REVIEW

Open Access

Association of *OPRM1* with addiction: a review on drug, alcohol and smoking addiction in worldwide population

Vanlal Hriatpuii¹, Hoikhe Priscilla Sema², Chenkual Vankhuma³, Mahalaxmi Iyer⁴, Mohana Devi Subramaniam⁵, Krothapalli R. S. Sambasiva Rao¹, Balachandar Vellingiri^{6*} and Nachimuthu Senthil Kumar^{1*}

Abstract

Background: Drugs are chemicals which can disrupt the nerve cell functions of the brain. The present study aims to investigate the addiction related gene (*OPRM1*) in three types of addiction—drugs, alcohol and smoking. Pathway for the addiction was ascertained through KEGG database, and the hotspot mutations for various populations were identified from Gnomad-exomes database. In silico analyses like SIFT, Polyphen, Hope, I-mutant and mutation taster were performed to understand the amino acid substitution, protein function, stability and pathogenicity of the variants.

Main body: Addiction-related variants were found in exons 1, 2 and 3, while the exon 4 did not exhibit any addiction related variation. Among all the variants from this gene, rs1799971 (A118G) polymorphism was the most commonly studied variation for addiction in different populations worldwide. Population-wise allele and genotype frequencies, demographic and epidemiological studies have also been performed from different populations, and the possible association of these variants with addiction was evaluated.

Conclusion: Our findings suggest that *OPRM1* polymorphism impact as pharmacogenetic predictor of response to naltrexone and can also address the genetic predisposition related to addiction in human beings.

Keywords: OPRM1 gene, Addiction, Gnomad-exomes database, Smoking, Drug, Alcohol

Background

The epidemic of narcotic addiction is emerging as the most serious clinical issue of current generation as it ruins families, society and countries. Addiction is defined as the inability to stop taking a substance or engaging in an activity, despite the fact that it is harmful to one's mental and physical health. It is about the way our body craves for a substance especially if it causes obsessiveness. Different single nucleotide polymorphisms (SNPs) in the *OPRM1* gene have been

⁶ Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, India

Full list of author information is available at the end of the article

reported in many populations which has an association with narcotic addiction. We reviewed on three types of addiction which are Drug/Substance addiction, smoking addiction and alcohol addiction related to OPRM1. OPRM1 encodes the mu opioids receptors, which is the primary site of action for the most commonly used opioids including morphine, heroin, fentanyl, etc. It gives the instruction for making the protein called mu opioid receptor. The endogenous opioid system plays a key role in narcotic addiction and mediates the analgesic and reward properties of drugs. The OPRM1 receptor is a membrane of the G-coupled receptor family [1]. This receptor spans more than 80 kbp of nucleotide sequences on chromosome 6q24-25 and is composed of transcript regulatory region, introns and exons [2]. The mu opioid receptor is the

© The Author(s) 2022. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

^{*}Correspondence: geneticbala@buc.edu.in; nskmzu@gmail.com

¹ Department of Biotechnology, Mizoram University, Aizawl, Mizoram, India

major site of action for endogenous opioids, opiate and opioid analgesic drugs and also the exogenous opioids drugs such as heroin, methadone [3]. Particularly, the genomic organization of the human *OPRM1* gene locus is highly similar to the mouse locus. However, alternative splicing events display some substantial differences between human and mouse [4].

Addiction can be caused by genetic factors although environmental factors cannot be underestimated as it is also implicated to the development of the opioid addiction [5]. Among all receptors involved in opioid addiction, mu opioid receptor (MOR) has the major role in mediating opioid tolerance and independence [6]. Research findings have suggested that non-opioid drugs like alcohol, cocaine, etc., may again wield some of their effects through the activation of the opioids receptors. The receptors mediate drug-induced feeling and increases the production of chemicals which can lead to feelings of euphoria, analgesia, pleasure and withdrawal [7], and thus it plays a crucial role in reinforcing and rewarding the substance used to include alcohol. Alcohol dependence is a common disorder which might also lead to psychiatric disorder, and there are about 76 million people suffering from alcohol dependence worldwide.

The other non-opioid substances like nicotine/ tobacco are also associated with the up-or downregulation of the encephalic opioid receptor levels and enhance the endorphinis mu receptor mRNA and protein expression in the brain. It also stimulates endogenous opioid release resulting in the mu opioid receptor activation. Smoking remains very common among people with mental health problems, particularly among those who have substance abuse disorders [8]. Nicotine is the primary reward component in tobacco products, and therefore genes involved in the metabolism of nicotine are biologically plausible candidates for genetic studies of smoking behaviour because they determine the levels and persistence of nicotine in the body. Tobacco dependence occurs through nicotine which is the main psychoactive component in tobacco [9].

In the present study, we have conducted a literature review on addiction causing mutations in the *OPRM1* gene related to drugs, alcohol and smoking addiction. We have also found the mutational hotspots in this gene in 4 exons from the Ensembl Genome browser and used the genome version of GRch37. Further, we conducted the HOPE, POLYPHEN-2, SIFT, MUTA-TION TASTER and i-MUTANT assay to test their pathogenicity and protein structure change followed by exploring the addiction pathways of *OPRM1*gene.

Main text

Association and pathway studies

A huge amount of studies has been reported in the association of opioids drugs/substance addiction with the OPRM1 gene, but the results are not always consistent. Some inconsistent result may be because of the small sample size, inadequate statistics or different diagnostic criteria's (Table 1). The study included a range of phenotype for narcotic addiction like heroin addiction, cocaine addiction, methamphetamine addiction and amphetamine addiction. On the other way, in case of a long-term exposure, the brain starts to adapt to some amount of dopamine (DA) that can bind to dopamine transporter (DAT) which helps in transporting dopamine back to the nerve terminal. So, higher doses are needed to produce the same level of pleasure. Activation of PKA signalling pathway through D1R receptor results in activation of Δ FosB which plays a role in development and maintenance of addiction. Activation of this cdk5 and activators p35 and DARPP32 leads to activation of protein called postsynaptic density protein 95 (PSD 95) which results in reduction in the synaptic clustering of NMDARs (N-methyl-d-aspartic acid receptor) (Fig. 1).

Amphetamine Addiction pathway

Amphetamine is a psychostimulant drug that exerts persistent addictive effects. Most addictive drugs increase extracellular concentrations of DA in nucleus accumbens (NAc) and medial prefrontal cortex (mPFC), projection areas of mesocorticolimbic DA neurons and key components of the "brain reward circuit". Amphetamine achieves this elevation in extracellular levels of DA by promoting efflux from synaptic terminals.

Normal condition

Tyrosine hydroxylase (TH) catalyses the hydroxylation of tyrosine to L-DOPA (L-dihydroxyphenylalanine). TH is activated to make more DOPA which after decarboxylation by AADC (aromatic amino acid decarboxylase) the DA is transferred to synaptic cleft by Vesicular Monoamine Transporter (VMAT). At the same time, some amount of DA is converted to dihydroxyphenylacetic acid (DOPAC) and hydrogen per oxide by monoamine oxidase (MOA) in pre-synaptic cleft. DAT helps in transport of DA back to nerve terminal.

Acute amphetamine

Amphetamine-induced tyrosine hydroxylase (TH) results in increased production of DA from L-DOPA through ADCC. DA is transported to synaptic cleft by

S No	Population/ethnicity	Addiction	n-depen	dent cas	es	Controls	Genes				Reference
		OD/HD	CD	MD	AmD		OPRM1		OPRK1	OPRD1	
1	Swedish	139				170	\checkmark				[10]
2	Asian	473					\checkmark				[6]
3	Asian	87				82	\checkmark				[11]
4	African Americans	336	503							\checkmark	[12]
5	European Americans	1007	336							\checkmark	
6	Caucasian				162		\checkmark				[13]
7	Asian (Manipur, India)	132				147	\checkmark				[14]
8	Mix (7)	79	202			116	\checkmark				[15]
9	African Americans	33	125			51	\checkmark				[16]
10	Asian (Japanese)				128	232	\checkmark				[17]
11	European Americans	412				184	\checkmark		\checkmark	\checkmark	[18]
12	African Americans	202				167	\checkmark		\checkmark	\checkmark	[19]
13	Pakistan	100				100	\checkmark				[20]
14	European Americans	83				832	\checkmark		\checkmark	\checkmark	[21]
15	European Americans	91	171			338	\checkmark				[22]
16	European Americans	111	225			443			\checkmark	\checkmark	[23]
17	European Americans	21								\checkmark	[24]
18	Caucasian	56				83		\checkmark			[25]
19	Caucasian	236				84		\checkmark			[26]
	African Americans	74				34		\checkmark			
20	Asian (China)	145				48		\checkmark			[27]
21	Iran	100				100		\checkmark	\checkmark	\checkmark	[28]
22	Han Chinese (Taiwanese)	72						\checkmark	\checkmark	\checkmark	[29]
23	European Americans			117		76		\checkmark			[30]
24	Malaysians Malays	459				543				\checkmark	[31]

Table 1 Association and pathway studies of drug addiction

The table depicts the association and pathway studies of drug addiction cases and dependent cases which have been analysed for OPRM1, OPRK1 and OPRD1 genes studies from different countries

VMAT, but amphetamine inhibits the activity of MAO. Glutamate binds to its receptor NMDA (N-methyl-D-aspartate) receptor and AMPA. Activation of these receptor allows positive ions to flow through the membrane (Ca^{2+} and Na^+). At the same time, released DA bind to D1R receptor. Influx of positive ions result in depolarization which leads to increased Ca^{2+} concentration. Activated D1R binds to Gs which leads to induced activation of Adenyl Cyclase, an enzyme which convert ATP to cAMP which in-turn activate PKA signalling pathway. The cAMP binds to CREB protein that regulates expression of genes and thus induces PDYN, *arc, c-fos* gene expression, which is responsible for induction and maintenance of addiction (Fig. 2).

Chronic amphetamine

In case of chronic abuse, amphetamine-induced TH activity results in production of high concentration of DA from L-DOPA through ADCC. DA is transported to synaptic cleft through VMAT, but MAO activity

is inhibited and reuptake of DA by DAT is blocked which leads to increased concentration of DA in synaptic cleft. Glutamine binds to its receptor NMDA and AMPA. Exposure to ethanol also influences the expression of Ca²⁺/calmodulin-dependent protein kinase IV (CaMKIV), where the CaMKIV main role is to activate the CREB, and thereby CREB phosphorylation occurs in the NAC. Not only is CREB phosphorylated upon activation of D1 cAMP-PKA signalling but also DARPP-32, which is a 32-kDa protein that is expressed predominantly in the synaptic neurons. The central action of nicotine is mediated by nicotine acetylcholine nACh receptor. In normal condition, GABA neurons are transported to synaptic vesicle by Vesicular GABA Transmitter (VGAT). GABA mediates its effect via its receptor GABAA. GABAA receptor present in postsynaptic cell contains chloride ions channel (OCl²⁻), calcium ions channel (OCa²⁺) and sodium ions channel (Na^{+}) (Fig. 3).

Hotspot mutations

Ensembl Genome Browser of version 37 was used to explore the different variations present in the four exons of the *OPRM1*. Focus was given to the variant frequency which contains information about sample size, reference and alternate alleles in populations. In the present study, Gnomad-Exomes database was used to find hotspot mutations. The addiction genes were selected separately from all of the variants present in Gnomad-Exomes (Exons 1, 2, 3 and 4), and there were no addiction variants in exon4 from this database. We have seen three addiction variants in exon1, four in exon2 and five in exon3. These addiction variants were tested by using

PDYN, arc and c-fos genes, which are responsible for the induction and maintenance of addiction

in silico analysis-HOPE, SIFT, POLYPHEN-2, MUTA-TION TASTER and i-MUTANT (Table 5).

Demographic and epidemiological studies in different populations

A case-control study was performed on addicted patients using opioid, cocaine, ecstasy, alcohol, cannabis

and sedative substances and statistical diagnostic of DSM IV [32]. Alblooshi et al. (2018) clinically diagnosed for substance used disorder by DSM V and the epidemiological characteristics appeared to correlate with marital status, and the single males were the highest percentage in the cohort [33]. Coller et al. compared genotyped frequencies between opioid-dependent and control groups,

and no difference was observed with a pooled OR (95% CI), from the 13 studies of 1.28 (0.77–2.11), p = 0.34, and the comparison of allele frequencies in case and controls has also no difference with a pooled OR (95% CI) of the

16 studies of 1.16 (0.91–1.47), p=0.23 [25]. Puspitasari et al. used cross-sectional method and compared the participants as gender (male and female). The G allele tends to be higher in males (p=0.029) (Table 6) [34].

Population based studies

The Genome Aggregation Database (gnomAD) is used to aggregate and harmonize exome and genome sequencing data from a variety of large-scale sequencing projects and to make summary data available for the wider scientific community (https://gnomad.broadinstitute.org/about). We observed population-based hotspot mutation for each of the variants selected for our review. Among all the 12 variants, rs1799971, rs17174794 and rs62638690 were reported in Clinvar as clinically significant, and among them the variant rs1799971 was associated with all the three types of addiction (drugs, alcohol and nicotine/ smoking). Variant Asp-40 does not show altered binding affinities for most opioid peptides and alkaloids tested, but it binds to beta-endorphin, an endogenous opioid that activates the mu opioid receptor approximately 3 times more than the most common allelic form. The rs9282819 and rs9282817 are shown virtually monomorphic, and Clarke et al. showed that rs17174794 has no significant association, while rs17174801 and rs62638690 have shown a significant association for narcotic addiction [35] (Table 4).

Narcotic addiction

Drug/substance addiction is widely studied in different populations in various genes. In the case of the OPRM1 gene, overall there are about 273 SNPs, where variant rsID1799971 from exon1 (also known as A118G, Asn40Asp) are the common polymorphism and mostly studied for addiction [32]. It is the mutational hotspot for the Asian Population and is non-synonymous mutation which indicates the change in amino acid. Turkan et al. included 103 patients addicted to opioids and cocaine and have 83 healthy volunteers with similar demographic features as controls [32]. Their finding includes the genotyping where addicted patients scored 32.0% and control 16.9%, respectively (p value = 0.027), the prevalence of G allele was 16.1% in patient and 8.1% in control group (p value = 0.031) which shows that there is an association between A118G and substance addiction, while there is no result with psychiatric disorder. Schwantes-An et al. performed genetic meta-analysis and has demonstrated that the G allele of rs1799971 has a modest protective effect on substance dependence scoring. The OPRM1 (A118G) polymorphism in Indonesian population and genotype analysis was carried out by a modified allelespecific polymerase chain reaction (PCR) method [36]. Ahmed et al. performed SNPs genotyping of rsID1799971 (A118G) with PCR-RFLP method and found 13% controls and 7% addicts in heterozygous condition, and 8% controls and 22% addicts in homozygous condition [20]. Drakenberg et al. found the association between heroin and A118G SNP in OPRM1 in Caucasian European subjects [37].

Besides, the variant S147C (rs17174794) genotyped in European American was found to increase the potency of Morphine, N152D (rs17174801) mutant leads to the reduced expressions of the receptors [38], and N40D (rs1799971) leads to the loss of a glycosylation site in the extracellular N-terminal domain of the MOR, and association was found in many populations, but not found any of these three variants association with narcotic addiction in this paper. Nikolov et al. (2011) also studied heroin addiction in the Bulgarian population from the ethnic Bulgarian and Roma where allelic and genotyping analysis was done [39]. Different statistical analyses method was done to know the allele and genotype frequency. Various polymorphisms were studied from OPRM1 gene with different substance addiction. In allele frequency, the mutant allele and the wild-type allele frequency were recorded with the OR and *p*-value. Genotype frequency can be calculated using Hardy-Weinberg equilibrium. The level of statistical significance can be expressed by *p*-value. A *p*-value less than 0.05 (typically \leq 0.05) is said to be statistically significant. The *p* value higher than 0.05 (>0.05) is not statistically significant and indicates strong evidence for the null hypothesis.

Alcohol addiction

Frances et al. studied the association between the mu opioid receptor gene and alcohol and tobacco consumption in Spanish population [40]. Lara et al. studied the association between the alcohol and OPRM1 using an intravenous alcohol administration paradigm to investigate the association between sensitivity of OPRM1 and alcohol and the results showed that the alcohol would be higher in the carrier of the G-allele and they were almost three times more likely to have a family history of AUD [41]. The G-allele carriers were linked with higher urgency and regulation of impulsivity. Alblooshi et al. studied DRD2 and OPRM1 as candidate genes and performed a cross-sectional case-control cohort in United Arab Emirates (UAE) population [33] (Table 2). Another study investigated the association between OPRM1 and alcohol dependence in Taiwanese Han where three types of receptor genes were examined by the differences in allele frequency and genotype frequency distribution between cases-control as well as HWE was examined using Fisher's exact tests.

Nicotine addiction

Nicotine is a chemical found in tobacco, and most smokers use tobacco regularly as they are addicted to nicotine. It is an addictive substance which can affect the lungs through smoking tobacco. Nicotine also increases the levels of endogenous opioids that bind to mu opioid

S. No	Population/ethnicity	Alcohol- dependent cases	Controls	Genes			Publication
				OPRM1	OPRK1	OPRD1	
1	US Caucasian	100					[42]
	Finnish	324		\checkmark			
	American Indians	367		\checkmark			
2	Asian	53	82	\checkmark			[11]
3	American Indians	251		\checkmark			[43]
4	Mix (7)	100	116	\checkmark			[15]
5	European Americans	179	297	\checkmark			[44]
6	European Americans	219			\checkmark		[45]
7	European Americans	219	832	\checkmark	\checkmark	\checkmark	[21]
8	European Americans	318	338	\checkmark			[22]
9	European Americans	557	443		\checkmark	\checkmark	[23]
10	Finnish	512	511	\checkmark			[46]
11	Caucasian	236	84	\checkmark			[26]
	African Americans	74	34	\checkmark			
12	Los Angelas (White, AfricanAmerican, Asian, Latino, NativeAmerican)	295		\checkmark			[41]
13	Spanish (Caucasian)	763		\checkmark			[40]
14	Korean	112	140	\checkmark			[47]

Table 2 Association and pathway studies of alcohol addiction

The table explains the association and pathway studies of alcohol-dependent cases and controls in the genes OPRM1, OPRK1 and OPRD1 in different populations

Population/ethnicity	Nicotine-dependent	Genes			Publication
	cases	OPRM1	OPRK1	OPRD1	
European	288	\checkmark			[22]
Chinese	284	\checkmark			[52]
Caucasian	688	\checkmark			[22]
Spanish	763	\checkmark			[40]
Caucasian + Asian	3313	\checkmark			[49]
Caucasian	179	\checkmark			[44]
Caucasian	62	\checkmark			[50]
UK	633	\checkmark			[53]
Netherland	1399	\checkmark			[51]
Pennsylvania	44	\checkmark			[41]
Caucasian + Asian		\checkmark			[2]

Table 3 Association and pathway studies of nicotine/smoking addiction

This table explains the association and pathway studies of nicotine/smoking addiction in different populations OPRM1, OPRK1 and OPRD1 in different ethnic groups

receptors on GABA interneurons in the VTA, and the mu opioid receptor (*OPRM1*) ASN40ASP functional variant has been associated with response to NRT; however, the direction of association in different populations has not been consistent [48]. The association between the nicotine dependence and the *OPRM1* was systematic reviewed, and meta-analysis was performed [49]. The odd

ratios (OR) and 95% confidence interval (95% CIs) were calculated in allele, homozygote, heterozygote, dominant and recessive allele. Lechner et al. (2016) found the influence of A118G polymorphism in *OPRM1* gene and VNTR polymorphism in DRD2 gene on cigarette cravings after alcohol drinking where genotyping and analysis were done for these polymorphisms. Naltrexone may be

Table 4 Population-based variants in the OPRM1

S. No	rsID	Exon	Hotspot (population)
1	rs1799971	1	Asian
2	rs9282819	1	European
3	rs9282817	1	African
4	rs17174794	2	European
5	rs17174801	2	African
6	rs79910351	2	European
7	rs62638690	2	Ashkenazi Jewish
8	rs1799974	3	European
9	rs17174822	3	African
10	rs200811844	3	African
11	rs17174829	3	European
12	rs11575856	3	Asian

This table explains the different exons and hotspot regions in population-based variants

an important and helpful in aiding smoking cessation for those who are having a heavy drink of alcohol [50]. Zhang et al. examined the association of smoking initiation and nicotine dependence with mu opioid receptor where the sample was drawn from two population-based twin studies (Table 3) [22]. Kleinjan et al. studied the development of nicotine craving in adolescence smokers who have smoked from the parental exposure of smoking. Three types of genes are genotyped—*DRD2*, *DRD4* and *OPRM1* (Fig. 4) [51] (Tables 4, 5 and 6).

Conclusion

Taken collectively, our review shows that rs1799971 in exon 1 is the most commonly studied addiction variants in different population in substance addiction. Although there are many studies, the association between addiction and OPRM1 is not fully catalogued [55]. Based on previous studies, males have more chances to become addicted compared to females and different substance addiction was influenced by 60% genetics as well as environmental factor [56]. The identification of genes which involve in addiction pathway may prove our understanding of the disorder and may allow the development of treatment process. As the literature review covers only few exons of OPRM1, the full-length gene sequence data will throw more light for such types of studies. To conclude, as different studies showed conflicting results, researchers may need to study a larger sample size to have a better conclusion. The potential clinical utility of OPRM1 polymorphism which is influenced as a pharmacogenetic predictor of response to naltrexone needs much more study. Thus, it may be necessary to address the genetic predisposition and delineate the association with the clinical problems in future studies.

vide population
n different worldw
otype frequency i
equency and gen
1 variants allele fr
Table 5 OPRM1

s. 8	Author	Location	Population	rsID	Controls	Patients	Substance	Allele	: frequen	Ŋ		Genotype frequency	
								A	ט	ß	<i>P</i> value	OR	<i>P</i> value
_	[32]	Europe	Turkish	rs1799971	83	103	General substance	0.839	0.084	2.07	0.031	2.32	0.027
						96	Opioid	I	I	I	I	2.217	0.081
						96	Cocaine	I	I	I	I	0.635	0.484
2	[10]	Europe	Swedish	rs1799971	120	67	Heroin	0.828	0.172	2.72**	0.0025	2.97	0.0031
m	[36]	Europe	European Ancestry	rs1 79997 1	I	I	Substance depend- ence	I	I	I	I	06.0	0.952**
4	[34]	Asia	Indonesian	rs1799971	I	158	Opioid	0.396	0.604	0.029*	1.659**	1.19	0.092
5	[20]	Asia	Pakistan	rs1799971	100	100	Opioid	0.74	0.26	I	I	3.06(GG)	0.016
9	[37]	Europe	Caucasian Euro- pean	rs1799971	I	65	Heroin	I	I	I	I	0.061*	0.013
~	[35]	North America	European American	rs62638690	I	1377	Heroin/cocaine	O	0.99 (F)	0.47	0.02	0.94	0.796
				rs17174794	I			U	0.38 G	1.49	0.19		
			African American	rs17174801	I			∢	0.9 G	1.14	0.65	0.94	0.74
				rs1799971	I				2.62**	0.57	0.57		
∞	[33]	European	UAE	rs1799971	262	512	SUD	I	I	I	I	0.78	0.12
6	[39]	Europe	Bulgarian	rs1799971	3293	Heroin	Roma	I	0.202	I	0.0009	I	I
							Non-Roma	I	0.138	I	I	I	I
10	[40]	Europe	Spanish	rs1799971	763 women (465)	Alcohol	Women					0.55	0.049
					Men (298)		Men	I	I	2.25	0.046	I	0.280
1	[41]	Europe	Caucasian	rs1799971	295	Alcohol		I	I	I	I	I	0.056
12	[49]			rs1799971	9613	Alcohol		I	I	I	I	1.261	0.042
13	[46]	Europe	Finnish	rs1799971									
14	[47]	Asia	Korean	rs1799971	140 112	Alcohol		0.603	0.397	1.40	0.105	1.21	0.045
15	[33]	Europe	UAE	rs1799971	262 512	SUD		0.189	0.154	0.78	0.12	I	I
			Egypt Arabs	rs1799971				0.007	0.052*	0.73	0.54	I	I
			Combine of UAE& Egypt Arabs	rs1 799971				0.17	0.13	0.73	0.04	I	I
16	[40]	Europe	Spanish	rs1799971	763 (Unrelated Subject)	Smoking		I	I	I	I	I	0.716
17	[49]	Europe 🕂 Asia	Caucasian + Asian	rs1799971	3313	Nicotine dependend	Ce	I	I	1.000	0.999	1.261	0.042
18	[20]	Europe	Caucasian	rs1799971	62	Cigarette craving		I	I	I	I	I	0.008
19	[2]	Europe	Caucasian	rs1799971	I	Smoking		I	I	I	I	3.26**	0.00*
This ti	able explains	s the OPRM1 varian	ts allele frequency and <u>g</u>	Jenotyped fredu	ency in different worldwide p	opulation compared to g	oatients and controls						

	-)	-							
S. No	o Subject categorized	No. of participants	Age	Age at addiction	Gender	Ethnicity	Marital status		Family history
					Male Female		M UM W	٥	
	A118A	1	23-45	19–25	57 31	1			6.56
	A118G		20–28	12-22	12 3				17.2
2	15-58	26	15-58		23 33				
	19–46	39	1946		3 6				
m	Control		36.5 years		52%				
	Heroin		45.6 years		23%				
4	Control		31.8 years		54.3%				
	Substance depend- ence		37.9 years		71.2%				
5	Control	2324			78%				
	Opioid	2845			56%				
Q			Below 20–12 20–29: 144 30–39: 54 40–49: 32 Above 50: 8			Ajam-17 Arab-56 Bloush-18 Mixed-48 None-10	89 146 1	14	142
~	Current smoker		Mean age 56.4 土 14.8						
	Ex-smoker		Mean age 68.5 ± 8.3						
8	Male	39.9土 14.7					158 108	£	
	Female	36.7 土 14.8					148 176	177	
	Male	42.3 土 12.7					43 22 –	2	
	Female	39.6 土 12.7					58 41 4	£	
6	OH dependent		19.6%		94.6%				
	Non-alcohol dependent		41.4%		57.1%				

 Table 6
 Demographic studies in different populations

Tab	e 6 (continued)									
S. No	Subject categorized	Smoking history	Alcohol	Education				Disease history/	Employment	References
				д.	HS S	Dip	U Doc	stress related		
_	A118A	12.5		50	28.1		12.5 9.3			[54]
	A118G	20.0		38.7	22.5		16.1 22.5			
7	15-58							Alcohol intoxication (n 2), electric shock (n 2), pulmonary emboli (n 1), myocar dial infarct (n 17), pneumonia (n 2), sudden death (n 2)	ų	[37]
	19-46							Heroin overdose		
m	Control									[10]
	Heroin									
4	Control									[15]
	Substance depend-									
Ś	Control									[25]
	Opioid									n 2
Q		Current smoker—239 Ex-smoker—11 Never smoke—0		135	71	30			Employed: 82 Unemployed: 116 Student: 31 Master degree: 2 Bachelor degree: 1	[33]
\sim	Current smoker	Mean age: 23.6 ± 8.0Cigarette consume (per day)22.3 ± 11.9 Smoking years 32.9 ± 14.3		35.5	64.5			Cardiovascular and cerebrovascu- lar—58.7 Respiratory dis- ease—27.5 Diabetes melli- tus—13.8	1	[52]
	Ex-smoker	Mean age: 28.3 ± 10.8 Gigarette consume (per day)—19.9 ± 9.9 Smoking years -31.7 ± 12.3		34.9	65.1			Cardiovascular and cerebrovascu- lar—62.3 Respiratory dis- ease—30.8 Diabetes melli- tus—6.8		

Table 6 (continued)								
S. No Subject categorized Smoking	nistory Alcohol	Education				Disease history/	Employment	References
		۵.	HS S	Dip	U Doc	cause of death/ stress related		
Male		44	e e	Ś	5	Stress at work: 5.85 ± 2.54 Life stress: 4.94 ± 2.17 OH intake g/d: 7.50 ± 8.78 AUD (AUDIT ≥ 8): 10.6		[40]
Female		63	2	0	123	Stress at work: 5.39±2.65 Life stress: 5.17±2.29 OH intake g/d: 4.75±6.50 AUD (AUDIT≥8): 7.3		
Male		21	DE .		17	Stress at work: 6.30 ± 2.62 Life stress: 5.13 ± 2.21 Cigrette intake n/d: 12.9 ± 10.3 Fragestrom score: 3.38 ± 2.96		
Female		30	46		Ē	Stress at work: 5.90 ± 2.93 Life stress: 6.05 ± 2.44 Cigrette intake n/d: 11.2 ± 8.7 Fragestrom score: 2.89 ± 2.09		

Table 6 (continued)

S. No	Subject categorized Smoking history	Alcohol	Education					Disease history/	Employment	References
			۵.	분	s	Dip	- -	ause of death/ tress related		
σ.	OH dependent	Age of onset of alco- hol problems—35 First hospitalization for alcohol problems (years)—42.5 Average drinking days per month— 16.3 Drinks per drinking day—12.4 Family history of alcohol prob- lems—47.3 History of severe alcohol withdrawal -22.3	8.7%							[47]
	Non-alcohol dependent	N/A	N/A							

M: married; UM: unmarried; W: widow; D: divorced; P: primary; S: secondary; HS: high school; Dip: diploma; U: university; Doc: doctorate; Fam: family; Frd: friends; Eco: economic This table explains the demographic studies in different populations

Abbreviations

OPRM1: Mu (µ) opioid receptor; KEGG: Kyoto Encyclopedia of Genes and Genomes; SNPs: Single nucleotide polymorphisms; MOR: Mu opioid receptor; mRNA: Messenger ribonucleic acid; DA: Dopamine; DAT: Dopamine transporter; D1R receptor: Dopamine receptor D1; p35: Cyclin-dependent kinase 5 activator protein; PKA: CAMP-dependent protein kinase; NMDARs: N-methyld-aspartic acid receptor; NAc: Nucleus accumbens; mPFC: Medial prefrontal cortex; TH: Tyrosine hydroxylase; L-DOPA: L-Dihydroxyphenylalanine; AADC: Aromatic amino acid decarboxylase; VMAT: Vesicular monoamine transporter; DOPAC: Dihydroxyphenylacetic acid; MOA: Monoamine oxidase; NMDA: N-methyl-D-aspartate; CaMKIV: Ca²⁺/calmodulin-dependent protein kinase IV; VGAT: Vesicular GABA transmitter; OCI2: Chloride ions channel; OCa2+: Calcium ions channel; gnomAD: The genome aggregation database; CI: Confidence interval; PCR: Polymerase chain reaction; PCR-RFLP: Polymerase chain reaction-restriction fragment length polymorphism; HWE: Hardey Weinberg equilibrium; DRD2: Dopamine receptor D2; DRD4: Dopamine receptor D4; DST: Department of Science and Technology.

Acknowledgements

The authors acknowledge DST, India and Mizoram University, Aizawl, to complete this work successfully.

Authors' contributions

NSK, VH, CV and HPS performed conceptualization of the manuscript; VB, IM, SMD and KRSSR revised and edited the manuscript. All authors have reviewed the manuscript.

Funding

The authors are thankful to DST, New Delhi, for the Technology Enabling Centre which facilitated the work. The authors report no declarations of interest.

Availability of data and materials

Not applicable.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interest.

Author details

¹Department of Biotechnology, Mizoram University, Aizawl, Mizoram, India. ²Substance Abuse and Palliative Care Unit, Synod Hospital, Aizawl, Mizoram, India. ³Community Medicine, Zoram Medical College, Falkawn, Mizoram, India. ⁴Livestock Farming and Bioresources Technology, Coimbatore, Tamil Nadu, India. ⁵SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai 600 006, India. ⁶Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, India.

Received: 7 June 2021 Accepted: 14 January 2022 Published online: 22 March 2022

References

- Bond C, LaForge KS, Tian M, Melia D, Zhang S, Borg L, Gong J, Schluger J, Strong JA, Leal SM, Tischfield JA, Kreek MJ, Yu L (1998) Single-nucleotide polymorphism in the human mu opioid receptor gene alters β-endorphin binding and activity: Possible implications for opiate addiction. PNAS 95:9608–9613
- Wang J, Jin P, Wang W-H, He M, Zhang Z-T, Liu Y (2015) Association of A118G polymorphism in the μ-opioid receptor gene with smoking behaviors: a meta-analysis. J Toxicol Sci 40:711–718

- Kreek MJ, Nielsen DA, Butelman ER, LaForge KS (2005) Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nat Neurosci 8:1450–1457. https://doi.org/10.1038/ nn1583
- 4. Levran O, Yuferov V, Kreek MJ (2012) The genetics of the opioid system and specific drug addictions. Hum Genet 131:823–842
- Balachandar V, Kumar BL, Suresh K et al (2008) Evaluation of chromosome aberrations in subjects exposed to environmental tobacco smoke in Tamilnadu. India Bull Environ Contam Toxicol 81:270–276. https://doi.org/ 10.1007/s00128-008-9489-3
- Glatt SJ, Bousman C, Wang RS, Murthy KK, Rana BK, Lasky-Su JA, Zhu CS, Zhang R, Li J, Zhang B, Li J, Lyons MJ, Faraone SV, Tsuang MT (2007) Evaluation of OPRM1 variants in heroin dependence by family-based association testing and meta-analysis. Drug Alcohol Depend 90:159–165
- Gianoulakis C (2001) Influence of the endogenous opioid system on high alcohol consumption and genetic predisposition to alcoholism. J Psychiat Neursci 26:304–318
- Geetha B, Sukumar C, Dhivyadeepa E et al (2019) Autism in India: a casecontrol study to understand the association between socio-economic and environmental risk factors. Acta Neurol Belg 119:393–401. https://doi. org/10.1007/s13760-018-01057-4
- Pidoplichko VI, DeBiasi M, Williams JT, Dani JA (1997) Nicotine activates and desensitizes midbrain dopamine neurons. Nature 390:401–404
- Deb I, Chakraborty J, Gangopadhyay PK, Choudhury SR, Das S (2010) Single-nucleotide polymorphism (A118G) in exon 1 of OPRM1 gene causes alteration in downstream signaling by mu-opioid receptor and may contribute to the genetic risk for addiction. J Neurochem 112:486–496
- 11. Crist RC, Clarke T-K, Ang A et al (2013) An intronic variant in OPRD1 predicts treatment outcome for opioid dependence in African-Americans. Neuropsychopharmacol 38:2003–2010
- Dlugos AM, Hamidovic A, Hodgkinson C, Shen P, Goldman D, Palmer AA, de Wit H (2011) OPRM1 gene variants modulate amphetamine-induced euphoria in humans. Genes Brain Behav 10:199–209
- Koijam AS, Hijam AC, Singh AS, Jaiswal P, Mukhopadhyay K, Rajamma U, Haobam R (2021) Association of dopamine transporter gene with heroin dependence in an Indian subpopulation from Manipur. J Mol Neurosci 71:122–136
- Gelernter J, Cubells J, Kidd J, Pakstis A, Kidd K (1999) Population studies of polymorphisms of the serotonin transporter protein gene. Am J Med Genet 88:61–66
- 15. Hoehe MR, Köpke K, Wendel B, Rohde K, Flachmeier C, Kidd KK, Berrettini WH, Church GM (2000) Sequence variability and candidate gene analysis in complex disease: association of μ opioid receptor gene variation with substance dependence. Hum Mol Genet 9:2895–2908
- Ide S, Kobayashi H, Ujike H, Ozaki N, Sekine Y, Inada T, Harano M, Komiyama T, Yamada M, Iyo M, Iwata N (2006) Linkage disequilibrium and association with methamphetamine dependence/psychosis of μ-opioid receptor gene polymorphisms. Pharmacogenomics J 6:179–188
- Levran O, Londono D, O'hara K, Nielsen DA, Peles E, Rotrosen J, Casadonte P, Linzy S, Randesi M, Ott J, Adelson M (2008) Genetic susceptibility to heroin addiction: a candidate gene association study. Genes Brain Behav 7:720–9
- Levran O, Londono D, O'Hara K, Randesi M, Rotrosen J, Casadonte P, Linzy S, Ott J, Adelson M, Kreek MJ (2009) Heroin addiction in African Americans: a hypothesis-driven association study. Genes Brain Behav 8:531–540
- Xuei X, Flury-Wetherill L, Bierut L, Dick D, NurnbergerJr J, Foroud T, Edenberg HJ (2007) The opioid system in alcohol and drug dependence: family-based association study. Am J Med Genet B Neuropsychiatr Genet 144:877–884
- Ahmed M, Ul-Haq I, Faisal M, Waseem D, Taqi MM (2018) Correction to: Implication of OPRM1 A118G polymorphism in opioids addicts in Pakistan: in vitro and in silico analysis. J Mol Neurosci 66:306.17
- Zhang H, Kranzler H, Yang B, Luo X, Gelernter J (2008) The OPRD1 and OPRK1 loci in alcohol or drug dependence: OPRD1 variation modulates substance dependence risk. Mol Psychiatry 13:531–543
- 22. Kleinjan M, Engels RCME, DiFranza JR (2015) Parental smoke exposure and the development of nicotine craving in adolescent novice smokers: the roles of DRD2, DRD4, and OPRM1 genotypes. BMC Pulm Med 15:115

- Zhang H, Gelernter J, Gruen JR, Kranzler HR, Herman AI, Simen AA (2010) Functional impact of a single-nucleotide polymorphism in the OPRD1 promoter region. J Hum Genet 55:278–84
- 24. Kranzler HR, Modesto-Lowe V, Nuwayser ES (1998) Sustained-release naltrexone for alcoholism treatment: a preliminary study. Alcohol Clin Exp Res 22:1074–9
- Coller JK, Beardsley J, Bignold J, Li Y, Merg F, Sullivan T, Cox TC, Somogyi AA (2009) Lack of association between the A118G polymorphism of the mu opioid receptor gene (OPRM1) and opioid dependence: a metaanalysis. Pharmacogenom Pers Med 2:9–19
- Shi J, Hui L, Xu Y, Wang F, Huang W, Hu G (2002) Sequence variations in the mu-opioid receptor gene (OPRM1) associated with human addiction to heroin. Hum Mutat 19:459–460
- 27. Asl SS, Roointan A, Bergen H, Amiri S, Mardani P, Ashtari N, Shabani R, Mehdizadeh M (2018) Opioid receptors gene polymorphism and heroin dependence in Iran. Basic Clin Neurosci 9:101
- Huang C, Liu H, Su N, Hsu Y, Yang C, Chen C, Tsai P (2008) Association between human opioid receptor genes polymorphisms and pressure pain sensitivity in females. Anaesthesia 63:1288–1295
- Bousman CA, Glatt SJ, Everall IP, Tsuang MT (2009) Genetic association studies of methamphetamine use disorders: a systematic review and synthesis. Am J Med Genet B Neuropsychiatr Genet 150:1025–1049
- Nagaya D, Zahari Z, Saleem M, Yahaya B, Tan S, Yusoff N (2018) An analysis of genetic association in opioid dependence susceptibility. J Clin Pharm Ther 43:80–6
- Bergen A, Kokoszka J, Peterson R, Long J, Virkkunen M, Linnoila M, Goldman D (1997) μ opioid receptor gene variants: lack of association with alcohol dependence. Mol Psychiatry 2:490–494
- Turkan H, Karahalil B, Kadioğlu E, Eren K, Gurol DT, Karakaya AE (2019) The association between the OPRM1 A118G polymorphism and addiction in a Turkish population. Arc Hig Rada Toksikol 70:97–103
- 33. Alblooshi H, Hulse G, Osman W, Kashef AE, Shawky M, Ghaferi HA, Safar HA, Tay GK (2018) The frequency of DRD2 rs1076560 and OPRM1 rs1799971 in substance use disorder patients from the United Arab Emirates. Ann Gen Psychiatry 17:22
- Puspitasari AA, Ikawati Ż, Rahmawati SSA (2020) High frequency of the opioid receptor μ-1 (OPRM1) A118G polymorphism, an opioid drug therapy related gene, in the indonesian population. Curr Pharmacogenom Pers Med 17:64–69
- Clarke TK, Crist RC, Kampman KM, Dackis CA, Pettinati HM, Brien CPO, Oslin DW, Ferraro TN, Lohoff Berrettini WH (2013) Low frequency genetic variants in the μ-opioid receptor (OPRM1) affect risk for addiction to heroin and cocaine. Neurosci Lett 542:71–5
- Schwantes-An TH, Zhang J, Chen LS et al (2016) Association of the OPRM1 variant rs1799971 (A118G) with non-specific liability to substance dependence in a collaborative de novo meta-analysis of Europeanancestry cohorts. Behav Genet 46:151–169
- Befort K, Filliol D, Décaillot FM, Gavériaux-Ruff C, Hoehe MR, Kieffer BL (2001) A single nucleotide polymorphic mutation in the human μ-opioid receptor severely impairs receptor signaling. J Biol Chem 276:3130–3137
- Nikolov MA, Beltcheva O, Galabova A et al (2011) No evidence of association between 118A>G OPRM1 polymorphism and heroin dependence in a large Bulgarian case-control sample. Drug Alcohol Depend 117:62–65
- Frances F, Portoles O, Castello A, Costa JA, Verdu F (2015) Association between opioid receptor mu 1 (OPRM1) gene polymorphisms and tobacco and alcohol consumption in a Spanish population. Bosn J Basic Med Sci 15:31–36
- Ray LA, Barr CS, Blendy JA, Oslin D, Goldman D, Anton RF (2012) The role of the Asn40Asp polymorphism of the mu opioid receptor gene (OPRM1) on alcoholism etiology and treatment: a critical review. Alcohol Clin Exp Res 36:385–394
- Munafo MR, Johnstone EC, Aveyard P, Marteau T (2013) Lack of association of OPRM1 genotype and smoking cessation. Nicotine Tob Res 15:739–744
- 42. Ehlers CL, Lind PA, Wilhelmsen KC (2008) Association between single nucleotide polymorphisms in the mu opioid receptor gene (OPRM1) and self-reported responses to alcohol in American Indians. BMC Med Genet 9:1–11
- 43. Schinka JA, Town T, Abdullah L, Crawford FC, Ordorica PI, Francis E, Hughes P, Graves AB, Mortimer JA, Mullan M (2002) A functional

polymorphism within the $\mu\text{-opioid}$ receptor gene and risk for abuse of alcohol and other substances. Mol Psychiatry 7:224–228

- Xuei X, Dick D, Flury-Wetherill L, Tian HJ, Agrawal A, Bierut L, Goate A, Bucholz K, Schuckit M, Nurnberger J, Tischfield J (2006) Association of the κ-opioid system with alcohol dependence. Mol Psychiatry 11:1016–1024
- 45. Rouvinen-Lagerström N, Lahti J, Alho H, Kovanen L, Aalto M, Partonen T, Silander K, Sinclair D, Räikkönen K, Eriksson JG, Palotie A (2013) μ-Opioid receptor gene (OPRM1) polymorphism A118G: lack of association in Finnish populations with alcohol dependence or alcohol consumption. Alcohol Alcohol 48:519–525
- 46. Kim SG, Kim CM, Kang DH, Kim YJ, Byun WT, Kim SY, Park JM, Kim MJ, Oslin DW (2004) Association of functional opioid receptor genotypes with alcohol dependence in Koreans. Alcohol Clin Exp Res 28:986–990
- Fang J, Wang X, He B (2014) Association between common genetic variants in the opioid pathway and smoking behaviors in Chinese men. Behav Brain Funct 10:1–8
- Kong X, Deng H, Gong S, Alston T, Kong Y, Wang J (2017) Lack of associations of the opioid receptor mu 1 (OPRM1) A118G polymorphism (rs1799971) with alcohol dependence: review and meta-analysis of retrospective controlled studies. BMC Med Genet 18:120
- Lechner WV, Knopik VS, McGeary JE et al (2016) Influence of the A118G polymorphism of the OPRM1 gene and exon 3 VNTR polymorphism of the DRD4 gene on cigarette craving after alcohol administration. Nicotine Tob Res 18:632–636
- 50. Zhang L, Kendler KS, Chen X (2006) The μ-opioid receptor gene and smoking initiation and nicotine dependence. Behav Brain Funct 2:28
- Bart G, Heilig M, LaForge K, Pollak L, Leal S, Ott J, Kreek M (2004) Substantial attributable risk related to a functional mu-opioid receptor gene polymorphism in association with heroin addiction in central Sweden. Mol Psychiat 9:547–549
- Munafo MR, Johnstone EC, Aveyard P, Marteau T (2013) Lack of association of OPRM1 genotype and smoking cessation. Nicotine Tob Res 15:739–744
- Türkan H, Karahalil B, Kadıoğlu E, Eren K, Gürol DT, Karakaya AE (2019) The association between the OPRM1 A118G polymorphism and addiction in a Turkish population. Arh Hig Rada Toksikol 70:97–103
- Al-Eitan LN, Rababa'h DM, Alghamdi MA (2021) Genetic susceptibility of opioid receptor genes polymorphism to drug addiction: a candidategene association study. BMC Psychitr 21:5. https://doi.org/10.1186/ s12888-020-03006-z
- 55. Balachandar V, Lakshmankumar B, Suresh K, Manikantan P, Sangeetha R, Mohanadevi S, Sasikala K (2016) Cytogenetic damage in khaini users of Tamilnadu, cytogenetic damage in khaini users of Tamilnadu, Cytogenetic damage in khaini users of Tamilnadu, Southern India. Braz J Oral Sci 7(25):1559–1562
- Manikantan P, Balachandar V, Sasikala K, Mohanadevi S (2010) Lymphocyte DNA damage in chewing tobacco users of Coimbatore, Tamilnadu, by using comet assay. J Human Eco 31(1):53–58

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- ► Rigorous peer review
- Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com