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Abstract 

Background:  Autism spectrum disorder (ASD) is a group of developmental disorders of the nervous system whose 
main manifestations are defects in social interactions, communication, repetitive behaviors, and limited interests. 
Over the years, the use of magnetic resonance imaging (MRI) to help identify patterns that are common in people 
with autism has increased for classification purposes. This study propose a method for classifying ASD patients versus 
controls using structural MRI information. In order to increase the accuracy of this method, the volume and surface 
features of the structural images are used simultaneously.

Results:  The accuracy of diagnosis respectively was 86.29%, 71.15%, 86.53%, and 88.46% with SVM, RF, KNN, and ANN 
classifiers. The highest accuracy of diagnosis was obtained using ANN.

Conclusions:  Since clinical evaluations for the diagnosis of autism are extremely time-consuming and depend on 
the expertise of a specialist, the importance of intelligent diagnosis of this disorder becomes clear. The aim of this 
study was to design an intelligent system to diagnose autism spectrum disorder.
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Background
Autism spectrum disorder (ASD) represents a cluster of 
relatively common developing disorders that faces social 
communication difficulties, social determination, and 
limited repetitive-behavioral patterns. Autism is one of 
the major problems in children, and it has recently been 
shown that approximately 1 out of 68 children deals with 
it [1]. Traditionally, these disorders have been diagnosed 
using interview-based methods, such as the Autism 
Diagnostic Survey [2] and the revised Autism Diagnos-
tic Interview [3]. Although these methods are flawed 
and also unable to assess any biological cause behind the 

observed behavioral symptoms, they can be useful for 
treatment and even for prevention. To overcome these 
problems, brain-based imaging techniques are being 
considered as an alternative diagnostic tool. Magnetic 
resonance imaging (MRI) is an important brain imag-
ing technique that provides high-resolution information 
about the structure, composition, and function of the 
brain. Some studies have attempted to extract features 
that show differences in brain structures and use machine 
learning techniques to classify autistic people from con-
trol people.

Singh et  al. separated an autistic group from controls 
using structural magnetic resonance imaging. This was 
done using a new algorithm and only by examining the 
cerebral cortex and achieved a high classification accu-
racy of 90% using the LPboost algorithm [4]. Ecker et al. 
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used whole-brain structural magnetic resonance imag-
ing to classify autistic children from the control group. 
SVM was used for classification and achieved the highest 
sensitivity and specificity of 90% and 80% [5]. Jiao et al. 
developed a model for predicting ASD based on corti-
cal thickness in different areas of the brain. The study 
achieved a log accuracy of 87% using the Logistic Model 
Tree Classifier (LMT) [6]. Katuwal et  al. predicted the 
ability of structural MRI to diagnose ASD. Finally, this 
study achieved the highest accuracy of 67% in ASD detec-
tion [7]. Ismail et  al. introduced a new computer-aided 
diagnosis system based on shape using structural MRI 
to identify autism at various stages of life. The system 
is designed using the ABIDE database and showed 93% 
accuracy [8]. Xiao et al. developed a model for diagnosing 
ASD using features extracted from structural MRI using 
machine learning. The model was designed using the RF 
classification and with the help of the cortical thickness 
feature of the average area of the brain, and it achieved 
88% accuracy [9]. Khalil et al. designed a computer sys-
tem to diagnose ASD using shape features extracted from 
structural MRI and using ABIDE database images and a 
multilevel deep network. They achieved an accuracy of 
93% [10].

The purpose of this study is  automatic detection  of 
autism spectrum disorder (ASD) in children  using fea-
tures extracted from structural images. In order to 
achieve higher accuracy in diagnosing autism, sur-
face and volume features are used simultaneously for 
classification.

Method
The steps of the proposed method are shown in Fig. 1.

Subjects
In this study, structural data from magnetic resonance 
images from the Autism Brain Imaging Data Exchange 
(ABIDII) were used. We used structural magnetic reso-
nance imaging from the Langone Medical Center, NYU: 
site 1 model (NYU). Image data in this study is achieved 

from 26 autistic subject and 26 healthy control aged 5 to 
10 years. The demographic for the participants is proven 
in Table 1.

MRI acquisition
Magnetic resonance images were acquired using a Sie-
mens 3T scanner in the Neuroimaging Information 
Technology Initiative (NIFTI) format with the following 
protocol: repetition time and echo time = 3.25 ms, rota-
tion angle = 7°, plane resolution = 1.3 mm × 1 mm, 1.3 
mm slice thickness in 0.665 mm gap, 128 slices, 256 mm 
× 256 mm field of view, and acquisition time = 8:07 min.

Preprocessing and segmentation
The CAT12 and SPM12 toolkits in MATLAB R2019a 
software version are used for structural brain imaging. 
We performed preprocessing and segmentation steps 
using the CAT12 toolbox with appropriate default set-
tings. Nonlinear record is corrected for displacement 
field uniformity and then images segmented into GM, 
WM, and CSF components [11]. We used the Diffeomor-
phic Anatomical Registration Algorithm via Exponen-
tial Lie Algebra (DARTEL) to normalize the segmented 
scans to the standard MNI space [12]. The image of the 
main stages of preprocessing is shown in Fig. 2, and the 
segmented image into white matter, gray matter, and cer-
ebrospinal fluid is also shown in Fig. 3.

Brain reconstruction
Surface reconstruction steps are performed using 
CAT12 toolbox in MATLAB R2019a software. We use 

Fig. 1  Steps performed in the study. (The proposed method)

Table 1  Demographics for the participants

ASD autism spectrum disorder, HC healthy controls, M male, F female. p < 0.05 
was considered statistically significant

ASD (n = 26) HC (n = 26) p-value (*)
Mean (SD) Mean (SD)

Age 7.12 (0.98) 7.48 (1.39) 0.320

Sex 24 M/2 F 25 M/1 F 0.584
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a fully automated method that allows for the measure-
ment of cortical thickness and reconstructions of the 
central surface in one step. It uses a tissue segmenta-
tion to estimate the white matter (WM) distance and 
then projects the local maxima (which is equal to the 
cortical thickness) to other gray matter voxels by using 
a neighbor relationship described by the WM distance 

[13]. Then topological correction is performed with the 
aim of repairing topological defects using a method 
containing spherical harmonics that allows direct cor-
rection of defects on the brain surface mesh [14]. The 
spherical map is used to create a common coordinate 
system. The reconstructed surface in the CAT12 tool-
box is shown in Fig. 4.

Fig. 2  Stages of preprocessing of structural images of the brain. A Initial image. B Image after intensity normalization. C Segmented image with 
skull removal. D Image after spatial normalization in DARTEL-modified space based on MNI. (The image of the main stages of preprocessing)

Fig. 3  Segmented images. A Original image. B White matter of the brain. C Gray matter of the brain. (The segmented image into white matter, gray 
matter, and cerebrospinal fluid)

Fig. 4  Reconstructed surface by CAT12 toolbox. A Reconstruction of internal surface of right hemisphere surface of the brain. B Reconstruction of 
external surface of left hemisphere surface of the brain. (The reconstructed surface in the CAT12 toolbox)
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Feature extraction
Extraction of structural magnetic resonance image fea-
tures using CAT12 toolbox is done in two steps:

1)	 Extraction of volume-related features: Volume-
related features include volumetric measurement of 
brain tissue (white matter, gray matter, and cerebro-
spinal fluid), absolute intracranial volume, and volu-
metric measurement of white matter and gray matter 
of the brain in 68 Hammers atlas regions.

2)	 Extraction of surface-related features: Surface-related 
features include average and standard deviation of 
cerebral cortex thickness and calculation of cerebral 
cortex thickness parameters, surface complexity 
(fractal dimension), sulcus depth, and gyrification 
index in 68 Desikan-Killiany (DK) atlas regions.

The volume and surface features extracted from the 
structural magnetic resonance images are given sepa-
rately in Table 2.

A feature matrix is then constructed for the 
extracted features for each autism and control group. 
The dimensions of the feature matrices related to the 
structural magnetic resonance images for each group 
are given in Table  3. The dimensions of the final fea-
ture matrix for each group are estimated to be 26 × 
414, and the feature matrix for intergroup classifi-
cation is constructed with dimensions of 52 × 414. 
Dimensions of feature matrices related to structural 
magnetic resonance imaging are given in Table 3.

Feature selection
The FCBF method (fast correlation-based feature 
selection) in Python software was used to select the 

basic features of group segregation before classifica-
tion to eliminate inappropriate features and increase 
the accuracy of machine vision.

Classification
Automated classification using structural magnetic 
resonance imaging is performed using four machine 
vision algorithms including support vector machine 
algorithms, random forest, nearest neighbor, and arti-
ficial neural network with tenfold cross-validation (K 
fold = 10) in Python 3.8.3 software. The value of K in 
KNN algorithm is equal to 3, and the number of hid-
den layers of ANN algorithm is considered 3. The out-
put of classification algorithms is a confusion matrix 
that can be used to evaluate the algorithm. Finally, the 
performance of all four classifications is evaluated, 
and the best performance of this system in intergroup 
classification is calculated.

Results
Feature selection results
The selected features by the FCBF algorithm are listed in 
Table 4.

Table 2  Volume and surface features extracted from the structural magnetic resonance images

Features Description

Volume WMV T White matter volume total

GMV T Gray matter volume total

CSFV T Cerebrospinal fluid volume total

TIV Total intracranial volume

WMVH n (n = 1:68) White matter volume per Hammers atlas

GMVH n (n = 1:68) Gray matter volume per Hammers atlas

Surface Mean CT Mean cortical thickness per DK atlas

SD CT Standard deviation cortical thickness per DK atlas

CTDK n (n = 1:68) Cortical thickness per DK atlas

CCDK n (n = 1:68) Cortical complexity per DK atlas

SDDK n (n = 1:68) Sulcus depth per DK atlas

GIDK n (n = 1:68) Gyrification index per DK atlas

Table 3  Dimensions of feature matrices related to structural 
magnetic resonance imaging

Features in each group Matrix size

Volumetric measurement of brain tissues 4 × 26

Volumetric measurements of white and gray matter in the 
Hammers atlas regions

2 × 68 × 26

Mean and standard deviation of cerebral cortex thickness 2 × 26

Surface and brain shape parameters in the DK atlas regions 4 × 68 × 26

Total 414 × 26
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Classification results
The components of the confusion matrix resulting from 
each of the classification algorithms are given in Table 5. 
Evaluation parameters for each classification system are 
also calculated in Table 6.

According to the results, the automated classification 
of the artificial neural network has the best performance 
compared to other algorithms for categorizing the autism 
group and the control one and with 88.46% accuracy, 
which is able to distinguish between these two groups.

Discussion
Nearly two-hundred studies over the past 20 years have 
planned general anatomy changes of ASD, and several 
other ones among them have more explored the chance 
to utilize these markers to get prognosticative models. 
To this point, completely different sorts of neuroimaging 
feature are applied as diagnostic predictor. Structural fea-
tures enclosed brain volume (white matter, gray matter, 
and total brain) [15] and morphological features (average 
convexity or concavity, mean curvature, metric distor-
tion, cortical thickness, metric distortion, cortical sur-
face, and cortical volume) [4–6].

We compared the four popular machine-learning clas-
sifiers, including support vector machine (SVM), ran-
dom forest (RF), nearest neighbor (KNN) algorithm, 
and artificial neural network (ANN) to evaluate the per-
formance shown in generating the diagnostic models of 
ASD. We found ANN superior to the other three clas-
sifiers. According to Table 6 in the present study, SVM, 
RF, KNN, and ANN achieved 82.69%, 71.15%, 86.53%, 
and 88.46% accuracy respectively in the classification and 
diagnosis of ASD using structural magnetic resonance 
imaging. We arrived at a conclusion that ANN was the 
optimal approach for neuroimaging data mining in a 
small sample size. Table 7 shows the performance of the 
machine vision system using structural magnetic reso-
nance imaging in past and present studies. According to 
this table, although the accuracy of the present study is 

Table 4  Selected features by the FCBF algorithm

Feature Description

WMVH 3 White matter volume of L amygdala

WMVH 4 White matter volume of R amygdala

WMVH 5 White matter volume of L anterior medial 
temporal lobe

WMVH 39 White matter volume of L putamen

WMVH 42 Gray matter volume of R thalamus

GMVH 16 Gray matter volume of R fusiform gyrus

GMVH 45 Corpus callosum gray matter volume of L

SD CT Standard deviation cortical thickness

CTDK 7 Cortical thickness of L cuneus

CTDK 58 Cortical thickness of R superior temporal

CCDK 40 Cortical complexity of R pericalcarine

SDDK 50 Sulcus depth of R rostral anterior cingulate

Table 5  Confusion matrix components obtained from each of 
the classification algorithms based on the properties selected 
from the structural magnetic resonance images

TP true positive, TN true negative, FP false positive, FN false negative

TP TN FP FN

SVM 22 21 5 4

RF 17 20 6 9

KNN 22 23 3 4

ANN 25 21 5 1

Table 6  Evaluation parameters of classification systems based 
on selected features from structural magnetic resonance images

Specificity (%) Sensitivity (%) Precision (%) Accuracy (%)

SVM 80.76 84.61 81.48 82.69

RF 76.92 65.38 73.91 71.15

KNN 88.46 84.61 88.00 86.53

ANN 80.76 96.15 83.33 88.46

Table 7  Performance of the machine vision system using structural magnetic resonance imaging in past studies and present study

Performance Classification algorithm Study

90% accuracy LPboost algorithm Singh et al. [4]

90% highest sensitivity SVM Ecker et al. [5]

87% accuracy LMT Jiao et al. [6]

67% highest accuracy SVM, RF, GBM Katuwal et al. [7]

93% accuracy Multilevel deep network Ismail et al. [8]

88% accuracy RF Xiao et al. [9]

93% accuracy Multilevel deep network Khalil et al. [10]

88/46% highest accuracy with ANN SV, RF, KNN ,ANN Present study
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lower than several studies, with considering the number 
of people studied and their age range, it has acceptable 
accuracy.

Although the accuracy of the present study is lower 
than several studies, with considering the number of 
people studied and their age range, it has acceptable 
accuracy.

Autism spectrum disorder (ASD) and attention-defi-
cit hyperactivity disorder (ADHD) frequently co-occur. 
Exact comorbidity rates are not well known due to the 
DSM-IV restriction of diagnosing ASD and ADHD in the 
same individual [16]. There are articles for application of 
structural magnetic resonance in the diagnosis of ADHD 
or intellectual disability [17–24]. According to these 
studies, features such as the thickness of the cerebral cor-
tex and the volume of different areas of the brain along 
with the volume of white and gray matter are biomark-
ers of diagnosis ADHD, and that these features are also 
known as biomarkers in ASD patients in this study. But 
the Sulcus depth feature, which is one of the biomark-
ers of autism diagnosis in this study, has not been used 
as a biomarker in any of the diagnostic studies of ADHD. 
The sulcus depth in different areas of the brain seems 
to be one of the features that changes in ASD patients 
compared to healthy subjects, but in ADHD patients, 
this change is not observed. Finally, the designed algo-
rithm in this study can be used to diagnose ADHD using 
structural images, and its results can be compared with 
the present study in terms of the type of extraction fea-
tures. This comparison can help differentiate these two 
disorders.

It is prompt that the study be performed for higher 
accuracy with the higher quantity of data. Also, it may 
be organized by data from ASD and HC groups with 
younger age. Different ways of analyzing structural reso-
nance imaging ought to even be ascertained. This analy-
sis has targeted on the structure of the brain. In future 
researches, additionally to structural images of the brain, 
different brain imaging modalities like functional mag-
netic resonance imaging and DTI may be used for auto-
matic detection. Other intelligent detection algorithms 
can even be used.

Limitation
Autism spectrum disorder is an extremely heterogenous 
disorder, where any of the selected patients suffered from 
associated low IQ, delayed speech, epilepsy, or any other 
forms of comorbidities. These comorbidities can affect 
the volume and surface of the brain, which can affect the 
specificity of the diagnosis. Since there is no informa-
tion about diseases associated with autism in selected 
patients, this problem is one of the limitations of the pre-
sent study.

Conclusions
The proposed framework was tested on 52 subjects of 
ABIDE data set consisting of 26 patients with ASD and 
26 controls. Since clinical evaluations for the diagnosis of 
autism are extremely time-consuming and depend on the 
expertise of a specialist, the importance of intelligent diag-
nosis of this disorder becomes clear. The aim of this study 
was to design an intelligent system to diagnose this disor-
der. This study reached the highest diagnostic accuracy of 
88.46% using the ANN classification, which is a significant 
result. To conclude, this paper proposed an autism diag-
nosis approach that analyzes the brain’s local areas, which 
could help understand the autism spectrum disorder.
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