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Abstract 

Background: The global prevalence of obesity has soared to a concerning height in the past few decades. Inter-
estingly, the global decline in semen quality is a parallel occurrence that urges researchers to evaluate if obesity is 
among the most essential causatives of male infertility or subfertility.

Main body: Obesity may alter the synchronized working of the reproductive-endocrine milieu, mainly the hypo-
thalamic-pituitary-gonadal (HPG) axis along with its crosstalks with other reproductive hormones. Obesity-mediated 
impairment in semen parameters may include several intermediate factors, which include physical factors, essentially 
increased scrotal temperature due to heavy adipose tissue deposits, and systemic inflammation and oxidative stress 
(OS) initiated by various adipose tissue-derived pro-inflammatory mediators. Obesity, via its multifaceted mechanisms, 
may modulate sperm genetic and epigenetic conformation, which severely disrupt sperm functions. Paternal obesity 
reportedly has significant adverse effects upon the outcome of assisted reproductive techniques (ARTs) and the over-
all health of offspring. Given the complexity of the underlying mechanisms and rapid emergence of new evidence-
based hypotheses, the concept of obesity-mediated male infertility needs timely updates and pristine understanding.

Conclusions: The present review comprehensively explains the possible obesity-mediated mechanisms, especially 
via physical factors, OS induction, endocrine modulation, immune alterations, and genetic and epigenetic changes, 
which may culminate in perturbed spermatogenesis, disrupted sperm DNA integrity, compromised sperm functions, 
and diminished semen quality, leading to impaired male reproductive functions.
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Background
Infertility seems to be one of the genuine reproductive 
health hazards with the development of age. This threat 
counts for infertility prevalence of 15% amongst the 
couples where 50% is solely male infertility [1]. Many 
spermatic dysfunctions due to hormonal and meta-
bolic disorders, stressful lifestyle, diet, sleep apnea, or 
other pathologic conditions may account for infertil-
ity [2, 3] where decline in semen quality is a potent fea-
ture [4–9]. Obesity has been termed as “enemy of male 

fertility” by El Salam in 2018 [10] which affects 400 mil-
lion adult population worldwide [11]. Several studies put 
forward to present different views regarding this distress 
[12–14], but correlation between obesity and male infer-
tility needs to be further unveiled. It has been reported 
that the obesity can make changes in semen parameters 
that lead to reduce testicular volume, decline in semen 
quality, and impaired spermatogenesis [4, 15]. So, obe-
sity is a biomarker of infertility for its epidemic features 
[16, 17]. Prevalence of obesity depends on conditions 
like geographical locations, food habit, socioeconomic 
status, etc., and it has also been found as example that 
high socioeconomic status may lead to sedentary lifestyle 
with high consumption of energy (food) and is a major 
reason for obesity as compared to lower socioeconomic 
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status [18]. The present article aims to review the correla-
tions between obesity and different infertility parameters 
which may have some impact in male infertility.

Main text
Obesity‑induced genetic and epigenetic modifications 
and male infertility
Male obesity and infertility can be associated with 
genetic and epigenetic changes by their root causes. 
Prader-Willi, Alström, Laurence-Moon-Bardet-Biedel, 
and Klinefelter syndromes are among few disorders 
which can be triggered by genetic defects and have been 
linked to obesity-related male infertility [19–23]. Prader-
Willi syndrome, exhibiting symptoms of both obesity 
and infertility, is characterized by abnormalities in chro-
mosome 15 [24]. Alström syndrome, which is caused by 
human ALMS1 gene mutation, presents metabolic and 
endocrinological modulations that cause childhood obe-
sity and related infertility [20]. In some obese males, an 
aromatase polymorphism has been reported to increase 
weight-mediated estradiol levels followed by subfertility 
or infertility [25].

Few studies have reported the difference of DNA 
methylation in normal and obese men. The percentage 
of DNA methylation in obese men has been reported to 
be considerably different from that of normal men [12]. 
As epigenetic changes remain for decades, the evolving 
patterns of methylation and molecular programming can 
also be observed in offsprings [12, 26]. Children born to 
obese parents have been shown to have altered profiles of 
sperm DNA methylation relative to those born to non-
obese parents [26]. Studies on the effect of obesity on 
the epigenetics of human sperm are however scanty. A 
broad range of environmental influences such as dietary 
and lifestyle factors not only impact obesity but also alter 
epigenetic arrangements that impact not only that indi-
vidual but also his generations to come. The report from 
Fullston et  al. revealed that diet-induced paternal obe-
sity can affect molecular sperm profiles of the offspring. 
They have reported that the sperm DNA methylation 
has decreased by 25%, and the quality of sperm Micro-
RNA has changed in mouse fed with high-fat diets [27]. 
Palmer et  al. showed that mice fed with high-fat diet 
had decreased the level of histone deacetylase Sirtuin-6 
(SIRT6) in spermatozoa with an increase in DNA frag-
mentation [28]. In 2014, Consales et al. investigated the 
effect of lifestyle factors in repetitive DNA sequences on 
human sperm DNA methylation (LINE-1, Sat-α, and Alu) 
[29]. However, between sperm DNA and BMI, no mean-
ingful association was found. One cause of obesity, smok-
ing, demonstrated a considerable positive correlation to 
methylation level LINE-1 [30]. Donkin et  al. reported 
a significant remark that weight loss after bariatric 

operation induces substantial modification of sperm epi-
genetics in morbidly obese males [31].

Disruption of endocrine crosstalk
Abnormal sex hormone levels are commonly observed 
in obese males. As a stressor, obesity alters the homeo-
stasis for intracellular endocrine communication. Body 
temperature is strongly associated with obesity mark-
ers in men [32], and this may cause a heat stress which 
decreases the activity of antioxidant enzymes and 
increases NADPH oxidase activity leading to disruption 
of mitochondrial homeostasis like in Sertoli cells which 
cause reduced formation of testosterone [33].

Secondary hypogonadism is often detected in indi-
viduals with moderate to severely obese male with a 
reported prevalence of about 45% [34] and also with 
higher prevalence rate than type-2 diabetes mellitus 
(T2DM) in obese males [35, 36]. Secondary hypog-
onadism is associated with sexual dysfunction, depres-
sion, fatigue, decreased lean body mass, reduced 
mineral bone density, etc. [37]. Hormonal imbalance 
during secondary hypogonadism is associated with the 
decrease in both testosterone (free and total plasma 
concentration) and sex hormone-binding globulin 
(SHBG) and conversely increased plasma estrogen level 
within the obese male individuals [38]. Multiple stud-
ies have been revealed the inverse relationship between 
BMI and plasma testosterone concentration among 
the obese subjects besides the appearance of low tes-
tosterone and high estrogen level among the subjects 
with metabolic syndrome [39, 40]. Waist circumfer-
ence also shows an inverse relationship with plasma 
concentration of testosterone. An increased waist cir-
cumference is supposed to be the expression of large 
amount of visceral adipocytes leading to increased 
intra-adipocyte aromatase activity [41] which is estab-
lished to increase the conversion of circulating testos-
terone to the 17β-estradiol in obese male and resulting 
to the development of secondary hypogonadism. The 
continuous conversion of circulating testosterone to 
the 17β-estradiol contributes to the higher body weight 
and excessive accumulation of abdominal fat [42]. 
Physiologically, testosterone is responsible for several 
metabolic impacts by acting through the androgen 
receptors present on adipocytes; especially, it improves 
the insulin sensitivity and prevents the visceral fat 
accumulation. Thus, it plays a protective role on pan-
creatic β-cells by enhancing the activity of antioxi-
dant enzymes which helps to prevent the β-cells from 
apoptosis during glucotoxicity [43]. Thus, increased 
intra-adipocyte aromatase activity reduces the plasma 
concentration of testosterone which again cause the 
genesis of insulin resistance and T2DM as found not 
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only in obese male with secondary hypogonadism but 
also for men receiving treatment for androgen sup-
pression suffering from prostate cancer and age-related 
hypogonadism [44]. Interestingly, skeletal muscle medi-
ates the effect of testosterone on adipocytes as the 
testosterone is now crucial for the energy homeosta-
sis mechanisms. Thus, it was shown that testosterone 
may enhance the myogenic commitment of pluripotent 
mesenchymal stem cells and inhibit the adipogenic dif-
ferentiation by interacting with its androgen receptors 
[45, 46]. Multiple studies have predicted the low tes-
tosterone level for the development of T2DM besides 
its negative correlations with dyslipidemia followed by 
blood pressure [47, 48]. Conversely, high testosterone 
level causes reduced risk in T2DM [49]. Release of sev-
eral pro-inflammatory cytokines from visceral adipo-
cytes and macrophages seems to be a cause of obesity, 
as they disrupt the insulin response during the process 
of metabolism. Several studies have been explained 
the correlation between insulin resistance, T2DM, and 
hypogonadism in obese male individuals [44, 50]. Pas-
quali et  al. explained the effect of hyperinsulinemia to 
decrease testosterone level in which insulin was seen 
to exert its effect both centrally and peripherally [51, 
52]; centrally, it was responsible for impaired activity 
of GnRH neurons in hypothalamus, and peripherally, it 
suppressed SHBG synthesis, physiological action of LH 
followed by modulation of Leydig cell physiology [53, 
54]. Low-circulating testosterone is another important 
clinical feature among patients with obstructive sleep 
apnea, but testosterone replacement was shown wors-
ening clinical symptoms in these patients [55].

Aldosterone is best known as a mineralocorticoid 
hormone, produced from adrenal glands in response 
to angiotensin II. It may exert its effects through min-
eralocorticoid receptor (MR).  Na+ transport is the 
well-described classical action of aldosterone which is 
mediated by MR present in epithelial cells [56]. This MR 
has also been shown to be present on other cell types 
including adipocytes [57]. Primary hyperaldosteron-
ism or Conn syndrome can be described as continuous 
or excess autonomous production of aldosterone by an 
adrenal adenoma or bilateral adrenal zona glomerulosa 
hyperplasia providing a relevant model for systemic 
aldosterone excess on adipose tissue [58]. Activation 
of MR causes the differentiation of preadipocytes to 
mature adipocytes. Thus, testosterone may exert its 
positive role for the modulation of the renin-angioten-
sin-aldosterone pathway by reducing the expression 
followed by action of angiotensin-II type-1 receptor 
(AGTR1) [59, 60]. In obesity, the low-circulating tes-
tosterone may cause the elevated release of aldosterone 
which in turn activates the proliferation and maturation 

of adipose tissue; thus, MR mRNA expression was 
shown to be positively correlated with increasing BMI 
in humans and in obese db/db mice [61].

It was previously established that prolonged stress 
causes the release of glucocorticoid which reduces the 
serum testosterone levels [62] directly by suppressing 
Leydig cell steroidogenesis and by decreasing gonadotro-
pin stimulation of cAMP production as well as the activ-
ity of 17α-hydroxylase [63]. Thus, in obese male, reduced 
testosterone level may promote the action of glucocor-
ticoid which in turn impacts on adipose tissue develop-
ment, metabolism, and their secretion; besides, those, 
synergistically with insulin, glucocorticoids promote dif-
ferentiation of preadipocytes to mature adipocytes [64]. 
Depending on physiological context, nutrition, and other 
hormonal milieu, the glucocorticoids affect the lipid syn-
thesis and lipolysis possibly by exerting lipogenic effects 
on visceral adipose tissue (VAT) and lipolytic effects on 
subcutaneous adipose tissue (SAT) [65]. Cortisol syn-
ergistically may stimulate adipocyte expansion during 
energy surplus and insulin supply, such as what would 
occur in Cushing syndrome. During catabolic states, cor-
tisol production increases as a part of the stress response. 
It has large lipolytic role and mobilizes vital energy stores. 
This paradigm may partially explain that hypercorti-
solism is associated with increased adiposity in Cushing 
syndrome and paradoxically with decreased adiposity in 
states of undernutrition, such as anorexia and acute ill-
ness. Hypothalamic-pituitary-adrenal (HPA) axis dys-
function, as well as local metabolism of glucocorticoids 
in adipose tissue, can cause alterations of circulating cor-
tisol dynamics, which have been linked to obesity and 
the metabolic syndrome [66]. Obese individuals show 
markedly higher ACTH, and cortisol may respond to 
vasopressin (AVP) and corticotropin-releasing hormone 
(CRH) [67, 68], whereas dose-response ACTH stimula-
tion test may interfere to elevated cortisol level [69].

More to the point, Kisspeptin is a hypothalamic pep-
tide which plays an important role in HPG axis during 
pubertal development [70], and it controls the release of 
LH and FSH via GnRH and also maintains the spermato-
genesis by FSH, SHBG, and inhibin-B release [71]. Kiss-
peptin neurons transmit the signals regarding the steroid 
feedback mechanism to the GnRH neurons [72] which is 
an important regulator of the pulsatile release of GnRH 
[73, 74]. Recently, it has been postulated that kisspep-
tin may convey the facts regarding the body’s metabolic 
status to the HPG axis [72] especially to the GnRH neu-
rons [75]. It is reported that inactivation of Kisspeptin 
receptor genes leads to obesity in mice [76] as well as in 
human through a signal transduction pathway involving 
the hypothalamic modulatory circuits and thereby main-
tains the reproductive homeostasis [77]. It also has been 
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observed that maturation of kisspeptin receptor genes is 
associated with decreased sex steroid levels along with 
LH and FSH levels (hypogonadotropic hypogonadism) 
[78]. It is compulsive that energy balance also plays a vital 
role in maintenance of fertility [79], so that, undernour-
ished or obese, both the conditions may cause alterations 
in fertilization capacity [79, 80]. Adiposity and T2DM 
were also observed to be associated with decreased cir-
culating level testosterone and reduced frequency of LH 
pulse in male [81].

Sertoli cells, another crucial regulator of testicular 
functions, provide a structural and hormonal support, 
and its numbers represent the functional status of the 
testis [82, 83]. Obesity leads to suppression of all gonadal 
hormones, and as a result of it, Sertoli cells release less 
inhibin that leads to compromised spermatogenesis [82].

Leptin and ghrelin, two significant polypeptides, are 
required for the maintenance of body weight via the 
changes in eating behavior [84]. Leptin works directly 
on HPG axis and decreases testicular androgen produc-
tion [85], which causes alterations in sperm morphology, 
sperm concentration, and sperm motility, as observed 
in obese individuals [86]. It was also found that lep-
tin level positively correlates with total body fat, and it 
induces the generation of reactive oxygen species (ROS) 
in human endothelial cells which causes increased fatty 
acid oxidation in mitochondria [87]. Leptin may also 
exert its direct effect on gonadal cells due to the presence 
of its receptor isoforms [88]. Moreover, leptin has been 
hypothesized to have negative effect on testicular ster-
oidogenesis by diminishing the pulse amplitude of lute-
inizing hormone-releasing hormone (LHRH) or LH or 
through the activation of its receptor present on Leydig 
cells [89]. In addition, stress-related pro-inflammatory 
cytokines produced by inflamed adipose tissue (such as 
IL-6 and TNF-α) and elevated serum leptin may together 
additionally suppress reproductive functions.

The other polypeptide ghrelin is chiefly secreted from 
fundus of the stomach and works through hypothalamic 
GnRH release [90, 91]. Under the control of LH, the pres-
ence of ghrelin was demonstrated in Leydig cells, and a 
positive correlation was demonstrated between ghrelin 
and testosterone level by Pagotto et al. [92] as the ghre-
lin receptors are present in testis, but do not affect sper-
matogenesis directly [93]. An increased ghrelin secretion 
may also result in increased ROS production, as observed 
in obese males [94].

Beside those two metabolic peptides, obesity may also 
alter the serum profiling of other metabolic peptides like 
adiponectin, obestatin, and orexins [95]. Negative corre-
lations were reported for adiponectin to ROS and testos-
terone, respectively [96, 97]. Obestatin is released from 
specialized epithelium of the stomach and intestine and 

has also been detected in semen [98]. Very few works 
demonstrated the role of obestatin on testicular func-
tions. It was described that intraperitoneal obestatin 
administration causes the increase in testosterone level 
significantly, besides an increase in primary and second-
ary spermatocytes along with Leydig cell population [99].

Visfatin is another metabolic peptide, secreted by vari-
ous tissues, visceral adipocytes, and the testis [100, 101]. 
It mimics the insulin action by acting through insulin 
receptor, thus helping to lower blood glucose level and 
related to reduce body weight as well as testicular weight 
[102]. It has been found that visfatin and serum testoster-
one concentrations are positively correlated to each other 
which are supposed to enrich the male reproductive 
quality. Several studies explained that less expression of 
testicular visfatin was observed in male with T2DM [103, 
104] which also supports the association of poor repro-
ductive health in male with T2DM.

Resistin is another adipocyte-derived protein and sup-
posed to have its multiple effects on insulin sensitiv-
ity and adipocyte differentiation [100, 101]. Resistin is 
expressed in Leydig cells and Sertoli cells under the regu-
lation of gonadotropins [105]. It exerts negative effect on 
male reproductive functions, especially the sperm quality 
with higher concentrations, as seen in smokers, subjects 
with leukocytospermia, etc. [105, 106].

Orexins are best known as an arousal neuropeptide; it 
reduces ROS-induced cell damage [107, 108] and stimu-
lates several steroidogenic enzymes in Leydig cells, thus 
increasing the testosterone production [109, 110] (Fig. 1).

Obesity, increased scrotal temperature, and male infertility
Spermatogenesis is known as an extremely heat-sensitive 
process in reproductive physiology, and 32–35 °C is con-
sidered as optimal temperature for this physiological pro-
cess in human testes [111]. Production of extragonadal 
heat has also become a major problem among the obese 
individuals resulting from increased scrotal adiposity 
and sometimes increased suprapubic as well as increased 
thigh fat, etc. [64, 112]. Sedentary lifestyle, using a laptop 
based on the thigh, sauna, spontaneous habit of warm 
baths, and varicoceles may also lead to increased testicu-
lar temperature [113]. In obese men, any such conditions 
may lead to direct effect on spermatogenesis, occurrence 
of OS, or event of direct sperm cell damage besides the 
reduction in sperm motility [114]. These changes ulti-
mately cause increased sperm DNA fragmentation (SDF) 
leading to subfertility or infertility [115, 116].

Obesity and spermatogenesis
The testis has two major functions: spermatogenesis and 
steroidogenesis. Spermatogenesis is a multistep process 
of sperm production from the primordial germ cells. It 
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occurs in the seminiferous tubules that contain two dis-
tinct cell populations: (a) primordial germ cells, from 
which spermatozoa are derived, and (b) Sertoli cells 
whose main function is to nourish the developing sper-
matozoa during spermatogenesis. Steroidogenesis is 
another multistep process occurs in the interstitial cells 
of Leydig for biosynthesis of steroid hormones from cho-
lesterol. Sertoli cells are activated by the FSH, and Leydig 
cells are stimulated by LH produced by anterior pituitary. 
The seminiferous tubules maintain a dynamic yet steady 
balance between cell death and regeneration [117]. To 
mediate this purpose, a distinct hormonal microenvi-
ronment tightly regulates the phase of germ cell differ-
entiation, just after the first wave of spermatogenesis. If 
the production of spermatogenic cells in this phase goes 
beyond the physiological need, they undergo apoptosis, 
mediated and controlled by the conventional Bcl-xL and 
Bax systems [118, 119]. Specific physiological or patho-
logical conditions may stimulate spermatogonial apop-
tosis and are regulated by various genes. Recent research 

interventions found that the A1 spermatogonia undergo 
a significantly increased rate of apoptosis in conditions of 
obesity. Immoderate induction of apoptosis in spermato-
genic cells can contribute to a majority of male subfertil-
ity or infertility [120]. Obesity induces spermatogonial 
apoptosis by increasing Bax and by decreasing Bcl-2 
expressions in the testis, thereby triggering the down-
stream signaling caspases, especially caspase-3 [121]. 
Moreover, obesity incurs hyperlipidemia and lipid meta-
bolic disorders, which elevates the stress upon endoplas-
mic reticulum, which further leads to spermatogenic cell 
apoptosis through elevated expressions of GRP78 mRNA 
and protein [122, 123].

Obesity and oxidative stress
Oxidative stress (OS) in obese persons may play a 
key role for male infertility [33]. Reactive oxygen spe-
cies (ROS) can be generated due to varieties of factors 
like heat stress, exposure to environmental toxicants 

Fig. 1 Key mechanisms linking obesity and male infertility
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like heavy metal or pesticides, psychological stress, 
chronic strenuous physical activity, alcohol con-
sumption, smoking, high-fat and high-protein food, 
intake of anabolic steroids, drug-induced stress (like 
Marijuana), stress due to reproductive tract infec-
tions, aging, and obesity [124–128]. In spermatozoa, 
most abundant ROS is  O2

●− which used to produce 
by oxidative phosphorylation by the addition of a sin-
gle electron to intracellular oxygen also been created 
through electron transport chain in between complex 
I and III located in mitochondria present in midpiece 
of the sperm [129]. Besides that,  H2O2 is a well-known 
uncharged biochemical molecule found in the intracel-
lular areas in the body; they can easily cross the plasma 
membrane and lead to initiate the peroxidative damage 
of membranes of germ cells. Generally, with the pres-
ence of some transitional or heavy metals (irrespec-
tive to essential or relatively harmless or toxic) such 
as iron  (Fe3+), the production of reduced ferrous iron 
 (Fe2+) will take place through the Haber-Weiss reaction 
by the formation of highly reactive  OH• from the  O2

●− 
and  H2O2. Subsequently, through the Fenton reaction, 
again the  Fe2+ is oxidized by  H2O2 to ferric iron  (Fe3+) 
by which the  OH− and  OH• are formed. Moreover, the 
 O2

●− interacts with nitric oxide (NO) and produce 
peroxynitrite  (ONOO−) which subsequently triggers 
either apoptotic or necrotic cell death [114, 129]. Dur-
ing the subsequent OS, a  Ca2+-dependent NADPH 
oxidase, known as NOX5 which is found in midpiece 
and acrosome of human sperm, is the major producer 
of reactive oxygen species [129] and also leads to DNA 
fragmentation of sperm. The vulnerability of DNA 
damage is much higher in Y chromosome because of its 
genetic arrangements, atypical recombination events 
between the X and Y chromosomes or itself within the 
Y chromosome due to exchange of sister chromatid 
with unbalanced manner [130].

Obesity and semen parameters
Obesity is associated with altered semen quality in terms 
of concentration, motility, and morphology [131, 132] 
due to abnormal hormonal levels of gonads. Studies 
have established a dose-response relation between body 
mass index (BMI) and infertility, plateauing over BMI 
> 32–35 kg/m2 [133]. Elevated estrogen levels in obese 
person can cause spermatogenic disruptions [134], and 
as a result of it, these hormones show an adverse effect 
on spermatogenesis by its feedback mechanisms [4, 11, 
135]. BMI has been found to be a critical parameter for 
infertility (BMI ≥ 30 kg/m2) [136]. In another study, 
BMI levels have been shown to be highest in azoosper-
mic subjects compared to others [14]. In addition, these 

epidemiologic studies support the negative correlation 
between BMI and fertility. It includes changes in total 
sperm count, sperm concentration, sperm morphology, 
and motility having same negative correlations [16, 137]. 
Another study focusing on the effect of obesity on sperm 
parameters in men has found that as BMI increases, so 
does the prevalence of men with low motile sperm count 
(normal body weight, 4.52%; overweight, 8.93%; and 
obese, 13.28%). Similarly, incidence of oligozoospermia 
has been determined to increase with BMI (normal body 
weight, 5.32%; overweight, 9.52%; and obese, 15.62%) 
[134]. Studies have also found a negative correlation 
between total motile sperm count and body weight, 
waist, and hip circumference [2, 134].

Obesity and sperm DNA fragmentation
The association of BMI with male infertility in terms 
of impaired sperm quality has been described in many 
studies [17, 133, 138–142]. But, the effects of obesity 
on sperm DNA integrity need more extensive studies. 
Sperm DNA integrity represents the major nuclear com-
ponent of spermatozoa. It is essential for normal fertiliza-
tion, implantation process, pregnancy maintenance, and 
fetal development [143]. Besides regular semen param-
eters, determination of sperm DNA fragmentation (SDF) 
can serve as an advanced sperm function test (SFT) to 
assess the condition of male fertility. An array of studies 
have put forth the relevant concepts about SDF and sev-
eral potential laboratory methods to determine the clini-
cal value for assessing SDF in male infertility [144–147]. 
The American Urological Association (AUA) and Euro-
pean Association of Urology (EAU) have also recognized 
the vitality of the SDF assay for assessment of male infer-
tility [148].

Obesity adversely affects sperm DNA integrity or 
causes SDF possibly by inducing OS. A reduced preg-
nancy rates have been portrayed in correspondence to 
increased SDF [146, 149]. Although there is dearth of 
studies, a few studies have assessed the influence of obe-
sity on sperm DNA integrity. Kort et  al. [139] showed 
an increase in SDF rates in obese men assessed through 
sperm chromatin structure assay (SCSA). Chavarro et al. 
[17] and Farriello et al. [150] also supported this concept. 
They determined sperm DNA integrity by the single-cell 
gel electrophoresis assay or comet assay method. LaVign-
era et  al. [151] used TUNEL assay with flow cytometry 
and found that obesity negatively affects sperm DNA 
integrity. An another 3-year multicenter study explored 
the relation of increased BMI with sperm DNA integrity 
and showed that obesity is undeniably responsible for 
increased SDF [90]. In contrary, very few studies failed 
to find any significant relation between BMI and sperm 
DNA integrity [138, 152].



Page 7 of 12Chaudhuri et al. Middle East Fertility Society Journal            (2022) 27:8  

Altered testicular immune defense and male infertility
Excessive body weight and obesity in humans constitute 
an unconventional, unremitting, and low-grade inflam-
matory state [64, 153]. It is frequently accompanied with 
chronic inflammation over the whole body and is always 
associated with symptoms that arise from metabolic and 
vascular alterations [154]. The increase of adipose tissue 
causes enhanced secretion of pro-inflammatory hor-
mones and cytokines into the circulation (adipokines), 
originating from adipocytes and from macrophages that 
are recruited and infiltrate the expanding adipose tissue 
[155, 156]. These pro-inflammatory adipokines activate 
the acute phase reaction and progressively impose a gen-
eralized chronic inflammatory stress on the body [100, 
157]. Importantly, two of the main pro-inflammatory 
cytokines, tumor necrosis factor-α (TNF-α) and interleu-
kin-6 (IL-6), are secreted in significant quantities by the 
enlarging adipose tissue, especially in visceral obesity. In 
addition to their immunomodulating effects, TNF-α and 
IL-6 directly stimulate the HPA axis, central stimulation 
of cortisol secretion, suppression of thyroid stimulat-
ing hormone (TSH), and testosterone secretion, which 
in turn favors visceral fat accumulation and dysfunction 
of the HPG axis [158–163]. Increases in pro-inflamma-
tory cytokine levels can impair male fertility via induc-
ing germ cell apoptosis, disrupting Sertoli cell junctions, 
directly impairing spermatogenesis, and compromising 
testicular blood-testis barrier (BTB) integrity [154]. Such 
effects eventually adversely impair the biological func-
tions of mature gametes.

Obesity can induce testicular inflammation through 
activating several different signaling pathways. Increased 
secretion of leptin (pro-inflammatory properties) and 
decreased secretion of adiponectin (anti-inflammatory 
properties), an adipose tissue-derived hormones, can 
enhance the imposed inflammatory load in obesity [164–
168]. A prolonged high-fat diet could lead to increases in 
NLRP3 inflammasome and pro-inflammatory cytokine 
expression level such as IL-6 and TNF-α in the tes-
tis, epididymal caput, epididymal cauda, prostate, and 
seminal vesicle [154]. In order to verify the correlation 
between being overweight or obese and sperm parame-
ters as well as pro-inflammatory cytokine levels in semen 
plasma, researchers collected semen samples from 272 
donors, including 82 normal weight, 150 overweight, 
and 40 obese individuals, respectively. They found that 
both overweight and obese males were associated with 
low sperm counts and decline in sperm motility. Moreo-
ver, the concentrations of IL-6 and TNF-α significantly 
increased in the semen plasma of obese or overweight 
males than normal body weight individuals [166]. These 
observations demonstrated that obesity or overweight 

can indeed upregulate cytokine concentrations in the 
male genital tract and impair sperm quality.

Recently, a mechanism of escape of spermatozoa anti-
gen toward the lumen of the spermatic tubuli during 
spermiation has been described, which participates in the 
preservation of local immunity [169]. For completion of 
spermatozoa maturation process, pre-leptotene and lep-
totene spermatocytes residing in seminiferous epithelium 
need to pass through the blood-testis barrier at stage-
VIII of spermatogenesis [170].

Inflammation of the testis causes infiltration of leuko-
cytes which subsequently releases ROS. The resulting 
oxidative imbalance is responsible for peroxidation of the 
spermatozoa’s membrane, affecting the fertilizing poten-
tial [114, 171]. Literature suggests that redox imbalance 
has a role in inducing defective spermatogenesis in vari-
cocele cases [25]. Even in varicocele cases with a normal 
spermiogram, seminal plasma shows excessive OS. Vari-
cocelectomy, a therapeutic manipulation, reduces OS in 
seminal plasma, thus ameliorating DNA damage [172].

Obesity and erectile dysfunction
Erectile dysfunction (ED) is an inability to develop a suf-
ficient penile erection that leads to reduced frequency 
of satisfactory sexual intercourse. Its pathophysiology 
involves a complex crosstalk of psychological, neuro-
muscular, endocrinological, and vascular factors along 
with their correlations with several lifestyle habits like 
cigarette smoking and alcohol consumption and some-
time due to some drug side effects. It is well known to 
all that the increase in penile length and diameter during 
the sexual arousal is due to production of NO with the 
help of nitric oxide synthase (NOS) via the non-adrener-
gic non-cholinergic (NANC) activity. This NO induces 
the smooth muscle relaxation and vasodilation followed 
by penile erection [173]. Thus, for the sufficient erection, 
both NOS and NO both necessary, and for NOS activity, 
NANC must be active. However, a recent study reported 
weak cholinergic response and altered autonomic activity 
in obese rat with peripheral insulin resistance [174, 175]. 
Importantly, male infertility due to ED shows a positive 
correlation with increased BMI and waist circumference 
[176]. In addition to age, ED is associated with obesity 
and metabolic syndrome by considering it as a risk fac-
tor for cardiovascular disease, type-II diabetes mellitus 
(T2DM), hyperinsulinemia, and hyperleptinemia [159, 
177]. OS is also associated with ED-related infertility in 
male [114] which is common in obesity. In comparison 
with normal BMI group, obese male (BMI > 28.7 Kg/m2) 
shows a 30% higher risk of ED [178], and thus, obesity was 
also appeared as an potent inhibitor of the major enzyme 
phosphodiesterase-5 which is used as well-known agent 
for the treatment of ED [179]. Probably due to formation 
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of ROS in endothelial cells during clinical obesity or dis-
orders like metabolic syndrome, it mediates TNF-α activ-
ity which causes lesser production of NOS followed by 
NO resulting vasoconstriction in penile structure [180]. 
Thus, any cause related to endothelial dysfunction will be 
the common cause for the erectile dysfunction and which 
also includes arteriolosclerosis and fibrous tissue result-
ing in altered to and from blood flow in the penis as they 
affect the vasculature of the penis [113, 181].

Conclusions
Obese men possess heavy adipose tissues depot, 
which home several toxins, adipokines, and other hor-
mones (adiponectin, leptin, ghrelin, orexin, obestatin, 
etc.). High adipose tissue accumulation also leads to 
increased scrotal temperature, sleep apnea, systemic 
inflammation, and OS. Obesity-mediated systemic dis-
balance in metabolism and metabolic hormones affects 
the HPG regulatory axis and may also directly affect the 
testicular cells, thereby disrupting the normal functions 
of the testes. It has also been discussed that obesity can 
potentially influence the genetic and epigenetic pro-
cesses in the spermatozoa; even children born to obese 
parents can possess altered sperm epigenetics compared 
to those born to nonobese parents. Moreover, male obe-
sity has great influences over the assisted reproductive 
techniques (ARTs) outcome, and this area needs more 
research attention to bring to surface newer technol-
ogy mainly for sperm retrieval and selection from 
obese men. Thus, the complex mechanism and updated 
evidence-based hypotheses of obesity-mediated male 
infertility or subfertility will benefit the reader for better 
understanding the concepts and will encourage further 
in-depth research interventions in this field.
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