Similarly, though the centroids of both the training and 
testing images across the entire dataset are similar, the 
spread of the points around the centroid is relatively high, 
suggesting there is good robustness within the dataset. 
Furthermore, though both the beam and plate are made 
of similar material and are damaged in a similar manner, 
each damage scenario generates unique clusters, sug-
gesting geometric properties of the element and relative 
damage location have significant influence with regards 
to the AE signals generated.

Figure  21 shows the performance of the proposed 
method for identifying the undamaged and damaged 
states of the plate. The resulting confusion matrix is 
shown in Fig.  22 (a-b), displaying the classification 

Fig. 27  Spectrograms of IMFs using AE waveform obtained from sensor A1 and sensor A2
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accuracy for the validation and testing datasets extracted 
from AE data using A1. The same process is executed to 
detect the damage using AE data collected from A2. Fig-
ure  22 (c-d) shows the confusion matrices that display 
the classification accuracy for the validation and test-
ing datasets obtained from AE data collected using A2. 
Table 2 summarizes the accuracy, recall, precision and F1 
scores of the validation dataset and testing dataset of the 
undamaged and damaged condition of the plate. It can be 
observed that the CNN model is able to achieve ~ 100% 
classification accuracy for damaged and undamaged 
cases. Therefore, the proposed method shows excellent 
capabilities to perform damage detection in a structural 
element such as a plate.

Damage localization
In this section, the proposed method is extended to 
localize the damage using limited AE sensors. In order 
to identify the potential location of damage, the spec-
trograms of IMFs of AE signal obtained from A1 and A2 
(defined as damage-close and damage-far, respectively) 
are used to feed into the 2D CNN. In this study, 140 
randomly selected images of each sensor class are used 
in the training process. An additional 40 images and 
20 images of each sensor class are used in the valida-
tion and testing process. The training process is shown 
in Fig. 23. The confusion matrix shown in Fig. 24(a-b) 
displays the classification accuracy for the validation 
and testing datasets. The accuracy, recall, precision and 
F1 scores of the validation dataset and testing dataset 
are summarized in Table  3. The performance indica-
tors calculated from the confusion matrices suggest an 

excellent generalization of the CWT images by the pro-
posed algorithm.

Crack identification in a concrete beam
In this section, the performance of the proposed method 
is validated experimentally using a concrete beam. The 
beam size is 355 mm in length and 78 mm in width and 
thickness. Ordinary Portland cement, fine aggregate, and 
coarse aggregate are used in the concrete mixture. MTS 
testing machine is used to carry out a three-point flex-
ural loading test. Two AE sensors (A1 and A2) are used 
to collect AE data from the beam. During the experi-
ment, the crack opening is visually monitored, where 
the crack initiates at the center bottom of the beam and 
then propagates to the top. Figure 25 (a) shows the loca-
tion of sensors and crack on the concrete beam. AE sig-
nal is collected by a Micro-SHM acquisition system that 
has four input channels. The Micro-SHM acquisition 
system is used to transfer the measured AE waveforms 
from sensors to the computer using AEwin software, as 
shown in Fig. 25 (b). The system has a sampling rate of 
10 Msamples/s, which can deal with high-frequency AE 
signals collected by the sensors due to the micro-cracks 
in concrete material.

Crack localization
In this study, the AE waveforms collected from the beam 
using two AE sensors are firstly decomposed to n num-
ber mono-components signals (IMFs) using the EMD 
method. Figure  26 represents the time-history response 
of a typical AE waveform and its first five IMFs obtained 
from EMD using sensors A1 (first column) and A2 

Fig. 28  Comparison of clusters for the training and testing datasets of the concrete beam
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(second column). It can be seen that the amplitude of the 
AE waveform obtained from A1 and A2 are the same. 
Thus, the amplitude of the time-history of raw AE data 
might provide inaccurate information for the crack loca-
tion, which motivates to apply the proposed method to 
automate the process of identifying the potential loca-
tion of the crack in the concrete beam. In order to predict 
the approximate location of the crack, the CWT spec-
trograms of IMFs extracted from A1 and A2 (defined as 

Fig. 29  Training stage: (a) performance and (b) loss of the proposed method using the experimental data

Fig. 30  Confusion matrices for (a) validation and (b) testing data of the concrete beam under three-point flexural loading

Table 4  Performance indicators calculated from the 
classification of CWT images of close and far damage

Indicator Damage Localization

Validation Testing

Accuracy (%) 95.0 95.0

Precision 0.95 0.97

Recall 0.95 0.94

F1 Score 0.95 0.95
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damage-far and damage-close, respectively) are used to 
feed into the 2D CNN. Figure 27 shows the CWT spec-
trograms of the first five IMFs of typical AE waveform 
obtained from A1 (considered as crack-far) and A2 (con-
sidered as crack-close).

In this study, 210 randomly selected images of each 
sensor class are used in the training process. An addi-
tional 60 images and 30 images of each sensor class are 
used in the validation and testing process. The centroi-
dal clustering, as demonstrated in Fig. 28, demonstrates 
that similar to wooden beam and plate, the concrete 
beam has a robust dataset that has unique clustering 
characteristics that are indicative of the uniqueness of 
the damage caused by the three-point bending test.

The training process is shown in Fig.  29. The confu-
sion matrix shown in Fig. 30 (a-b) displays the classifica-
tion accuracy for the validation and testing datasets. The 
accuracy, recall, precision and F1 scores of the validation 
dataset and testing dataset are summarized in Table  4. 
The performance indicators calculated from the confu-
sion matrices suggest an excellent generalization of the 
CWT images by the proposed algorithm.

Conclusions
In this paper, a 2D CNN framework is proposed to auto-
mate the process of detecting and localizing the damage 
using AE data collected from structures. EMD is used to 
suppress the presence of noise and extract the key AE com-
ponents, followed by CWT to generate the spectrograms 
of the extracted IMFs. Then, the resulting noise-free spec-
trograms are utilized to feed the CNN model for improved 
classification accuracy. CNN model is employed to auto-
mate the process of identifying the potential location of 
damage using the AE data. A set of numerical and experi-
mental studies are conducted to validate the performance 
of the proposed approach as a damage detection tool using 
a limited number of AE sensors.

The results show the capability of the proposed approach 
to identify the approximate location of the damage in 
various structural elements. For example, the extracted 
results obtained from the wooden beam showed the high 
performance of the proposed approach in identifying the 
potential location of damage with 93% accuracy. Also, the 
proposed technique can identify the approximate loca-
tion of damage in a 2D wooden plate with an accuracy of 
88%. Moreover, the results obtained from the experimen-
tal study using concrete beam represented the capability 
of this approach in identifying the crack location where 
the accuracy reached 95%. Future studies are reserved for 
validating the proposed method in a wide range of full-
scale structures and identifying the location of multiple 
damages.
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