
Samarasinghe et al. 
Egyptian Journal of Medical Human Genetics           (2023) 24:53  
https://doi.org/10.1186/s43042-023-00433-x

REVIEW Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Egyptian Journal of Medical
Human Genetics

Genetic and metabolic aspects 
of non‑alcoholic fatty liver disease (NAFLD) 
pathogenicity
Saumya Madushani Samarasinghe1, Asanka Sudeshini Hewage1*, Rohan Chaminda Siriwardana2, 
Kamani Hemamala Tennekoon1, Madunil Anuk Niriella3 and Sumadee De Silva1 

Abstract 

Background  Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease showing a ris-
ing prevalence globally. Genetic predisposition plays a key role in the development and progression of the disease 
pathogenicity.

Main body  This paper summarizes genetic associations based on their influence on several metabolic aspects such 
as lipid metabolism, glucose metabolism, hepatic iron accumulation and cholesterol metabolism toward the NAFLD 
pathogenicity. Furthermore, we present variations in some epigenetic characters and the microRNA profile 
with regard to NAFLD.

Conclusion  As reported in many studies, the PNPLA3 rs738409 variant seems to be significantly associated 
with NAFLD susceptibility. Other gene variants like TM6SF2 rs58542926, MBOAT7 rs641738 and GCKR variants 
also appear to be more prevalent among NAFLD patients. We believe these genetic variants may provide insights 
into new trends in developing noninvasive biomarkers and identify their suitability in clinical practice in the future.
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Graphical abstract

Background
Non-alcoholic fatty liver disease (NAFLD) is the most 
prevalent chronic liver disease covering a wide spectrum 
of liver pathology (Fig.  1) characterized by accumula-
tion of excess fat in the liver (> 5–10% by weight) in the 
absence of significant alcohol consumption [1].

NAFLD is considered the liver manifestation of metabolic 
syndrome [2]. As represented in Fig. 2, several factors could 
possibly increase the risk for NAFLD. Recent evidences 
suggest that there is a strong genetic contribution toward 

susceptibility to NAFLD and its severity [3]. A range of sin-
gle nucleotide polymorphisms (SNPs) have been implicated 
in this regard, and in this paper, we aim to investigate the 
genetic background concerning various metabolic aspects 
of NAFLD by evaluating literature from several studies that 
reported genetic variants contributing to NAFLD patho-
genicity (Fig.  3). PubMed and google scholar search terms 
“genetic background of NAFLD” and “genetic studies on 
NAFLD” were used in selecting high-quality articles for the 
analysis of our topic of interest.
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Genetic polymorphisms incorporated in lipid 
metabolism related to NAFLD
PNPLA3 (patatin‑like phospholipase domain‑containing 3)
PNPLA3 encodes a protein with 481 amino acids that 
belonging to the patatin-like phospholipase domain-con-
taining protein family, and its function remains unknown 
[4]. But the progenitor of the family, “patatin,” is a lipid 

acyl hydrolase (LAH) found in potato tubers. Patatin 
catalyzes the hydrolysis of monoacylglycerols (MAG) 
and expresses transesterification activity [5]. The human 
PNPLA family consists of nine members, and they show 
diverse enzymatic functions. PNPLA2 was previously 
identified as a major triglyceride hydrolase in the adipose 
tissue [6, 7], whereas other studies showed that PNPLA3 
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Fig. 3  Schematic representation showing genetic variants involved in different stages of NAFLD progression
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is a transmembrane polypeptide expressed in adipose tis-
sue, liver and adrenal glands [8–10]. PNPLA3 is confined 
to the endoplasmic reticulum and on the lipid, droplet 
surfaces [11]. Several functional roles have been assigned 
to PNPLA3. These include hydrolase activity [9, 12, 13] a 
role in lipid droplet remodeling [4, 14] transacylase activ-
ity producing alkyl esters [13] and lysophosphatidic acid 
acyl transferase (LPAAT) activity producing phosphatidic 
acid triacylglycerol (Fig.  4). Phosphatidic acid is a com-
mon precursor for triacylglycerol synthesis [15].

A SNP (rs738409) of cytosine to guanine substitution 
in PNPLA3 that changes codon 148 from isoleucine to 
guanine (I148M) has shown a strong association with 
NAFLD. Romeo and his colleagues who first reported an 
association of the PNPLA3 I148M variant with NAFLD 
pathogenicity identified this variation to be associated 
with hepatic fat levels and hepatic inflammation leading 
to the increased susceptibility to hepatic injury. Further-
more, they observed the carriers of the PNPLA3 I148M 
variant, to have elevated serum levels of liver-derived 
enzymes which are considered as the markers of liver 
inflammation [16]. He et al. (2009) have shown that the 
I148M substitution promoted triglyceride accumulation 
in hepatocytes thus interfering with hepatic triglyceride 
hydrolysis leading to hepatic steatosis [4]. Further, I148M 
variant was reported to be associated with higher LPAAT 
activity leading to steatosis [15].

Yamamoto and his colleagues suggested that PNPLA3 
rs738409 variant is associated with NAFLD progression 
to cirrhosis and HCC in the Japanese population [17]. 
Tepper et  al. (2018), who further validated this, showed 
a high frequency of the PNPLA3 rs738409 [C>G] variant 
among the Hmong population and that it predisposes to 
NAFLD/NASH [18]. Valenti et  al. (2010) reported that 
PNPLA3 I148M in NAFLD patients is strongly associated 
with severe steatosis and with the presence of NASH and 
fibrosis in patients from Italy and the United Kingdom. 
This association was independent of age, basal metabolic 
rate (BMI) and diabetes. PNPLA3 rs738409 GG geno-
type was more prevalent among NAFLD patients, and it 
was found to influence high-density lipoprotein (HDL) 
cholesterol and alanine transaminase (ALT) levels [19]. 

Their study was extended to evaluate the predisposition 
of the PNPLA3 I148M variant to NASH and fibrosis in 
pediatric patients with NAFLD, and they observed that 
PNPLA3 rs738409 GG genotype had a very high risk of 
progressive liver disease in the pediatric cohort [20]. Pre-
viously, it was reported that children from different eth-
nicities including Asians, Americans and Hispanics are 
more predisposed to develop NAFLD [21].

Alisi et  al. (2011) reviewed the genetic background of 
NAFLD and the metabolic syndrome. The report con-
cludes that both conditions have common genetic ori-
gins. They further reported this to be valid for both 
adults and children [22]. Chan et al. (2017) conducted a 
retrospective cohort study to evaluate the risk of develop-
ing fatty liver in chronic hepatitis B virus (HBV) infected 
patients without significant alcohol intake. The study 
revealed that PNPLA3 rs738409 G allele was signifi-
cantly associated with the susceptibility to the concurrent 
development of fatty liver in HBV patients. Furthermore, 
the study concluded that the concurrent fatty liver in 
HBV patients is a significant risk factor for progression to 
HCC in patients without significant alcohol intake [23].

Peroxisome‑proliferator‑activated receptors (PPARs)
PPARs are hormone receptors that bind to the promoters 
of the target genes in the ligand (hormone) bound state 
and activate transcription. There are three isotypes of 
PPARs, namely PPARα, PPARβ and PPARγ. All the mem-
bers of PPAR are associated with lipid metabolism and 
transport. PPARα is expressed mostly in the adipose tis-
sue and the liver. PPARα participates in fatty acid catabo-
lism in the liver [24]. PPARβ mostly expressed in the gut, 
kidney, heart and the brain. PPARγ expressed mainly in 
the adipose tissue influences the fatty acid (FA) storage in 
the adipose tissue. Target genes of PPARγ directly partic-
ipate in the lipogenic pathways. These include the genes 
expressing lipoprotein lipase (LPL), adipocyte FA bind-
ing protein, acyl-CoA and fatty acid transport protein 
(FATP) [24]. PPARγ also participates in the body’s fat cell 
differentiation program [25]. Two common variations of 
PPARγ, rs1801282 and rs3856806 are important in the 
lipid metabolism pathways.
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Fig. 4  Lysophosphatidic acid acyl transferase activity of PNPLA3 protein. GPAT, glycerol-3-phosphate acyltransferase; LPAAT, lysophosphatidic acid 
acyl transferase; PAP, phosphatidic acid phosphatase; DGAT, diacylglycerol acyltransferase



Page 5 of 14Samarasinghe et al. Egyptian Journal of Medical Human Genetics           (2023) 24:53 	

Hui et  al. (2008) initially reported a significant asso-
ciation between a PPARγ gene variant (rs3856806) and 
NAFLD through an adiponectin-related pathway [26]. 
PPARγ rs1801282 variant was reported to increase the 
resistance to oxidative stress, thus increasing susceptibil-
ity to develop NAFLD through a Chinese case–control 
study. Further, it was revealed that both the C/C geno-
type of PPARγ rs1801282 polymorphism and smoking 
were independent risk factors for NAFLD [27]. Gaw-
rieh et  al. (2011) investigated the association of PPARγ 
rs1801282 and PPARγ rs3856806 with NAFLD in a North 
American cohort. The study revealed two haplotypes 
with two major alleles (CC) and two minor alleles (GT) 
in the NAFLD cohort are associated with steatosis and 
fibrosis. Minor alleles (GT) are reported to show a pro-
tective form of NASH by lowering the risk for steatosis, 
inflammation and fibrosis. The study concluded that the 
two SNPs do not show sufficient individual effects, but an 
additive effect could possibly promote the risk of devel-
oping NAFLD and NASH [28]. Another genetic study on 
PPARγ rs1801282 polymorphism showed that the het-
erozygous genotype was significantly higher in NAFLD 
patients [29].

TM6SF2 (transmembrane 6 superfamily member 2)
Transmembrane 6 superfamily member 2 (TM6SF2) is 
identified as a casual gene associated with lipid traits. 
But its actual function remains unknown. TM6SF4 is 
expressed predominantly in the liver and intestine [30]. 
TM6SF2 is located in the 19q12 locus, and it encodes a 
protein of 351 amino acids [31]. Protein studies have 
revealed that TM6SF2 is comprised of 7–10 transmem-
brane domains, and it is localized in the endoplasmic 
reticulum (ER) and the ER-Golgi intermediate compart-
ment of human liver cells [32]. TM6SF2 is a functional 
protein associated with hepatic triglyceride concentra-
tion. Functional studies have revealed that TM6SF2 
inhibition is associated with reduced very-low-density 
lipoproteins (VLDL) secretion and elevated cellular tri-
glyceride concentration leading to retention of TGs in 
hepatic lipid droplets causing a predisposition to fatty 
liver [30, 33]. But the overexpression of TM6SF2 is asso-
ciated with reduced lipid droplet content [32]. There-
fore, it is possible to suggest that TM6SF2 plays a role 
in NAFLD development. Another study demonstrated 
that TM6SF2 can influence total cholesterol levels and is 
associated with myocardial infarction [33].

Genome-wide association studies (GWAS) have 
revealed a TM6SF2 variant (rs58542926) associated 
with the elevated liver fat level. This variant is an ade-
nine-to-guanine substitution in coding nucleotide 499, 
which replaces glutamate at residue 167 with lysine 

(c.499A>G; p.Glu167Lys). This variant was associ-
ated with decreased VLDL secretions from hepatocytes 
[30] and a higher risk of myocardial infarction [33]. An 
association of the p.Glu167Lys variant with fibrosis in 
patients with NAFLD [34] was also reported. This vari-
ant was highly prevalent in individuals with European 
ancestry; prevalence was moderate in African Americans 
and Hispanics and rare in Asians [30, 35]. Dongiovanni 
et al. (2015) studied suspicion of NASH in severely obese 
patients of European descent for the possible effect of 
the TM6SF2 p.Glu167Lys variant on liver diseases.. The 
TM6SF2 p.Glu167Lys variant was found to be associated 
with a higher prevalence of NASH and advanced fibro-
sis. Furthermore, the study revealed that the TM6SF2 
p.Glu167Lys carriers are more susceptible to liver dam-
age related to NAFLD. Nevertheless, obese carriers of 
TM6SF2 p.Glu167Lys were reported to be protected from 
cardiovascular risk. They suggest that inhibition of VLDL 
secretion from hepatocytes may protect against cardio-
vascular diseases, but on the other hand, it increases the 
risk of developing severe liver disease [36].

A systematic evaluation done by Holmen et al. (2014) 
reported that the TM6SF2 p.Glu167Lys C-allele carriage 
is a lipid-associated genetic variation influencing total 
cholesterol levels [33]. Also, strong associations were 
found between the variant and serum ALT levels [30, 33]. 
Further, the C>T minor allele in TM6SF2 p.Glu167Lys 
was reported to be associated with an increased risk of 
greater steatosis as well as with the severity of steatohep-
atitis. The variant genotype also has a strong association 
with an increased risk of advanced fibrosis independ-
ent of gender, age, BMI and diabetes [34]. Sookian et al. 
(2015) showed that the rs58542926 variant is associ-
ated with a higher risk of fatty liver. An allelic test on the 
study subjects has shown that the T allele was signifi-
cantly associated with the disease progression. They also 
reported that TM6SF2 protein expression in the liver was 
remarkably decreased in NAFLD patients compared with 
the controls [37].

TRIB1 (tribbles‑1)
TRIB1 protein function to regulate cell differentiation, 
cell division and in protein degradation processes [38]. 
TRIB1 polymorphisms are reported to be associated 
with lipid traits affecting lipid metabolism. Significant 
association of TRIB1 polymorphisms, rs17321515 (A>G) 
and rs2954029 (A>T) with serum TG levels [39, 40] and 
an association of TRIB1 rs17321515 with total choles-
terol and LDL levels [41] has been reported. Liu et  al. 
(2019) first reported an association of TRIB1 polymor-
phisms and the risk of NAFLD. A alleles of rs17321515 
and rs2954029 were associated with the risk of NAFLD 
and rs17321515. A allele was associated with higher LDL 
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levels in NAFLD [42]. Coronary heart disease (CHD) is 
a major complication observed in NAFLD; TRIB1 poly-
morphisms are implicated in CHD [43] and later studies 
identified AA and GA genotypes of rs17321515 as those 
associated with CHD in NAFLD [44]. Serum lipid levels 
were significantly increased in A allele carriers [44].

MBOAT7 (membrane‑bound O‑acyltransferase 
domain‑containing 7)
In 2015, Buch et al. reported a gene variant in the mem-
brane-bound O-acyltransferase domain-containing 7 
(MBOAT7) at rs641738 that increased the risk of alco-
holic cirrhosis [45]. Later, this variant was shown to be 
associated with susceptibility to the development and 
progression of NAFLD [46]. MBOAT7 catalyzes acyl-
chain remodeling of phosphatidylinositols (PIs). Mainly, 
it catalyzes the transfer of polyunsaturated fatty acids like 
arachidonoyl-CoA to PIs like lysophosphatidylinositol, 
allowing maintaining the required level of desaturation in 
cell membranes. The rs641738 T allele reduces MBOAT7 
expression affecting PI composition of the hepatocyte 
plasma membrane favoring hepatocellular fat accumu-
lation and initiating inflammatory responses leading to 
NASH [46]. In an Italian NAFLD cohort, each MBOAT7 
rs641738 T allele conferred an approximately 80% 
increased risk of HCC in patients without advanced liver 
fibrosis [47]. MBOAT7 variant has been thus implicated 
to predispose to HCC in non-cirrhotic patients, suggest-
ing it to be a useful biomarker to identify such patients. 
Luukkonen et  al. (2016) also confirmed that this varia-
tion was also associated with histological liver damage 
marked with hepatic phosphatidylinositol remodeling. In 
a cohort of 3854 patients of European descent, rs641738 
was associated with increased hepatic fat content and 
development of NAFLD [48].

Genetic polymorphisms incorporated in glucose 
metabolism related to NAFLD
GCKR (glucokinase regulatory protein)
Glucokinase (GCK), the predominant hexokinase isoen-
zyme in the liver, is also expressed in the β-cells of the 
pancreas. It is highly sensitive to glucose and plays a key 
role in glucose metabolism. The activity of GCK is tightly 
regulated by GCK regulatory protein (GCKR). This pro-
tein–protein interaction shows a ligand-dependent and 
inhibitory GCK activity in response to plasma glucose 
fluctuations [49].

In 2011, Speolite et al. initially documented that GCKR 
variants were associated with changes in liver and serum 
lipid levels predisposing to liver fat deposition [50]. 
GCKR rs780094 is an intronic SNP which has shown 
associations with glucose levels. A GWAS done on the 

Finnish and Swedish populations [51] has shown that 
GCKR rs780094 polymorphism favors high TG levels and 
lower glucose levels. The same results were demonstrated 
in another study done on a European population [52]. 
Also, this variant showed an association with low insulin 
resistance and lower T2DM risk [51]. GCKR rs1260326, 
a non-synonymous variant with C to T substitution, 
substituting leucine for proline (P446L) was also associ-
ated with fasting plasma glucose and TG levels [51]. The 
T allele of rs1260326 C>T and rs780094 C>T variants 
also showed a clear association with NAFLD and NASH 
[53]. The rs1260326 T allele was significantly associated 
with a higher grade of hepatic steatosis in Indian patients 
but not in Malay and Chinese patients.. When the study 
was extended to observe the effect of both GCKR and 
PNPLA3 polymorphisms on the NAFLD risk, GCKR 
rs1260326, GCKR rs780094 and PNPLA3 rs738409 in 
combination led to a greater risk of developing NAFLD 
than either of the SNP alone [53].

INSR (insulin receptor) gene
INSR gene coding for the insulin receptor is located on 
the short arm of chromosome 19 and is composed of 22 
exons [54]. Insulin participates in the glucose metabolism 
pathways through INSR, with liver cells being a major 
target. Defects in INSR lead to IR, a major risk factor for 
the development and progression of NAFLD.

Impaired secretion of insulin was identified as the 
major predictor for glucose intolerance in NAFLD 
patients, and histological severity of NAFLD was directly 
associated with glucose intolerance independent of adi-
posity [55]. NAFLD patients had a high prevalence of IR 
compared to controls. IR in NAFLD patients was associ-
ated with higher aspartate transaminase (AST) and ALT 
levels [56]. IR was reported to be more severe in NASH 
than in simple fatty liver [57]. The proportion of CT at 
the INSR exon 2-2257 locus was significantly lower in 
NAFLD than in the controls when compared with the CC 
genotype [58] the study concluded the protective effect of 
the CT genotype against NAFLD.

Genetic studies to investigate INSR polymorphisms in 
developing NAFLD are rare. INSR Exon 17 is an impor-
tant motif as it encodes the tyrosine kinase domain of the 
INSR protein [59]. Therefore, mutations in the exon 17 
can directly lead to IR and rs1799817 polymorphism is 
located in it [60]. Nobakht et al. (2020) who investigated 
INS and INSR polymorphisms on NAFLD risk in an Ira-
nian population observed a 90% lower risk for NAFLD 
in carriers of the INSR rs1799817 “TT” genotype when 
compared with the “CC” genotype and suggested that 
“TT” genotype has a protective effect for NAFLD risk 
[54].
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PC‑1 (plasma cell antigen‑1)/ENPP1 (ectoenzyme 
nucleotide pyrophosphate phosphodiesterase 1)
ENPP1 is a membrane glycoprotein that binds with 
INSR and inhibits its effects on glucose metabolism. 
Thus, overexpression of ENPP1 can lead to IR [61]. PC-
1/ENPP1 Lys121Gln polymorphism is a gain of function 
variant causing stronger interaction with INSR.

Dongiovanni et  al. (2010) observed the PC-1/ENPP1 
Lys121Gln polymorphism to be associated with 
increased fibrosis and fibrosis severity in NAFLD patients 
compared to healthy controls in a European cohort. This 
variant was also associated with diabetes and metabolic 
abnormalities in NAFLD patients, suggesting that these 
abnormalities may occur consequent to IR in them. The 
study concludes that PC-1/ENPP1 Lys121Gln polymor-
phism influences INSR activity thus predisposing to liver 
damage in NAFLD [62].

Genetic polymorphisms incorporated in hepatic 
iron accumulation related to NAFLD
HFE polymorphisms
The HFE gene shows two common missense mutations 
(C282Y, H63D) in patients suffering from hereditary 
hemochromatosis (HH). HH is an autosomal recessive 
genetic disorder that causes enhanced iron absorption 
and hepatic iron deposition that can increase the risk of 
developing cirrhosis and HCC [63, 64].

C282Y, a G to A transition at nucleotide 845 that 
changes the amino acid cysteine to tyrosine, and H63D 
a C to G transition at nucleotide 187 that results in a his-
tidine to aspartic acid substitution are reported as the 
most prevalent genotypes associated with HH [65, 66]. 
In an Indian population study, C282Y mutation was not 
present among patients with liver disorders including 
NASH, but the H63D variant showed 14.8% prevalence 
among NASH patients, though they did not have iron 
overload. Two of the NASH patients with hepatic iron 
load were heterozygous for H63D, and one homozygous 
patient did not have hepatic iron overload. The study 
concludes that iron overload in NASH and other liver 
malignancies is a non-HFE type in Indians. [67]. Saremi 
et  al. (2016) reported a significant association of HFE 
C282Y polymorphism with NAFLD in Iranian patients 
with T2DM [68]. Hepcidin is the key regulator of iron 
homeostasis of the body. Nelson et al. (2012) investigated 
whether the iron loading in NAFLD/NASH is influenced 
by the hepcidin regulation among HFE genotypes and 
observed a positive correlation between hepatic iron 
stores and decreased serum hepcidin levels in all the HFE 
genotypes tested (C282Y, H63D and wild type). The study 
suggests that hepcidin regulation in NAFLD is deter-
mined by the iron stores of the body, regardless of HFE 
genotypes. Furthermore, the study found a potential role 

of HFE H63D in NAFLD pathogenesis possibly through 
an iron-independent pathway [69]. A similar result was 
found in a Polish study where a higher serum iron level 
was identified as a risk factor for NAFLD pathogenicity, 
regardless of HFE mutations [70].

Genetic polymorphisms incorporated 
in cholesterol metabolism related to NAFLD
SREBF (sterol regulatory element‑binding factor) 
polymorphisms
SREBPs are being identified as regulators of cholesterol 
and lipid metabolism, and there are three members in 
the human SREBP family named SREBP-1a, SREBP-1c 
and SREBP-2 [71]. The sterol regulatory element-binding 
factor (SREBF)-1c gene codes for a transcription fac-
tor which is involved in de novo lipogenesis and hepatic 
insulin sensitivity [72]. (SREBF)-1c rs11868035 A/G vari-
ant is located in the intron region. A allele of this vari-
ant together with BMI changes was associated with an 
increased risk for NAFLD [72]. Furthermore, GA/AA 
carriers of the NAFLD cohort are reported to show 
more severe steatosis, higher NAFLD activity score and a 
higher prevalence of NASH. Also, SREBF-1c rs11868035 
SNP was associated with impaired glucose homeostasis 
in NAFLD patients [72]. In contrast, in a Han Chinese 
population, none of the four common SNPs (rs62064119, 
rs2297508, rs11868035 and rs13306741) in the SREBP-1c 
gene were associated with the NAFLD risk or with the 
total cholesterol levels [73]. SREBP-2 is encoded by a sep-
arate gene on human chromosome 22q13 and is closely 
associated with cholesterol synthesis [74, 75]. Studies 
have shown enhanced SREBP-2 expression and free cho-
lesterol in NAFLD patients compared to healthy controls. 
This shows that free cholesterol plays an important role 
in NAFLD, and it is correlated with SREBP-2 expres-
sion [76]. Wang et  al. (2014) showed that the SREBP-2 
rs2228314 G > C polymorphism increases the risk of 
NAFLD in the Han Chinese population [77].

Miscellaneous
Steatohepatitic HCC (SH-HCC) is a histological subtype 
highly associated with metabolic syndrome [78]. Ando 
et al. (2015) conducted a genetic study with regard to the 
CTNNB1 (Catenin beta-1) gene mutations to interpret 
phenotypic characteristics of SH-HCC. Exon 3 of the 
CTNNB1 gene was previously known to be a mutational 
hotspot region according to the Catalogue of Somatic 
Mutations in Cancer (COSMIC). The study involved 
viable tumor tissues of 197 HCCs; 70 SH-HCCs and 127 
conventional HCCs (C-HCCs). The mutational analy-
sis revealed that 12 of 84 HCCs had missense mutations 
of the CTNNB1 gene with a single SH-HCC case and 
11 C-HCC cases. The study concludes that CTNNB1 
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mutations were less frequent in SH-HCC than in C-HCC 
[79].

Epigenetics
Epigenetic changes that affect gene expression without 
altering the DNA sequence reveal new perspectives on 
the pathogenesis of NAFLD. The prevalence of unhealthy 
diets and physical inactivity has led to the development 
of NAFLD through epigenetic mechanisms.

Epigenetic alterations of tumor suppressor genes con-
tribute to the HCC emergence. Nishida et  al. (2016) 
examined the DNA methylation levels in HCC and their 
surrounding non-cancerous liver. The study concludes 
that the epigenetic alterations in the tumor suppressor 
genes that are leading to hepatocarcinogenesis could 
result from oxidative DNA damage in hepatocytes. Fur-
thermore, they have identified that the serum alpha-
fetoprotein (AFP) levels and degree of ballooning show 
independent associations with this oxidative DNA dam-
age [80].

(See Additional file 1 for summary of the NAFLD-asso-
ciated genetic variants).

MicroRNA
miR‑122
MicroRNA 122 (miR-122) was identified as a dominant 
hepatocyte-specific miRNA accounting for 70% of the 
liver’s total miRNAs. [81]. Pivot roles for endogenous 
miR-122 were identified as tumor suppression and hepat-
ocyte survival [82]. Also, Esau et al. (2006) showed that 
miR-122 is a key regulator of cholesterol and fatty acid 
metabolism in adult liver using mice models [83]. Fur-
thermore, pathogenic repression of miR-122 has been 
observed in liver diseases such as NASH, cirrhosis and 
HCCs [84–86]

Tsai et  al. (2012) observed key clinical phenotypes 
of human liver diseases in mice with a targeted dele-
tion of Mir122a. These mice developed steatohepatitis, 
fibrosis and HCC together with disrupted livers which 
closely resembled disruptions found in human HCC. 
This study confirms the low expression of miR-122 in 
chronic liver diseases and HCCs, suggesting the res-
toration of miR-122 may be a therapy for such diseases 
[87]. Cheung et  al. (2008) tabulated potential targets of 
miR-122 and pattern of expression regarding human 
NASH by studying patients with metabolic syndrome 
with/without suspected NAFLD. Significantly decreased 
liver tissue miR-122 levels were seen in NASH, and they 
also observed silencing of miR-122 can activate some 
lipogenic genes which are expressed in human NASH 
in vitro. [84]. In contrast to the situation in the liver tis-
sue, Cermelli et  al. (2011) reported that serum levels of 
miR-122 were significantly higher in NAFLD patients 

when compared with controls. Furthermore, the study 
shows a positive correlation between miR-122 and dis-
ease severity from simple steatosis to steatohepatitis and 
also with ALT and AST levels.. miR-122 appeared bet-
ter than ALT, in detecting early disease stages in NAFLD 
conferring it as a suitable prognostic biomarker [88]. In a 
case–control study in biopsy-proven NAFLD, Pirola et al. 
(2015) showed that serum miR-122 level was upregu-
lated in 7.2 folds in both simple steatosis and NASH and 
a systematic downregulation in miR-122 in the liver tis-
sue in NASH [89]. Schütte et al. (2015) suggest that the 
high level of circulating miR-122 may be influenced by 
inflammation or apoptosis of hepatocytes in conditions 
like NAFLD, indicating miR-122 as a noninvasive bio-
marker for such HCC-related risk conditions [90]. Zhang 
et al. (2017) did a weighted gene co-expression network 
analysis (WGCNA) to identify potential key miRNAs and 
genes associated with the prognosis of HCC. The study 
concludes that the hsa-miR-363-5p may be a poten-
tial prognostic marker for HCC as its low expression 
was closely related to better survival of HCC [91]. Gene 
expression is regulated by upstream regulators (UR) 
like miRNAs, growth factors, transcription factors and 
cytokines [92]. Seshachalam et  al. (2018) revealed that 
the miR-1249 is a major activated UR in 112 differentially 
expressed genes which are specific to NAFLD-HCC. 
Furthermore, five other miRNAs were also activated as 
URs in NAFLD-HCC (miR-7159-5p, miR-766-5p, miR-
7056-5p, miR-6777-5p and miR-1249-5p). Also, it was 
found that the miR-4661-5p prominently inhibited UR in 
NAFLD-HCC [92].

(See Additional file  2 for summary of the included 
studies representing the association between miR-122 
expression and NAFLD).

Association of genetic variations with NAFLD 
through different ethnicities
Danford et  al. (2018) suggested that genetic factors 
play an important role in ethnic differences for NAFLD 
susceptibility among individuals [93]. In a large ethni-
cally diverse cohort including African Americans, Japa-
nese Americans, Latinos, native Hawaiians and Whites, 
PNPLA3 rs738409 variant showed a similar risk allele 
association with NAFLD, across all five ethnicities stud-
ied, while Latinos showed the strongest among all. His-
panics showed high frequency for this variant, while 
African Americans showed a lower frequency for the risk 
allele [94]. Further, Han et  al. (2021) reported that this 
variant has shown increased susceptibility to NAFLD 
among ethnicities such as Hispanics, African Americans, 
East Asians, and South Asians [95]. Interestingly, Asians 
represent a distinct phenotype as “lean NAFLD” showing 
a BMI lower than the generally accepted obese range [96]. 
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PNPLA3 rs738409 variant has been reported to show 
associations with this lean NAFLD phenotype found 
among Asians [95, 97]). TM6SF2 rs58542926 is another 
variant associated with lipid traits in NAFLD. Hispanics 
and Europeans were reported to show similar low fre-
quencies for this variant [94, 98]. Also, this variant was 
reported to be lower in frequency in Chinese compared 
to Caucasians [99]. Another important variant associ-
ated with NAFLD severity is MBOAT7 rs641738. This 
variant was reported to show associations with NAFLD 
among Caucasians but not among Hispanics and African 
Americans [100]. Interestingly, among Hispanic obese 
children, this variant was reported to show a protective 
role against NAFLD [101]. Two of the reported variants 
in the GCKR (rs780094 and rs1260326) gene were signifi-
cant genetic determinants of NAFLD, particularly among 
African Americans and Latinos [94]. Understanding such 
ethnic variabilities for predisposing to NAFLD is impor-
tant as it directly affects the generalizability of research 
data.

Association of NAFLD with COVID‑19
A significant association between liver injury and the 
severity of COVID-19 infection has been reported in 
multiple studies recently [102–104]. Vrsaljko et al. (2022) 
showed NAFLD patients had a longer duration of hos-
pitalization in COVID-19 infection together with sig-
nificant elevations in liver-associated markers and more 
frequent pulmonary thrombosis [105]. Further, NAFLD 
patients with advanced fibrosis were reported to have a 
higher risk of developing severe COVID-19 [106, 107]. 
Another recent meta-analysis showed that NAFLD is an 
independent risk factor for severe COVID-19 in younger 
patients [108]. The presence of cirrhosis was reported to 
show higher mortality in COVID-19 patients compared 
to those without underline cirrhosis (p < 0.001) [109]. 
Similar observations were made by Sarin et  al. (2020), 
reporting that obese cirrhotics were more susceptible 
for liver injury than normal weight cirrhotics in COVID-
19 (p = 0.02) [110]. Also, obese patients with advanced 
NAFLD stages, such as in NASH, have been reported 
to show high likelihood in predisposing to COVID-19 
[111]. A Chinese hospital-based study demonstrated that 
COVID-19 patients with NAFLD had significantly longer 
viral shredding time compared to non NAFLD patients 
(p < 0.0001). Further, the study reported that COVID-19 
patients with NAFLD background had abnormal liver 
function with high risk of NAFLD progression [112]. 
In contrast, some reports conclude that the presence of 
NAFLD does not affect the severity of COVID-19 infec-
tion [113, 114]. Multiple studies have shown an impor-
tant association between metabolic associated fatty liver 
disease (MAFLD) and COVID-19 severity [110,115].

Future perspectives
Due to the complexity beh ind the NAFLD pathogenesis, 
identification of favorable drug targets is still emerg-
ing. On this regard, defining pathological drivers for 
NAFLD could be a preferred approach. Toxic alterations 
in the liver’s metabolic homeostasis are the key inducer 
of hepatic injury in non-alcoholic backgrounds. Genet-
ics plays an important role in this regard as many stud-
ies including GWAS have defined loci which can induce 
metabolic dysfunction. In this review, we showed that 
such variations could be associated either with multi-
ple stages or only with a specific stage of NAFLD. This 
is promising as those loci could be used as genetic bio-
markers with both diagnostic and prognostic properties 
toward NAFLD. But to standardize such attempts, future 
studies should enable translational research with repro-
ducible results with larger sample sizes. The recently pro-
posed early diagnostic MAFLD criteria perform better 
than NAFLD identification criteria [116,117]. Basically, 
it combines metabolic syndrome evidences with hepatic 
steatosis features [118]. A recent Chinese community-
based study has further investigated the genetic contribu-
tion together with such metabolic dysfunction features 
toward MAFLD development [119]. Such attempts that 
combine the metabolic and genetic signatures in defin-
ing MAFLD/NAFLD should be encouraged. Although 
liver biopsy remained the gold standard for diagnosis 
of NAFLD, it has major limitations due to the invasive-
ness of the procedure, cost and 10% false negativity [120]. 
Abdominal ultrasound is an effective NAFLD surveil-
lance strategy, but still has questionable cost-effective-
ness [121]. Therefore, genetic biomarkers with metabolic 
dysfunction features are promising due to noninvasive-
ness and cost-effectiveness. Future studies should vali-
date such genetic and metabolic data through molecular 
assays to use them in developing favorable drug targets.

Conclusion
The genetic background of NAFLD is being widely inves-
tigated to identify pathogenic gene variants that may pre-
dispose to such conditions. Various studies were designed 
addressing candidate genes which may have some role 
in NAFLD pathogenicity. In this review, genes having 
potential roles in processes like lipid metabolism, glu-
cose metabolism, hepatic iron accumulation, cholesterol 
metabolism and epigenetic characters were addressed 
in relation to NAFLD pathogenicity. PNPLA3 rs738409 
variant seems to be significantly associated with NAFLD 
disease susceptibility as studies on this gene variant were 
replicated in many populations. Also, other gene variants 
like TM6SF2 rs58542926, MBOAT7 rs641738 and GCKR 
variants appear to be more prevalent in the NAFLD sus-
ceptibility. Circulating miR-122 was also reported to be 
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upregulated in NASH validating the circulating miR 
profile as a prognosis biomarker. Patient characteristics 
and environmental factors to influence the outcome of 
the genetic effects. Therefore, factors like age, sex, BMI, 
co-morbidities such as diabetes mellitus and dietary fac-
tors should also be considered when comparing patient 
and control populations. Liver biopsy, a diagnostic 
method commonly used to detect NAFLD, is an inva-
sive procedure. Therefore, studies revealing gene vari-
ants associated with NAFLD are important in developing 
noninvasive biomarkers for disease prediction, detection 
and monitoring prognosis.
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