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Abstract 

Background:  The CYP2D6 gene encodes a crucial enzyme involved in the metabolic pathways of many commonly 
used drugs. It is a highly polymorphic gene inducing an interethnic and interindividual variability in disease suscep-
tibility and treatment response. The aim of this study is to evaluate the frequency of the three CYP2D6 most investi-
gated alleles (CYP2D6*3, CYP2D6*4, and CYP2D6*10 alleles) in Morocco compared to other populations.

This study enrolled 321 healthy Moroccan subjects. CYP2D6 genotypes and allele frequencies were assessed using a 
restriction fragment length polymorphism–polymerase chain reaction genotyping method. The Principal Component 
Analysis (PCA) and dendrogram were conducted to evaluate genetic proximity between Moroccans and other popu-
lations depending on CYP2D6 allele frequencies.

Results:  According to the current study, the results observed the homozygous wild type of the three studied SNPs 
were predominant among the Moroccan population, while 1.4% of Moroccans carried the CYP2D6*4 allele responsi-
ble for a Poor Metabolizer phenotype and associated with low enzyme activity which may induce a treatment failure. 
The PCA and cluster dendrogram tools revealed genetic proximity between Moroccans and Mediterranean, European 
and African populations, versus a distancing from Asian populations.

Conclusion:  The distribution of CYP2D6 polymorphisms within Morocco follows the patterns generally found among 
the Mediterranean, European and African populations. Furthermore, these results will help to lay a basis for clinical 
studies, aimed to introduce and optimize a personalized therapy in the Moroccan population.
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Introduction
Cytochrome P450 2D6 (CYP2D6) enzyme is a key mem-
ber of the Cytochrome P450 superfamily implicated in 
detoxification and metabolism of a wide range of endog-
enous and exogenous compounds, as well as in hormone 

synthesis and breakdown [1, 2]. CYP2D6 is one of the 
most extensively investigated enzymes owing to its role in 
the metabolism of 25% of all clinically used drugs, includ-
ing various antidepressants, β-blockers, several opioid 
analgesics and anticancer drugs [3]. CYP2D6 is a highly 
polymorphic gene located on chromosome 22q13.1 [4, 5]. 
So far, more than a hundred CYP2D6 allelic variants were 
reported in the Pharmacogene Variation Consortium 
(https://​www.​pharm​var.​org/). Genetic polymorphisms 
are responsible for null, decreased, normal or increased 
functions, altering enzyme activity among individuals 
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and populations and consequently affecting pharma-
cological therapy outcomes [6–8]. Several metabolic 
phenotypes have been reported depending on CYP2D6 
genotypes. Actually, individuals with two non-functional 
alleles are considered poor metabolizers (PM) unable to 
metabolize drugs, while carrying at least one increased 
function allele confers an ultrarapid metabolizer pheno-
type (URM) with increased CYP2D6 activity [9]. Oth-
erwise, individuals with at least one decreased function 
allele are supplying reduced CYP2D6 activity and are 
considered as intermediate metabolizers (IM). Normal 
metabolizers (NM) are individuals with wild type alleles 
and normal CYP2D6 enzyme activity. Clinical studies 
reported an association between abnormal metabolizer 
phenotypes and risk of undergoing dose-related adverse 
events or lack of treatment efficiency [10]. Furthermore, 
CYP2D6 genetic polymorphisms have been associated 
with many treatment failures in several diseases [11–13]. 
CYP2D6 is implicated in tamoxifen activation, a drug 
administered in hormonal breast cancer therapy, induc-
ing an association between CYP2D6 genotype and treat-
ment response in breast cancer disease [8, 14, 15].

Due to its implication in the susceptibility and treat-
ment of several diseases, and the fact that polymor-
phic expression of CYP2D6 affects its activity, analysis 
of CYP2D6 genetic variability is required to develop 
appropriate therapy for successful treatment. Therefore, 
CYP2D6 has been investigated in many populations, 
and the finding showed a substantial variation in allele 
frequencies among populations [3, 16–18]. Indeed, to 
evaluate CYP2D6 genetic polymorphisms, three alleles 
were most studied among various populations consider-
ing their association with several disease outcomes and 
treatments [19–21]. CYP2D6*3 (rs35742686) is a single-
base deletion at exon 5 (A2549del) causing null activity 
[22, 23]. CYP2D6*4 (rs3892097), a splice site mutation 
(1846G > A), yields an absence or defective protein in the 
liver (Sachse et  al. 1997). The CYP2D6*10 (rs1065852) 
100C/T polymorphism leads to substitution of pro-
line to serine and causes a mRNA splicing defect which 
produces an IM phenotype [22]. The aim of the present 

study is to evaluate, for the first time, the distribution of 
the CYP2D6 gene (CYP2D6*3/*4/*10) in the Moroccan 
population.

Methods
Subjects and blood sample
The current population study enrolled 321 unrelated 
healthy volunteers recruited during a blood donation 
campaign. All volunteers from southern Morocco, whom 
were Arabic, Amazigh, or sub-Saharan Moroccans. All 
patients received a medical examination during the 
blood donation campaign and donors with any disease 
suspicion (diabetes, high arterial blood pressure, etc.) or 
cancer history were excluded from the study. Peripheral 
blood was collected based on the World Health Organi-
zation criteria (Blood Donor Selection Guidelines, 2012), 
and written informed consent was obtained from all indi-
viduals enrolled in the study. This study was performed 
under the approval of the Ethics Commission of Cadi 
Ayyad University Hospital Center (CHU) Mohammed 
VI, in Marrakech, Morocco.

CYP2D6 genotyping
Genomic DNA was extracted from whole blood using 
the conventional salting out procedure [24] with phenol 
chloroform purification. Extracted genomic DNA was 
quantified by Qubit Fluorometers (Invitrogen) and the 
measured values vary 50–74 ng/μl. After PCR amplifica-
tions, restriction fragment-length polymorphism analy-
sis (RFLP) was used to genotype CYP2D6 allele analysis. 
Primers for DNA amplification are given in Table 1. All 
PCRs were performed in a total volume of 25  μl con-
taining approximately 100  ng of DNA template, 1U of 
MyTaq of DNA Polymerase enzyme (Bioline, USA), 
MyTaq Reaction Buffer (0.5  mM NTPs, 1.5  mM MgCl2 
with stabilizers and enhancers), along with 200  nM of 
each appropriate primer [25, 26]. Amplified PCR prod-
ucts were digested with BsaI, BstNI and HphI enzymes 
(New England Biolabs, USA) for CYP2D6*3, CYP2D6*4 
and CYP2D6*10 alleles, respectively. Amplification sizes 

Table 1  Primers and restriction enzymes used for genotyping

SNPs CYP2D6 Primers (Tm) Enzyme Size (Wild-type) Size (Heterozygote) Size (Mutant)

*3 (2549delA) F/5ʹ-GCT​GGG​GCC​TGA​GACTT-3ʹ BsaAI 201 pb 201-180-20 pb 180-20 pb

R/5ʹ-GGC​TGG​GTC​CCA​GGT​CAT​AC-3ʹ
*4 (G1934A) F/5ʹ-CCT​GGG​CAA​GAA​GTC​GCT​GGA​CCA​G-3ʹ BstNI 190-163 pb 353-190-163 pb 353 pb

R/5ʹ-GAG​ACT​CCT​CGG​TCT​CTC​G-3ʹ
*10 (C100T) F/5ʹ-GTG​CTG​AGA​GTG​TCC​TGC​C-3ʹ HphI 282-62 pb 282-182-100-62 pb 182-100-62 pb

R/5ʹ-CAC​CCA​CCA​TCC​ATG​TTT​GC-3ʹ
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details and expected digestion results for each SNP are 
also shown in Table 1.

Statistical analysis
Allele and genotype frequencies, as well as Hardy–Wein-
berg equilibrium (HWE), were assessed using SNPStats 
software [27]. Results are considering significant when 
P-value is less than 0.05. Pairwise linkage disequilib-
rium (LD) within the three SNP was performed in terms 
of Lewontin’s (Dʹ) defined based on normalizing coef-
ficient of linkage disequilibrium D which measures the 
deviation of haplotype frequencies from expected values 
based on gene frequencies and informing if alleles are 
inherited together, and Pearson’s coefficient of correla-
tion (r2) defined as D2 normalized by the product of all 
allele frequencies. Linkage disequilibrium was assessed 
using Haploview software [28]. Haplotypic frequencies 
were assessed using SNPStats software [27]. To com-
pare CYP2D6 allele frequencies in Moroccans with other 
populations from different ethnic origins, we carried out 
a qui-square test, a Principal Component Analysis (PCA) 
and a dendrogram clustering, using R environment [29].

Results
The allele and genotype frequency distributions of the 
CYP2D6*3 (A2549del), *4 (G1846A) and *10 (C100T) 
variants were analyzed in the blood samples of 321 
healthy volunteers. Figure  1 presents the alleles in the 
pattern of the fragments digested for the detection of 
CYP2D6*3 (A), CYP2D6*4 (B), CYP2D6*10 (C).

According to HW equilibrium analysis (Table 2), all the 
studied SNPs were in HW equilibrium (P-value > 0.05).

Concerning CYP2D6 genotypes (Table  3), carriers 
of homozygous wild type for CYP2D6*3 were 76.4%, 
while 23.6% were heterozygous. The carriers of the wild 
homozygous genotype of the CYP2D6*4 variant were 
the most predominant with 80.3%, and the heterozy-
gous genotype represented 18.3%, while the homozygous 
mutant genotype was 1.4%, while the wild homozy-
gous and heterozygous of the CYP2D6*10 variant were 
84.7% and 15.3%, respectively. Minor allele frequencies 
for CYP2D6*3, CYP2D6*4 and CYP2D6*10 were 11.8%, 
10.5% and 7.7%, respectively.

According to our results, the AGC haplotype was 
the most predominant within our population (77.19%) 
(Table  4). A strong LD (Dʹ = 0.69; r2 = 0.33; P = 0.000) 

Fig. 1  Pattern of the fragments digested A Electrophoretic separation of cytochrome P450 2D6*3 digested segments. B Electrophoretic separation 
of cytochrome P450 2D6*4 digested segments. C Electrophoretic separation of cytochrome P450 2D6*10 digested segments
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was found between CYP2D6*4 and CYP2D6*10 SNP, as 
shown in Fig. 2.

Allele frequencies of the three CYP2D6 polymor-
phisms were compared with different populations 
including Mediterraneans, Europeans, Africans, South 
Americans and Asians (Table 5). The considered studies 

Table 2  Hardy–Weinberg Equilibrium for CYP2D6 polymorphisms in the Moroccan population

Observed genotypes % Expected genotypes % Chi-squared HWE. P-value HWE deviation

CYP2D6*3 (rs35742686)

A/A 76.4 77.79 5.46 0.065 Not deviated

A/Del 23.6 20.81

Del/Del 0 1.4

CYP2D6*4 (rs3892097)

G/G (NM) 80.3 80.1 0.244 0.884 Not deviated

G/A (IM) 18.3 18.80

A/A (PM) 1.4 1.10

CYP2D6*10 (rs106585)

C/C (NM) 84.7 85.19 2.15 0.339 Not deviated

C/T (NM) 15.3 14.21

T /T (IM) 0 0.6

Table 3  Genotypic and allelic frequencies of CYP2D6 
polymorphisms in the Moroccan population

Allelic and 
Genotypic 
Frequencies

Genotype/ 
Allele 
n = 321, No 
(%)

CYP2D6*3  rs35742686

A/A (NM) 233 (76.4)

A/del (IM) 72 (23.6)

Del/del (PM) 0

A 538 (88.2)

delA 72 (11.8)

CYP2D6*4  rs3892097

G/G (NM) 233 (80.3)

G/A (IM) 53 (18.3)

A/A (PM) 4 (1.4)

G 519 (89.5)

A 61 (10.5)

CYP2D6*10  rs1065852

C/C (NM) 265 (84.7)

C/T (NM) 48 (15.3)

T /T (IM) 0

C 578 (92.3)

T 48 (7.7)

Table 4  Haplotypes frequencies of the CYP2D6 (CYP2D6*3/
CYP2D6*4/CYP2D6*10) polymorphisms

CYP2D6*3 CYP2D6*4 CYP2D6*10 Frequency n = 320

A G C 0.7719 247

DelA G C 0.1016 32

A A T 0.0495 16

A A C 0.0421 13

A G T 0.0184 6

DelA A C 0.0081 3

DelA A T 0.006 2

DelA G T 0.0024 1

Fig. 2  Haploview figure showing Linkage disequilibrium (LD) plots 
characterizing haplotype blocks in CYP2D6 gene polymorphisms, in 
terms of Lewontin’s coefficient (Dʹ) and Pearson’s (r2) statistics
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consisted in the evaluation of CYP2D6 genetic frequen-
cies in a healthy subject (population studies), or inves-
tigation the impact of CYP2D6 genotypes on therapy 
outcomes, and exploring risk susceptibility of CYP2D6 
(Association studies/Case–control studies). Results 
of the three SNPs frequencies comparison showed a 
significant difference in CYP2D6*3 allele frequency 
between Moroccans and other ethnic groups, while no 
difference was observed in CYP2D6*4 and CYP2D6*10 
allelic frequencies within the Moroccan population and 
the majority of European, Mediterranean and African 
populations (Table 5).

We also performed a PCA and cluster dendrogram to 
compare CYP2D6 allele frequencies between Moroc-
cans and other populations. However, CYP2D6*3 allele 
was excluded from PCA analyses due to the significant 
difference in this allele frequency between Moroccans 
and other ethnic groups which affect substantially the 
PCA results. The PCA including data of CYP2D6*4 and 
CYP2D6*10 alleles revealed genetic proximity between 
the Moroccan population and Europeans as well as 
Africans (Fig.  3B). The cluster dendrogram also showed 

genetic proximity between Moroccans and Africans as 
well as European populations (Fig. 3A).

Discussion
The CYP2D6 enzyme is implicated in the metabolism 
of a wide range of clinically used drugs, such as tamox-
ifen. Many investigations reported an association of 
CYP2D6 genetic polymorphisms with susceptibility and 
response to treatment in many diseases such as autoim-
mune conditions, cardiovascular diseases and several 
cancers [52–57]. Furthermore, clinical studies reported 
that CYP2D6 genetic polymorphisms are associated 
with adverse responses to many drugs such as opioids 
including codeine, antiarrhythmic drugs and anti-can-
cer drugs [11–13]. Indeed, CYP2D6 is implicated in 
tamoxifen transformation, a drug usually administrated 
in breast cancer hormonal therapy [58]. Furthermore, 
numerous studies reported an association between the 
CYP2D6 poor metabolizer genotype and recurrences 
of breast cancer disease with worse event-free survival 
rates [59]. The role of CYP2D6 includes a large number 
of medical specialties; indeed, the pharmacogenomics 

Table 5  Distribution of CYP2D6 allele frequencies in the Moroccan population compared to other worldwide populations

Population No of Individuals Non-functional Reduced References

*3 P-value *4 P-value *10 P-value

Moroccan 321 11.8 – 10.5 – 7.7 – Present study

Tunisian 230 – – 15.2 0.04 – – [30]

Egyptian 29 – – 13.8 0.34 – – [31]

Syrian 51 0 0.00 9.8 0.93 2.94 0.11 [32]

South African 99 0 0.00 7.07 0.33 2.53 0.00 [33]

Ghanaian 193 0 0.00 7 0.20 3.1 0.006 [34]

Ethiopian 69 0 0.00 5.9 0.19 8 0.85 [35]

Venda 81 0 0.00 3 0.01 12 0.11 [36]

Spanish 133 0.75 0.00 11.65 0.37 0.38 0.00 [37]

Portuguese 1138 1.4 0.00 15.6 0.00 2.5 0.00 [38]

French 672 1.8 0.00 17.2 0.00 1.5 0.00 [39]

Italian 360 0.7 0.00 15.3 0.00 – – [40]

German 589 2.04 0.00 21 0.00 1.53 0.00 [41]

Polish 145 2.1 0.00 23 0.00 – – [42]

Finnish 857 2.6 0.00 10.7 0.43 12.7 0.00 [18]

British 94 3.3 0.00 24.2 0.00 0.5 0.007 [43]

Greek 283 2.3 0.00 17.8 0.00 – – [44]

Turkish 200 6 0.002 10 0.793 26 0.00 [45]

Iranian 100 0.5 0.00 9 0.539 – – [17]

100 – – 12.5 0.24 9 0.79 [46]

Brazilian 95 9.4 0.12 13.1 0.57 – – [47]

179 1.5 0.00 6.32 0.12 4.02 4.40 [48]

Indian 83 0 0.00 8 0.30 15 0.00 [49]

Chinese 223 0 0.00 0.2 0.00 51.3 0.00 [50]

Japanese 98 0 0.00 0.5 0.00 40.8 0.00 [51]
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guideline committees have reviewed clinical relevance 
of CYP2D6, and compiled therapeutic recommenda-
tions for more than 48 drugs and developed recom-
mendations based on CYP2D6 genotype/phenotype 
drugs combinations for 26 drugs (PharmGKB Clini-
cal Guideline Annotations (https://​www.​pharm​gkb.​
org/​guide​lineA​nnota​tions). Thus, having information 
on CYP2D6 genotypes is crucial in deciding the most 
appropriate therapy for each patient.

Therefore, our study contributes to the determination 
of the genetic profile of CYP2D6 within the Moroccan 
population. Overall, the Moroccan population showed 
a predominance of the wild-type genotype (CYP2D6*3 
AA (76.4%); CYP2D6*4 GG (80.3%); CYP2D6*10 CC 
(84.7%)). These genotypes are responsible for the NM 
phenotype. For each SNP, about 19% of individu-
als were carrying an IM phenotype. However, 1.4% of 
Moroccans had PM phenotype for CYP2D6*4. This 
latter was investigated in many populations and the 
results attested to its association with breast cancer 
susceptibility and treatment [60–62]. Haplotype analy-
sis revealed a predominance of AGC haplotype in the 
Moroccan population (77.19% of cases).

According to our results, an increased CYP2D6*3 
(Null allele metabolizer) allelic frequency was observed 
in Moroccan population compared to others. This allele 
was found to be associated with acute lymphoblastic 
leukemia and breast cancer disease [53, 57]. A similar 
CYP2D6*3 allele frequency was also observed within 
Brazilians. This proximity might be a consequence of 
numerous factors, as the fact that Brazilian population 
have received significant immigration from descend-
ants of original north-African groups, including Berbers 
[63], previously stablished in Iberic peninsula (Spain and 
Portugal) during the large Arabic occupation for about 
700 years (711–1492) [64]. Some of them moved directly 
to Brazil, when settled by Portuguese in 1500 and espe-
cially after its independence from Portugal in 1822 [65], 
while others made previous migration to Holland and 
Azoras islands [66].

The CYP2D6*4 was the most studied null allele 
within populations. Concerning CYP2D6*4 allelic 
frequencies, results revealed a significant differ-
ence between Moroccan and both Asian and African 
populations (Ghanaians, Ethiopians), versus a simi-
larity with European and Mediterranean populations 

Fig. 3  A Dendrogram cluster showing relatedness between Moroccan population and Mediterranean, African and Asian populations for CYP2D6*4 
and CYP2D6*10 alleles. B Principal component analysis of the CYP2D6 allele frequencies distribution on the Mediterranean, South African and Asian 
populations

https://www.pharmgkb.org/guidelineAnnotations
https://www.pharmgkb.org/guidelineAnnotations
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(Turkish, Iranian, Finnish, Spanish and Egyptians) 
(Table  5). This similarity is probably resulting from 
their closer geographical distance, inducing a cer-
tain admixture of populations which boosts a degree 
of genetic similarity [67]. For CYP2D6*10, a reduced-
function allele, frequencies showed a great variability 
within populations. Indeed, CYP2D6*10 frequencies 
in Moroccans showed a disparity with European pop-
ulations, versus a similarity with African, Iranian and 
Syrian populations. PCA results for CYP2D6*4 and 
CYP2D6*10 alleles clearly showed genetic proximity 
between Moroccans and both European and African 
populations. The dendrogram clustering of popula-
tions with such diverse ethnic backgrounds revealed 
three clusters, the first one represented by the Asians. 
This cluster is characterized by a high allelic frequency 
of the CYP2D6*10, and low frequency for CYP2D6*4, 
and it is clearly distinct from other populations. The 
second and the third clusters are composed of Euro-
pean and African populations, which are character-
ized by an average value for the two allele frequencies 
for the second cluster, and a CYP2D6*4 high allelic 
frequency and CYP2D6*10 low frequency for the 
third one. This latter includes Moroccans and other 
European and African populations (Spanish, Finnish, 
French, South African).

This study suggests that the Moroccans genetic pro-
file was impacted by historical and demographic events, 
along the Mediterranean, European, and sub-African 
populations, leading to its current genetic diversity. 
Actually, this relevant genetic pool could be interpreted 
by demographic events, for instance, the influx of Arab 
populations from the Middle East, Sub-Saharans as 
well as populations around the Mediterranean area. 
All these groups contributed to the genetic patrimony 
of the present-day Moroccan population. [68]. Indeed, 
the present work and other studies of North African 
genetic variation, which devote attention to the his-
tory of North African and Mediterranean populations, 
presumed that demographic events contributed to the 
genetic homogeneity with the nearby regions [68, 69].

Overall, our study revealed that 1.4% of our popula-
tion carried a PM phenotype for CYP2D6*4 polymor-
phism. Since CYP2D6 is implicated in the metabolism 
pathway of many drugs used in several disease treat-
ments, carrying out of CYP2D6*4 polymorphism may 
affect treatment response. Therefore, pharmacogenetic 
screening for this gene before any therapy is crucial 
to avoid treatment failure, hence reduce cost-related 
issues [70]. Indeed, in many countries, patients take 
advantage of CYP2D6 screening before treatments 
[71]. Moroccan population should also consider this 
recommendation.

Conclusion
The present study attested to the genetic proximity 
between Moroccan, African and European populations. 
Furthermore, these results will help to lay a basis for 
clinical studies, aimed to introduce and optimize a per-
sonalized therapy for the Moroccan population.
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