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Abstract 

Background:  Disorders in deoxyribonucleic acid (DNA) mutations are the common cause of colon cancer. Detection 
of these mutations is the first step in colon cancer diagnosis. Differentiation among normal and cancerous colon gene 
sequences is a method used for mutation identification. Early detection of this type of disease can avoid compli-
cations that can lead to death. In this study, 55 healthy and 55 cancerous genes for colon cells obtained from the 
national center for biotechnology information GenBank are used. After applying the electron–ion interaction pseudo-
potential (EIIP) numbering representation method for the sequences, single-level discrete wavelet transform (DWT) is 
applied using Haar wavelet. Then, some statistical features are obtained from the wavelet domain. These features are 
mean, variance, standard deviation, autocorrelation, entropy, skewness, and kurtosis. The resulting values are applied 
to the k-nearest neighbor (KNN) and support vector machine (SVM) algorithms to obtain satisfactory classification 
results.

Results:  Four important parameters are calculated to evaluate the performance of the classifiers. Accuracy (ACC), 
F1 score, and Matthews correlation coefficient (MCC) are 95%, 94.74%, and 0.9045%, respectively, for SVM and 97.5%, 
97.44%, and 0.9512%, respectively, for KNN.

Conclusion:  This study has created a novel successful system for colorectal cancer classification and detection with 
the well-satisfied results. The K-nearest network results are the best with low error for the generated classification 
system, even though the results of the SVM network are acceptable.

Keywords:  Colon cancer, Electron–ion interaction pseudopotential mapping method, Genomic signal processing, 
Discrete wavelet transform, Statistical features, Support vector machine, k-nearest neighbor
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Background
Colorectal cancer
Colon cancer is the third most widespread cancer that 
affects both genders, after prostate cancer in men, breast 
cancer in women, and lung cancer in both sexes. Colon 
cancer starts in the large intestine (colon), the final part 
of the digestive tract [1, 2]. It usually affects older adults, 
although it can occur at any age. It typically starts as 
small, noncancerous clumps of cells called polyps, which 
form inside the colon. Over time some of these polyps 

can convert into colon cancers [3]. Colon cancer is occa-
sionally called colorectal cancer, a term, which merges 
colon cancer and rectal cancer that begins in the rectum 
[4].

Recent research
In recent decades, researchers have used genomic signal 
processing (GSP) methods to solve a range of bioinfor-
matics problems. This research falls into five broad parts. 
Firstly, the research could be performing cluster analysis 
of deoxyribonucleic acid (DNA) sequences [5], breast 
cancer diagnosis and detection using Wisconsin diag-
nostic breast cancer Database [6–9], cancer diagnosis 
and classification using DNA microarray technology [8, 
10, 11] and classifying any gene sequence into diseased/
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non-diseased state based on trinucleotide repeat disor-
ders using DNA sequences [12].

Secondly, the mapping method applied to DNA 
sequences could be a Voss representation [5, 12, 13] or 
the EIIP method [13, 14].

Thirdly, the GSP algorithms used could be discrete 
Fourier transform (DFT) [5, 13], power spectral density 
(PSD) [5, 13], discrete wavelet transform (DWT) [12], 
moment invariants [14], statistical parameters [12], or 
fast Fourier transform [12].

Fourthly, the classifier used in the research could be 
the k-means algorithm [5, 7], linear discriminant analysis 
and support vector machine (SVM) [6, 7, 15], a Naive–
Bayes classifier (NB) [7, 10], a deep convolutional neural 
network (CNN) [16, 17], multilayer perceptron (MLP) 
[7, 9], inception recurrent residual convolutional neural 
network [18, 19], probabilistic neural network [8], clas-
sification and regression tree (CART) [7], simple linear 
iterative clustering (SLIC), or optimal deep neural net-
work (ODNN) [20].

Finally, the evaluation method used could be plot-
ting [5], comparison [7], using improved binary particle 
swarm optimization (iBPSO) [10], calculation of the area 
under the curve of the receiver operating characteristic 
curve [17, 18], and calculating sensitivity, specificity, and 
accuracy [17, 20].

In this study, a combination of those ideas was used, as 
well as other methods that are not listed above, for exam-
ple, using DNA sequences as the classification database 
and using the k-nearest neighbor as the classifier. The fol-
lowing block diagram depicts the study steps, which are 
explained in detail later (Fig. 1).

Methods
Database sequence
A vital source of genomic data is the search and retrieval 
system created in the NCBI GenBank [21] at the National 
Institutes of Health In this research, 55 healthy genes 
and 55 cancerous genes of the colon are used. Each DNA 
sequence has a length of 400 nucleotides. The following is 
an example of the output of cancer data read by the fas-
taread function in MATLAB R2017b:

Sequence = ’GCG​ATC​GCC​ATG​GCG​GTG​CAG​CCG​AAG​GAG​ACG​
CTG​CAG​TTG​GAG​AGC​GCG​GCC​GAG​GTC​GGC​TTC​GTG​CGC​TTC​
TTT​CA…………….etc.’
Description = ’AB489153.1 Synthetic construct DNA, 
clone: pF1KB3091, Homo sapiens MSH2 gene for mutS 
homolog 2, colon cancer, nonpolyposis type 1, without stop 
codon, in Flexi system’,

Mapping method
The electron–ion interaction pseudopotential (EIIP) 
numerical method is the most common representa-
tion rule used by many researchers [22–25]. The EIIP 
numerical values for A, G, C, and T in a DNA string are 
0.1260, 0.0806, 0.1340, and 0.1335. These values repre-
sent the free electron energy distribution along the DNA 
sequence [26]. For example, if Y[n] = TAT​GGA​TCC, the 
corresponding EIIP numerical values, Y[e], will be:

Genomic signal processing techniques

1.	 Discrete Wavelet Transform

	 DWT transforms a signal into a group of basis func-
tions called wavelets. DWT converts a discrete-time 
signal to its wavelet representation [27]. For DWT, 

(1)Ye[n] = [0.1335 0.1260 0.1335 0.0806 0.0806 0.1260 0.1335 0.1340 0.1340]

Fig. 1  Block diagram of the presented method
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there are various wavelets, which are widely divided 
into orthogonal and biorthogonal wavelets [28]. The 
orthogonal type was introduced by Hungarian math-
ematician Alfréd Haar [29]. The Haar DWT trans-
form of a signal (S) is generated by crossing it over 
a group of filters [30]. These are produced by pass-
ing a signal through a low-pass filter with impulse 
response (g) resulting in a convolution, as follows:

	 The signal is also passed over a high-pass filter (h). 
The result gives two components, the first one, from 
the high-pass filter, is called the detail coefficients, 
and the other, from the low-pass filter, is called the 
approximation coefficients [31, 32]. In Fig. 2, the two 
filters are known as quadrature mirror filters, and 
they are linked to each other.

	 According to the rule of Nyquist, half of the signal 
frequencies are removed. As a result, the output of 
the low-pass filter in Fig. 2 is subsampled by two and 
processed by crossing it for another time over a new 
low-pass filter, g, and a new high-pass filter, h, with 
half cutoff frequency, as follows:

2.	 Statistical Features

After obtaining the DWT coefficients, some statistical 
features are extracted as follows:

Mean
The arithmetical mean, called the average or the math-
ematical expectation, is the centric value of a group 
of numbers [33, 34]. To calculate the mean value µ of a 
sequence S = [s1, s2, s3, …., sM] with length M, divide the 
sum of all sequence values by its length as in the follow-
ing equation:

(2)F [m] =
(

S ∗ g
)

[m] =
∞
∑

k=−∞

S[m]g[m− k]

(3)Flow[m] =
∞
∑

k=−∞

S[m]g[2m− k]

(4)Fhigh[m] =
∞
∑

k=−∞

S[m]h[2m− k]

Variance
Variance (σ2) in probability theory and statistics is 
defined as the squared deviation expectation of a random 
variable from its mean. Informally, it quantifies how far 
a sequence of arbitrary numbers diverges from the mean 
value of the sequence [35]. It is determined by taking 
the differences between each number in the set and the 
mean. Then, the distinctions are squared, to make them 
positive. Finally, the sum of the squares is divided by the 
number of values in the set, as follows:

where si is the ith data point, µ is the mean of all data 
points, and M is the number of data points.

Standard deviation
The standard deviation (σ) is the square root of the vari-
ance (σ2) [35].

where si is the ith data point, µ is the mean of all data 
points, and M is the number of data points.

Autocorrelation
Autocorrelation, also called serial correlation, is the asso-
ciation of a signal with a later copy of itself obtained via 
a delay function. It is a mathematical exemplification of 
the similarity between a given time series and a later ver-
sion of itself over consecutive periods [36]. The method 
of calculation is the same as that used in the computa-
tion of the correlation between two different time series, 
excluding using the same time series twice: one time in 
its original form and another in a later form or in more 
time intervals [37]. The equation for the autocorrelation 
function is:

where ρk are the autocorrelation coefficients, rt is a data 
set sorted by ascending date, rt-k is the same data set 
shifted by k units, and µr is the average of the original 
data set.

(5)µ =
∑M

i=1 si

M

(6)σ 2 =
∑M

i=1 (si − µ)2

M

(7)σ =

√

∑M
i=1 (si − µ)2

M

(8)ρk =

∑T
t=k+1(rt − µr)(rt−k − µr)

∑T
t=1 (rt − µr)

2

Fig. 2  Single-level 1D discrete wavelet transform



Page 4 of 8Naeem et al. Egypt J Med Hum Genet           (2021) 22:77 

Entropy
Originally, Claude Shannon defined entropy as an aspect 
of his communication theory [38]. Shannon entropy 
provides vital information about repetitive sequences in 
whole chromosomes and is beneficial in finding evolu-
tionary differences between organisms [39].

Shannon introduced the entropy, E, of a discrete ran-
dom variable, Y, with possible values {y1,y2,y3,….,yn}, and 
probability mass function M(Y) as illustrated in [40, 41]:

where h is the used logarithm base.

Skewness and kurtosis
In statistics, skewness is a measure of the asymmetry 
of the probability distribution of the variable around its 
mean. A symmetrical data set has a skewness of 0. It can 
be calculated as the averaged cubed deviation from the 
mean divided by the cubed standard deviation [42]. For 
defined data X1, X2, …, Xn, the equation for skewness, 
which represents the third moment, is as follows:

where σ is the standard deviation, µ is the mean, and n is 
the data points’ number.

It is used as a measure of the variable asymmetry and 
deviation from the normal distribution. It is called posi-
tively skewed distribution (right), where the most values 
are located on the left side of the mean, if the skewness 
value is greater than zero. It is called negatively skewed 
distribution (left), where the values are located on the 
right side of the mean, if the value is lower than zero. For 
the zero value (the mean value equals the median), the 
distribution is symmetrical about the mean value.

There is an incorrect concept that has appeared in 
different reports that kurtosis somehow measures the 
peakedness (flatness, pointiness, or modality) of a dis-
tribution, despite statisticians’ efforts to set the record 
straight. In statistics, kurtosis is the measurement of the 
probability distribution tailedness of a variable [43]. The 
kurtosis value is related to the distribution tail-heaviness, 
not its peak. For defined data X1, X2, …, Xn, the equation 
for kurtosis, which represents the fourth moment, is as 
follows:

where σ is the standard deviation, µ is the mean, and n is 
the number of data points.

(9)E(Y ) = −
n

∑

i=1

M
(

yi
)

loghM
(

yi
)

(10)Skewness =

∑n
j=1 (Xj − µ)3/n

σ 3

(11)Kurtosis =

∑n
j=1 (Xj − µ)4/n

σ 4

The result is usually compared to the kurtosis of the 
normal distribution (Mesokurtic distribution), which 
equals three. A distribution is called a Leptokurtic dis-
tribution if the kurtosis value is more than three. In this 
case, it has more intensive tails than the Mesokurtic dis-
tribution. A distribution is known as a Platykurtic distri-
bution if the kurtosis value is less than three. It has fewer 
tails than the normal distribution.

Classifier
In this research, two kinds of classifiers were used, and 
then their results were compared. They were K-nearest 
neighbors (KNN) and support vector machine (SVM).

1.	 K-nearest neighbors

	 The KNN algorithm is an unsupervised machine 
learning algorithm, and it is one of the most widely 
used classification methods. KNN is a case-based 
algorithm, so it does not require a learning step. It 
handles the training samples using a distance func-
tion and a separation function. It is based on the cat-
egories of the closest neighbors [7, 8]. When a new 
item is rated, it must be compared to others using a 
similarity scale, then KNNs are taken into regard, and 
the distance between the new item and the neighbor 
is used as the weight [44]. Various methods are used 
to calculate this distance. The most common tech-
nique is the Euclidean distance between the two vec-
tors yir and yjr which can be measured as stated in 
[45]:

	 The performance of the method depends on the K 
value selected and the distance cutoff used. The K 
value represents the number of neighbors chosen to 
specify the new element class.

2.	 Support vector machines

In learning systems, SVMs or networks are a super-
vised-learning method related to learning techniques 
that analyze data for detection and classification studies 
[6]. An SVM creates a hyperplane as a resolution surface 
to classify input data into a high-dimensional feature 
space. The hyperplane can differentiate between the dif-
ferent class patterns and increase the class margin. Pat-
terns represent a set of points grouped to be separated 
by distinct lines for various categories. The points are 
assigned and classified according to which aspect of the 

(12)d
(

yi, yj
)

=

√

√

√

√

n
∑

r=1

(yir − yjr)
2
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line they belong to [7, 46]. This process leads to a linear 
classification generated by the SVM, while the use of a 
kernel produces a nonlinear classification [15].

Each algorithm was used separately for classification 
and provided parameters for comparison. In this study, 
35 normal colorectal genes and 35 cancerous genes were 
used as training data, and the testing data included 20 
normal colorectal genes and 20 cancerous genes.

MATLAB R2017b was used to perform the analysis. 
The fitcknn function was used for creating a KNN with 
a default number of neighbors k = 1, while the fitcsvm 
function was used for generating the SVM.

Results
Three important parameters were calculated for the per-
formance evaluation of proposed method. They are Mat-
thews correlation coefficient (MCC), F1 score, and ACC. 
They can be estimated as follows:

(ACC: 0 is the worst value; 100 is the best)

(F1 Score: 0 is the worst value; 100 is the best)

(MCC: − 1 is the worst value; + 1 is the best) where four 
confusion-matrix parts (FP, FN, TP, and TN) stand for 
false positive, false negative, true positive, and true nega-
tive values, respectively.

The MCC is more informative than the ACC or the F1 
score in evaluating the performance of a binary classifier, 
because it takes into the balance rates of the FP, FN, TP, 
and TN [47]. For example, in a set of 200 elements, 180 
are positive, and only 20 are negative. After applying the 
classifier, the following results are obtained:

The previous inputs give F1 score = 94.73% and accu-
racy = 90%. Although these results look impressive, MCC 
would be indefinite, as the FN and TN would be zeroes, 
thus the denominator of Eq.  15 would be zero. The F1 
score relies on which class is positive, which MCC does 
not [49].

The extracted features were used as an input to a KNN 
and an SVM network separately, and the results of each 
were compared. In this study, training data of 35 normal 
colorectal genes and 35 cancerous genes were used, and 

(13)ACC =
TP + TN

TP + TN + FP + FN
× 100%

(14)F1score =
2TP

2TP + FP + FN
× 100%

(15)

MCC =
(TP × TN )− (FP × FN )

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

FP = 20, TP = 180; FN = 0, TN = 0.

testing data of 20 normal colorectal genes and 20 cancer-
ous genes were used.

Table 1 shows the TP, FP, TN, and FN values obtained 
from the two classifiers.

From the previous values, Table 2 can be created using 
Eqs. 13–15.

Discussions
The KNN algorithm identified 19 cancer genes and 20 
normal genes out of a total of 20 each (TP = 19, FP = 1, 
TN = 20, and FN = 0), while the SVM network recog-
nized 18 cancer genes and 20 normal genes (TP = 18, 
FP = 2, TN = 20, and FN = 0) (Table 1).

The results of both methods were satisfactory. KNN 
gives 97.5% accuracy, 97.44% F1 score and 0.9512 MCC, 
while SVM network gives 95% accuracy, 94.74% F1 score 
and 0.9045 MCC (Table 2).

In comparison, achieving a higher ACC, higher F1 
score, and higher MCC is evidence that the classifica-
tion process is more successful, and the classifier is more 
effective. These results indicate that the classifier can rec-
ognize the required target with minimum errors. From 
the research results, the KNN classifier could achieve the 
research purpose of differentiating between normal and 
cancerous colorectal genes using GSP methods.

The results indicate the success of using GSP methods 
for cancer recognition and diagnosis. Table 3 provides a 
comparison of the results obtained in the current work 
to those of other studies according to the database used, 
method, classifier, and output.

From Table  3, the best accuracy obtained from the 
related studies was 96.7% [7], and this study reached 
97.5% accuracy.

Table 1  Results of the two classifiers

K-nearest network SVM network

TP 19 18

FP 1 2

TN 20 20

FN 0 0

Table 2  Comparison of calculated parameters for the two 
classifiers

K-nearest network SVM network

ACC % 97.5 95

F1% 97.44 94.74

MCC 0.9514 0.9045
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Conclusions
Many researchers worldwide have studied cancer, hoping 
to detect this disease at an early stage so that they could 
reduce its risk, which often leads to death. The basic 
concept of the presented study is that cancer is consid-
ered to be a genetic disease. The EIIP method was used 
to convert the DNA sequences from strings into number 
values so that GSP could be applied in the feature extrac-
tion step, and suitable classifiers were selected. Single-
level DWT was applied using Haar wavelets. Then, the 
statistical features mean, variance, standard deviation, 
autocorrelation, entropy, skewness, and kurtosis were 
obtained from the wavelet domain. Finally, the result-
ing values were input into KNN and SVM networks. The 
KNN results were the best, with low error for the clas-
sification system, although the results of the SVM were 
acceptable. An automated system was therefore gener-
ated for the classification and detection of colorectal 
cancer with good results, avoiding the disadvantages of 
traditional methods. These traditional detection methods 
include collecting blood, urine, or stool sample from the 
patient and testing it in the laboratory. That takes a long 
time, requires experienced examiners, and the probabil-
ity of error is relatively high. In future work, other GSP 
features can be used, and different classifiers can be cho-
sen to improve the results.
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