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Abstract

Background: Many studies have been conducted on the genetic and epigenetic etiology of gestational diabetes
mellitus (GDM) in the last two decades because of the disease’s increasing prevalence and role in global diabetes
mellitus (DM) explosion. An update on the genetic and epigenetic etiology of GDM then becomes imperative to
better understand and stem the rising incidence of the disease. This review, therefore, articulated GDM candidate
genes and their pathophysiology for the awareness of stakeholders.

Main body (genetic and epigenetic etiology, GDM): The search discovered 83 GDM candidate genes, of which
TCF7L2, MTNR1B, CDKAL1, IRS1, and KCNQ1 are the most prevalent. Certain polymorphisms of these genes can
modulate beta-cell dysfunction, adiposity, obesity, and insulin resistance through several mechanisms.
Environmental triggers such as diets, pollutants, and microbes may also cause epigenetic changes in these genes,
resulting in a loss of insulin-boosting and glucose metabolism functions. Early detection and adequate
management may resolve the condition after delivery; otherwise, it will progress to maternal type 2 diabetes
mellitus (T2DM) and fetal configuration to future obesity and DM. This shows that GDM is a strong risk factor for
T2DM and, in rare cases, type 1 diabetes mellitus (T1DM) and maturity-onset diabetes of the young (MODY). This
further shows that GDM significantly contributes to the rising incidence and burden of DM worldwide and its
prevention may reverse the trend.

Conclusion: Mutations and epigenetic changes in certain genes are strong risk factors for GDM. For affected
individuals with such etiologies, medical practitioners should formulate drugs and treatment procedures that target
these genes and their pathophysiology.

Keywords: Adiposity, Beta-cell dysfunction, Epigenetics, Insulin resistance, Obesity

Background
Pregnant women develop insulin resistance at certain
stages owing to increased placenta hormones, but most
women overcome this condition by up-regulating insulin
production through beta cell expansion [1]. Gestational
diabetes mellitus (GDM) begins when a pregnant female
does not make the extra insulin needed to normalize
blood glucose during the second or third trimester of
pregnancy [1]. Sometimes the glucose intolerance may
be present before pregnancy, but not diagnosed [2, 3].
Uncontrolled GDM can cause high blood pressure, type

2 diabetes mellitus (T2DM), and increased risks of vas-
cular diseases in pregnant women [4, 5]. Intrauterine ex-
posure to high blood glucose may program the offspring
to develop diabetes or obesity later in life [6]. It may also
cause macrosomia, birth defects, preterm birth, and de-
velopmental delay [7–9].
GDM is the most common metabolic condition during

pregnancy [10] with a global incidence rate between 1
and 28 % [11]. In 2017, GDM affected about 204 million
women worldwide with a projection to increase to 308
million by 2045, mostly in developing countries [12].
Though most times the glucose intolerance normalizes
soon after delivery, women with GDM have a high risk
of developing T2DM later in life [13]. Compared to
women with normal glucose tolerance, women with
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GDM are at least seven times more predisposed to
T2DM [14]. Moreover, almost half of pregnant females
with GDM will develop diabetes in a decade [14]. Off-
spring of women with GDM are also 8 times more prone
to diabetes or pre-diabetes [15]. These show that GDM
contributes immensely to the alarming incidence of dia-
betes worldwide [16]. Diabetes affected about 451 mil-
lion people in 2017, of which 5 million died and USD
850 billion was spent on healthcare expenditure [17].
Considering the impact of GDM, the reduction of its
prevalence and effective management of the affected will
go a long way in stemming the incidence and burden of
diabetes. However, to achieve a reduced prevalence of
GDM, a proper understanding of its etiology is neces-
sary. Fortunately, improved biological techniques in the
last two decades have led to more understanding of the
genetic and epigenetic etiology of the disease, thus an
update becomes necessary. This review therefore articu-
lated current findings on the genetic and epigenetic eti-
ology of GDM.

Methods
Databases searched
An in-depth search of PubMed, Scopus, SpringerLink,
Google Scholar, and ResearchGate databases was per-
formed for relevant research articles on GDM.

Search terms
Some search terms used to retrieve articles are gesta-
tional diabetes mellitus, hyperglycemia, insulin resist-
ance, obesity, glucose metabolism, beta-cell dysfunction,
and gestational diabetes genes. Other search terms used
include glucose insensitivity, epigenetics of diabetes mel-
litus, gestational diabetes testing and cost-effectiveness,
and the prevalence of gestational diabetes.

Article inclusion criteria
Inclusion criteria include the following:
Research published in the English language.
Research that focused on GDM.
Studies that focused on the genetic and epigenetic eti-

ology of GDM.
Articles that centered on GDM testing and cost-

effectiveness.
Studies published between 2000 till date.

Article exclusion criteria
Exclusion criteria include the following:
Studies that are not available in English language.
Studies with only abstract available.
Research that described GDM, but with no clear gen-

etic and epigenetic mechanisms
Studies published before the year 2000.

Results
Genetic etiology in GDM
The search found that mutations in some genes, or their
variants, may interact with one another and environ-
mental triggers to cause GDM (Fig. 1). The genetic eti-
ology of GDM overlaps with T2DM, as most of the
GDM candidate genes also predispose humans to
T2DM. This explains the common pathophysiology of
GDM and T2DM as both express beta-cell dysfunction
and abnormal glucose metabolism [18]. Contrary to
some reports, GDM also shares common pathophysi-
ology with type 1 diabetes mellitus (T1DM) and
maturity-onset diabetes of the young (MODY), but less
than 10 % of GDM patients show these associations
[18].
Though many genes reportedly showed an association

with obesity, insulin resistance, and beta-cell dysfunction,
the present study discovered only 83 genes with a clear
GDM pathophysiology and are presented in Table 1.

Most frequent GDM candidate genes
The list of GDM candidate genes is inexhaustible as
more genes are continually discovered; however, certain
genes are most often linked with the disease. Table 2
shows the most frequent GDM candidate genes and
their variants in various ethnic groups.
From Table 2, we used a pie chart (Fig. 2) to express

the percentage occurrence of each gene based on ethni-
city. TCF7L2 gene was the most frequent having present
in 17 % of the ethnics, followed by MTNR1B with 15 %,
CDKAL1 10 %, KCNQ1 10 %, and IRS1 10 %. Some
other genes are not widespread, but are often found in
certain ethnics or regions. These genes include ZRANB3,
found in Africa [96]; ABCC8 found among Finnish
[119]; Chemerin, found among Iranians [120]; and INS,
found among the Greeks [121]. These genes can be used
to develop a genetic testing guideline to predict the like-
lihood of GDM or determine its genetic and epigenetic
etiology. This is important because there is no genetic
testing procedure yet for GDM, partly because the con-
dition is multifactorial in which several genes interact
with environmental triggers to cause the disease. Thus, a
mutation in a single gene may not explain full suscepti-
bility to GDM and testing for all the candidate genes will
be expensive and cumbersome. The low prevalence of
GDM in the past also contributes to the lack of interest
in developing a genetic testing guideline for the disease.

Epigenetic etiology in GDM
Epigenetics refers to the study of heritable changes in
biological processes caused by modification of chemical
tags on DNA such as methyl and ethyl groups [122].
These modifications are mediated by some mechanisms,
including DNA methylation, histone modification, and
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microRNA expression [122]. Epigenetic mechanisms
play important roles in several cellular activities, but cer-
tain environmental triggers can reprogram the epige-
nome, resulting in disease pathologies [123]. In
particular, epigenetic mechanisms regulate several genes
that maintain beta-cell morphology, proliferation, and
functions, thus implies that epigenetic modification may
disrupt insulin secretion and sensitivity, causing meta-
bolic diseases, including GDM [124, 125]. Epigenetic
changes are expressed in both somatic and gamete cells,
and thus can be transmitted from generation to gener-
ation [126].
Studies have reported many instances of epigenetic modi-

fications involving insulin synthesis and glucose metabolism
in GDM. For instance, histone under-acetylation and over-
methylation in the promoter region of the PDX1 gene re-
duce the insulin-boosting function of the gene [127]. Also,
in a study that examined the methylation of the IL-10 gene
among pregnant women, hypo-methylation of maternal
blood cells and elevated plasma IL-10 levels were noticed in
women with GDM [128]. In another study that compared
the miRNA profiles of some diabetic pregnant rats with
nondiabetic, repression of miR-338 and overexpression of
miR-451 were associated with reduced β-cell mass in the
diabetic [129]. In vitro upregulation of miR-451 and repres-
sion of miR-338 in the same study increased β-cell mass,
leading to improved glucose metabolism [129]. In a study
that investigated the miRNA expressions of maternal and
fetal blood cells of some pregnant women, 29 miRNAs were
upregulated in individuals with GDM [130]. Of these miR-
NAs, miRNA-340 was confirmed to downregulate the ex-
pression of the PAIP1 gene [130]. In vitro normalization of
the miRNA-340 expression of the diabetic mothers in-
creased insulin production [130].

Environmental triggers of genetic and epigenetic etiology
of GDM
Both the genetic and epigenetic etiology of GDM are me-
diated by certain environmental triggers that change gene
functions. The genetic triggers mutate the genes, while the
epigenetic triggers affect the chemical tags on the DNA
without affecting the nucleotide sequence (Fig. 3). Among
the environmental triggers are pollution and microbial ex-
posures, whose GDM modulatory roles have been estab-
lished by several studies. In a study that monitored the
effects of air pollution among pregnant Southern Califor-
nians, prepregnancy exposures to nitrogen dioxide (NO2),
particulate matter (PM2.5 and PM10), and dioxin were re-
lated to GDM [131]. Nitrogen dioxide and particulate
matter can cause oxidative stress, overexpression of proin-
flammatory cytokines, and endothelial dysfunction, result-
ing in increased insulin resistance [132]. Dioxin
compounds can interact with peroxisome proliferator-
activated receptor-γ (PPARG), disrupting insulin signaling
pathways and resulting in insulin resistance and abnormal
glucose metabolism [133]. Exposure to pathogenic micro-
bial organisms may disrupt the gut microbiota and com-
promise the immune system, leading to metabolic
disorders and GDM. Vu et al. [134] demonstrated in rab-
bits that a toxin produced by Staphylococcus aureus may
interact with fat cells and the immune system, resulting in
inflammation, insulin resistance and glucose intolerance
[134]. In a study of the microbiota of some pregnant
women, individuals with GDM showed gut microbiota im-
balance containing majorly the phylum Actinobacteria
and the genus Collinsella, Rothia and Desulfovibrio [135].
A balanced gut microbiota is necessary for optimum me-
tabolism and the immune system. Aside from microbial
infection, other environmental factors that may disrupt

Fig. 1 Genetic etiology of gestational diabetes mellitus
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Table 1 GDM predisposing genes showing locations and phathophysiology

Number Gene Full name Locus Pathophysiology

1 TCF7L2 Transcription factor 7-like 2 10q2 Increases apoptosis, impairing insulin secretion [19].

2 KCNQ1 Potassium voltage-gated channel sub-
family Q member 1

11p15.5-
15.4

It disrupts the influx of calcium into the channel, resulting in decreased
insulin secretion [20].

3 CENTD2/
ARAP1

Centaurin-delta-2/ ArfGAP with rhoGAP
domain, ankyrin repeat and PH domain
1

11q13.4 Causes disruption of glucose-induced insulin secretion [21].

4 MTNR1B Melatonin receptor 1B 11q14.3 Decreases insulin secretion, elevating fasting glucose levels [22].

5 IGF1 Insulin-like growth factor 1 12q23.2 Induces high body mass (HBM), leading to metabolic disturbances,
especially insulin resistance and hyperinsulinemia [23].

6 IGF2 Insulin-like growth factor 2 11p15.5 Overexpression of IGF2 leads to β-cell dedifferentiation and endoplas-
mic reticulum stress, causing islet dysfunction [24].

7 IGFBP-1 Insulin like growth factor binding
protein 1

7p12.3 Decreased blood levels of IGFBP-1 cause overexpression of IGF-I, result-
ing in inflammation [25].

8 IGFBP-2 Insulin like growth factor binding
protein 3

2q35 Reduced expression of IGFBP-2 inhibits adipogenesis, leading to obesity
and insulin resistance [26].

9 IGF2BP2 Insulin like growth factor 2 mRNA
binding protein 2

3q27.2 Impairs β-cell function and modulates obesity, altering insulin sensitivity
[27].

10 IGFBP-3 Insulin like growth factor binding
protein 3

7p12.3 Overexpression of IGFBP-3 predisposes to HBM body, disrupting glu-
cose metabolism [28].

11 IGFBP-4 Insulin like growth factor binding
protein 4

17q21.2 Reduced levels cause HBM and insulin resistance [28].

12 IGFBP5 Insulin like growth factor binding
protein 5

2q35 Disrupts IGF-1 signaling pathway, leading to insulin insensitivity [29].

13 PPARG Peroxisome proliferator-activated recep-
tor gamma

3p25.2 Stimulates abnormal fat deposition in tissues, causing obesity and
insulin resistance [27].

14 KCNJ11 Potassium voltage-gated channel sub-
family J member 11

11p15.1 Reduces the sensitivity of pancreatic beta-cell KATP channel subunit
(Kir6.2), resulting in decreased insulin release [28].

15 INSR Insulin receptor 19p13.2 Predisposes to obesity, leading to insulin resistance [29].

16 ADRB2 Adrenoceptor beta 2 5q32 Increases the secretion of vascular endothelial growth Factor-A (VEGF-
A) in the β-cells, resulting in hyper-vascularized islets and disrupting in-
sulin secretion and glucose metabolism [30].

17 ADRB3 Adrenoceptor beta 3 8p11.23 Increases body weight, predisposing to obesity and insulin resistance
[31].

18 GNB3 G protein subunit beta 3 12p13.31 Causes high-fat deposition and obesity [32].

19 ABCC8 ATP binding cassette subfamily c
member 8

11p15.1 Loss of function of the gene disrupts the KATP channel function,
increasing the body weight and causing hyperinsulinism [33].

20 CAPN10 Malpain 10 2q37.3 Increases body mass, initiating insulin resistance [34].

21 MBL2 Mannose-binding lectin 10q21.1 Causes frequent infections and chronic inflammatory diseases, leading
to high-fat deposition and insulin resistance [35].

22 GLUT4/
SLC2A4

Glucose transporter type 4/Solute
carrier family 2 member 4

17p13.1 Impairs insulin signaling pathway [36].

23 RBP4 Retinol binding protein-4 10q23.33 Increases gluconeogenesis and impairs insulin signaling in muscles [37].

24 PCK1 Phosphoenolpyruvate carboxykinase 1 20q13.31 Induces high levels of fasting insulin, causing abnormal glucose
metabolism [38].

25 PIK3R1/ PI3K Phosphoinositide-3-kinase regulatory
subunit 1

5q13.1 Disrupts insulin signaling pathway in skeletal muscle and inhibit liver
gluconeogenesis [38].

26 STRA6 Signaling receptor and transporter of
retinol STRA6

15q24.1 Promotes fat deposition, predisposing to obesity and insulin resistance
[39].

27 VDR Vitamin D receptor 12q13 Predisposes to obesity, causing metabolic disorder, especially insulin
resistance [40, 41].

28 CDKAL1 Cyclin-dependent Kinase 5 Regulatory
subunit-associated protein 1-like 1

6p22.3 Inhibits the conversion of proinsulin to insulin through protein
translation, leading to insulin resistance [42].

29 GCK Glucokinase 7p13 Increases body fat mass, resulting in insulin resistance [43].
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Table 1 GDM predisposing genes showing locations and phathophysiology (Continued)

Number Gene Full name Locus Pathophysiology

30 CDKN2A/2B Cyclin-dependent kinase inhibitor 2a 9p21.3 Affects proinsulin conversion to insulin and reduces insulin sensitivity
[44].

31 SRR Serine racemase 17p13.3 Disrupts the secretion of insulin and/or glucagon [45].

32 HHEX/IDE Hematopoietically expressed homeobox 10q23.33 Causes pancreatic and liver developmental error [46].

33 SLC30A8 Solute carrier family 30 member 8 8q24.11 Modulates loss of zinc in the beta cells, destabilizing insulin molecule
s[47].

34 LEP Leptin 7q31.3 Promotes inflammation, causing energy imbalance and obesity [48].

35 LEPR leptin receptor 1p31 Induces high-fat mass and insulin resistance [49].

36 HNF1B/TCF2 Hepatocyte nuclear factor 1B 17q12 Causes β-cell dysfunction [50, 51].

37 TNF-α/TNF Tumor necrosis factor-α 6p21.33 Causes inflammatory and oxidative stress [52]).

38 HNF4A/TCF1 Hepatocyte nuclear factor 4 alpha 20q12 Induces β-cell dysfunction [50, 51].

39 WFS1 Wolfram syndrome 1 4p16.1 Initiates endoplasmic reticulum stress and mitochondrial disorder,
leading to β-cell dysfunction [53].

40 IRS1 insulin receptor substrate 1 2q36.3 Induces an inflammatory response and causing low insulin sensitivity
[54].

41 HTR2B/ 5-HT-
1A

5-hydroxytryptamine receptor 1a 5q12.3 Reduces beta-cell proliferation and increases body weight [55].

42 TPH1 Tryptophan hydroxylase 1 11p15.1 Causes low levels of serotonin, increasing weight gain and causing
insulin intolerance [56].

43 5-HT1A/
HTR3A

5-hydroxytryptamine receptor 1a 5q12.3 Causes low serotonin levels, resulting in insulin resistance [57].

44 HNF1A Hepatocyte nuclear factor-1 alpha 12q24.31 Causes adiposity, leading to pre-pregnancy obesity and insulin resist-
ance [57].

45 GCKR Glucokinase regulator 2p23.3 Overexpression of GCKR causes hyperactivity of GCK, reducing glucose
and increasing fat accumulation [58]. Loss of the function reduces GCK
expression, impairing glucose clearance [59].

46 MIF Macrophage migration inhibitory factor 22q11.23 Overexpression of the MIF gene in placental tissue causes insulin
resistance [60].

47 ADRA2A Alpha-2-adrenergic receptors 10q25.2 Increases body fat mass, leading to loss of glucose regulation [61].

48 SLC6A4 Solute carrier family 6 member 4 17q11.2 Impairs serotonin metabolism, increasing body weight and causing
insulin resistance [62].

49 FTO Fat mass and obesity-associated gene/
Alpha-ketoglutarate dependent
dioxygenase

16q12.2 Causes adiposity, leading to pre-pregnancy obesity and insulin resist-
ance [63].

50 TLE1 Transducin-like enhancer of split-1 9q21.32 Elevates fasting glucose level and reduces insulin secretion [64].

51 ADCY5 Adenylate cyclase 5 3q21.1 Alters ADCY5 expression in pancreatic beta cells, impairing glucose
signaling [65].

52 IL-1β Interleukin-1 beta 2q14.1 Impairs pancreatic β-cells, decreasing insulin secretion [66].

53 IL-6 Interleukin-6 7p15.3 Overexpression destroys pancreatic β-cells, resulting in apoptosis and
low insulin synthesis [67].

54 IL-10 Interleukin-10 1q32.1 Overexpression compromises immune response, disrupting insulin
metabolism [68].

55 PAX8 Paired box 8 2q14.1 Reduces islet viability and beta cell survival [69].

56 ADIPOQ
(diponectin
gene)

Adiponectin, C1Q and collagen domain
containing

3q27.3 Causes low adiponectin, leading to obesity and insulin resistance [70].

57 RARRES2
(Chemerin
gene)

retinoic acid receptor responder 2 7q36.1 Initiates inflammation and energy imbalance, leading to obesity and
insulin resistance [71].

58 SERPINA12
(Vaspin gene)

Serpin family a member 12 14q32.13 Causes inflammation, loss of energy balance, and obesity [72].

59 RETN Resistin 19p13.2 Causes a loss of energy balance, obesity, and insulin resistance [73].
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gut microbiota include certain diseases, oral microbiome,
diets, and antibiotic use, among others [136].
Lifestyles such as short sleep, poor nutritional choices,

advanced age, and physical inactivity are some environmen-
tal triggers that may predispose humans to GDM. Short
hour sleep at night can increase body fat accumulation, re-
duce glucose metabolism, and predispose to T2DM and
GDM. In a study that determines the frequency of GDM

among sleep-deprived 668 Singaporeans, 131, representing
19 %, were diagnosed with GDM of which 27.3 % sleep less
than 6 hours a night, while 16.8 % sleep between 7-8 hours
[137]. Poor nutrition, such as energy-dense western diets
may cause overweight and obesity, disrupting insulin signal-
ing pathways and insulin sensitivity. Saturated fats can dis-
rupt insulin signaling, induce inflammation and endothelial
dysfunction, resulting in GDM. In a study that evaluated

Table 1 GDM predisposing genes showing locations and phathophysiology (Continued)

Number Gene Full name Locus Pathophysiology

60 APLN Apelin Xq26.1 Causes a loss of energy balance, obesity, and insulin resistance [74].

61 NUCB2
(nesfatin 1
gene)

Nucleobindin 2 11p15.1 Causes a loss of energy balance, obesity, and insulin resistance [75].

62 ITLN1 Intelectin-1/Omentin-1 1q23.3 Loss of function induces insulin resistance [76].

63 NAMPT/PBEF1
(Visfatin
gene)

Nicotinamide phosphoribosyltransferase 7q22.3 Causes obesity and insulin resistance [76].

64 HMG20A/
iBRAF

High mobility group protein 20a 15q24.3 Depletion represses expression of insulin-producing genes such as Neu-
roD, Mafa and GCK, and enhances beta-cell de-differentiating gene
such as PAX4 and REST [77].

65 RREB1 Ras responsive element binding protein
1

6p24.3 Causes fat deposition and beta cell dysfunction [78].

66 GLIS3 GLIS family zinc finger 3 9p24.2 Causes fat deposition and beta cell dysfunction [78].

67 GPSM1 G protein signaling modulator 1 9q34.3 Causes fat deposition and beta cell dysfunction [78].

68 mtDNA Mitochondrial DNA All cells Induces oxidative stress and mitochondrial disorder, causing insulin
resistance [79].

69 PRLR Prolactin receptor 5p13.2 Modulates loss of PRLR signaling in β-cells. reducing β-cell proliferation
and expansion during pregnancy [80].

70 MAFB MAF bZIP transcription factor B 20q12 Causes inadequate β-cell expansion [80].

71 SERT Serotonin transporter 17q11.1-
12

Stimulates abnormal fat accumulation in both white and brown
adipose tissues, causing glucose intolerance and insulin resistance [81].

72 PAI-1 Plasminogen activator inhibitor 1 7q22 Predisposes to adiposity, increasing body weight and affecting
pancreatic beta-cell function [82].

73 TSPAN8 Tetraspanin-8 12q21.1 Impairs gestational glucose tolerance [83].

74 G6PC2 Glucose-6-phosphatase catalytic subunit
2

2q31.1 Elevates fasting glucose level and reduces insulin secretion [64].

75 PTPRD Protein tyrosine phosphatase receptor
type d

9p24.1-
p23

Disrupts insulin signaling pathway, leading to altered insulin sensitivity
and glucose homeostasis [84].

76 CRP C-reactive protein 1q23.2 Overexpression causes obesity, resulting in systemic inflammation and
insulin resistance [85].

77 GK Glycerol kinase Xp21.2 Deficiency causes abnormal insulin metabolism [86].

78 PAX4 Paired box gene 4 7q32.1 Impairs fetal islet cell differentiation, altering insulin sensitivity later in
life [87].

79 HDAC4 Histone deacetylase 4 2q37.3 Causes β-cell loss, leading to decreased insulin secretion. Also represses
beta-cell transcriptional factors [88].

80 FETUA/ AHSG Fetuin-a 3q27.3 Increases body mass, insulin secretion and C-peptide levels, but lower
insulin sensitivity [89].

81 FETUB Fetuin-b 3q27.3 Increases hepatic steatosis, impairing insulin secretion and glucose
metabolism [90].

82 FGF21 Fibroblast growth factor 21 10q26.13 Cause an abnormal glucose metabolism independent of insulin
resistance [91].

83 SNORA8 An emerging candidate gene [92]
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Table 2 Most prevalent gestational diabetes mellitus genes across countries, ethnicity, and race in the world

Gene Countries/ethnicity/race Variants Level of significance References

TCF7L2 Mexicans rs7901695 P = 2.16 × 10−6 [93]

rs7901696 P < 0.05 [93]

rs7901697 P < 0.05 [93]

rs7901698 P < 0.05 [93]

Asians rs7903146 P = 0.001 [94]

Scandinavians rs7903146 P < 0.05 [95]

Africans rs7903146 P = 7.288 × 10−13 [96]

Hispanic/Latinos rs7903146 P < 0.05 [97]

Caucasians/Danish rs7903146 P = 0.00017 [98]

Caucasian rs4506565 P < 0.001 [99]

KCNQ1 Mexicans rs2237892 P = 1.98 × 10−5 [93]

rs163184 P < 0.05 [93]

rs2237897 P < 0.05 [93]

Koreans rs2074196 P = 0.039 [100]

rs2237892 P < 0.05 [100]

East Asians rs2074196 P = 0.039 [100]

rs2237892 P < 0.05 [100]

Pakistan rs2237895 P < 0.05 [101]

MTNR1B Mexicans rs1387153 P = 0.05358 [93]

Asians rs10830963 P < 0.001 [94]

Caucasians rs10830963 P < 0.001 [94]

Koreans rs10830962 P = 2.49 × 10−13 [102]

Danish rs10830963 P < 0.05 [103]

rs1387153 P < 0.05 [103]

Saudi Arabians rs1387153 P < 0.05 [104]

rs10830963 P < 0.05 [104]

PPARG Asians rs1801282 P = 0.011 [94]

Caucasians rs1801282 P < 0.05 [99]

rs3856806 P < 0.05 [99]

Caucasians/Danish rs1801282 P < 0.05 [98]

CDKAL1 Koreans rs7754840 P = 2.49 × 10−13 [102]

Caucasians rs7756992 P < 0.05 [99]

Caucasian/Danish rs7756992 P = 0.00017 [98]

Iranians rs7754840 P < 0.001 [105]

IRS1 Scandinavians IRS1 Arg972 P < 0.05 [106]

Americans Arg972 P < 0.05 [107]

Saudi Arabians rs1801278 P = 0.01 [108]

Austro-Hungarians rs7578326 P < 0.05 [109]

HMGA2 Africans rs138066904 P = 2.516 × 10−9 [96]

Africa Americans rs343092 P < 0.05 [96]

Europeans rs2258238 P < 0.05 [96]

IGF2BP2 Koreans rs4402960 P < 0.001 [110]

Caucasians/Danish rs4402960 P < 0.001 [111]

Chinese rs4402960 P < 0.001 [112]
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the effect of dietary patterns among pregnant Chinese
women, diets containing high protein and low starch were
associated with a reduced risk of GDM [138]. Energy-dense
diets are deficient in betaine, which is a methyl donor for
methylating important biological processes and as well a
substrate of methionine metabolism [139]. Diets low in
betaine may induce abnormal methylation of some genes
involved in insulin synthesis and glucose metabolism. Ad-
vanced age may also predispose pregnant women to GDM
because mitochondrial functions decline with age, leading
to reduced metabolic activities and an increased body mass
index [140]. Aging changes the epigenetic pattern, affecting
the expression of some genes involved in glucose metabol-
ism, particularly the COX7A1 gene in the respiratory chain
[141]. In a study of 1688 women in northwest London who
developed GDM, advanced maternal age was linked to
GDM [142]. Studies that demonstrate the role of physical
inactivity in the pathogenesis of GDM are scarce. However,
a systematic and meta-analysis by Ming et al. [143] shows
that physical activity during pregnancy can decrease the oc-
currence of GDM, suggesting that lack of exercise is a risk
factor. Some mechanisms through which inactivity

mediates diseases include mitochondrial dysfunction,
changes in the composition of muscles, and insulin resist-
ance, among others [144]. Physical inactivity influences the
epigenome negatively, affecting several generations [145].

GDM testing, efficacy, and cost-effectiveness
Early detection of GDM is important to prevent its short-
and long-term effects, especially the maternal progression
to T2DM and fetal programming to DM later in life. Cer-
tain features such as BM1 above 30 kg/m2 as well as previ-
ous GDM, baby birth weight of 4.5 kg or above, and
macrosomia suggest a need for a GDM test [146]. Preg-
nant women with a family history of DM and ethnic
groups with a high prevalence of DM such as Asian, Black,
African-Caribbean or Middle Eastern should also consider
the test [146, 147]. As stated earlier, there is no genetic
testing procedure yet for GDM, however, two tests,
namely glucose challenge test (GCT) and oral glucose tol-
erance test (OGTT) are frequently conducted at 24-28
weeks of pregnancy to diagnose GDM. The two tests can
be done in succession known as 2-step screening, or
OGTT alone can be done called 1-step screening.
In the 2-step screening, the GCT (otherwise known as

a glucose screening test) is done first and entails testing
the blood glucose one hour after drinking a sweet sub-
stance without fasting. If the blood glucose is 140 mg/dL
(7.8 mmol/L) or higher, then an OGTT is necessary
[148]. The OGTT measures blood glucose after 8-hour
fasting, after which a glucose substance (75 g) is taken
and blood glucose re-measured after 1, 2 and 3 hours.
High blood glucose levels at any two or more of the
blood test times suggest GDM [148]. Though the patho-
physiology of GDM are similar with T2DM, a GCT of
200 mg/dL or more could indicate T2DM [148].
Relatively recently, serum levels of C-reactive protein

(CRP) as well as glycated hemoglobin (HbA1c) and ran-
dom blood sugar (RBS) are used as screening tools for
GDM in the first trimester. CRP concentrations of about
6 mg/L or higher in undiluted serum samples are con-
sidered positive for GDM [149]. According to the Inter-
national Association of the Diabetes and Pregnancy
Study Group (IADPSG), the cutoff level of HbA1c is 6.5
% and RBS is 11.1 mmol (200mg/dL) [150].

Table 2 Most prevalent gestational diabetes mellitus genes across countries, ethnicity, and race in the world (Continued)

Gene Countries/ethnicity/race Variants Level of significance References

GCKR Malaysians rs780094 P < 0.05 [113]

American Caucasians rs780094 P < 0.05 [114]

Brazilians rs780094 P < 0.05 [115]

FGF21 Iranians Over expression of mRNA P < 0.001 [116]

Chinese Over expression of mRNA P < 0.001 [117]

Australians Over expression of mRNA P < 0.001 [118]

Fig. 2 Percentage prevalence of most implicated GDM genes from
data extracted
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The cost-effectiveness of GDM testing is controversial
because it depends on the region, race, screening tools,
and methods. A systematic review by Fitria [151] re-
ported that GDM testing and controlling is not effective
in high-income countries. This could be due to the low
prevalence of the disease in the region and the all-
encompassing health care system. However, GDM test-
ing could be worthwhile in countries with a high preva-
lence of GDM and nations with a poor healthcare
system. For example, Marseille et al. [152] reported the
cost-effectiveness of GDM testing using a devised model
in Israel and India, which are known for high GDM inci-
dence rates. The 2-step GTT is often recommended,
however, a systematic review and meta-analysis by
Saconne et al [153] showed no significant cost-effective
difference between the two methods. The 2-step screen-
ing is also time-consuming and inconvenient, which may
put off some patients [150, 154]. Glycated hemoglobin
and RBS are simple GDM screening tools and are gain-
ing acceptance worldwide, however, more awareness and
understanding of the tools are necessary.

Conclusion
Several articles reviewed showed that mutation and epi-
genetic modifications in certain genes can predispose
humans to GDM. Most of the GDM candidate genes
identified have also been implicated in the pathogenesis of
T2DM, and both diseases share a common pathophysi-
ology. The two metabolic disorders expressed oxidative
stress-induced beta-cell dysfunction and insulin resistance
through adiposity and obesity. One major difference be-
tween GDM and T2DM is that it resolves most times after
delivery, however, it may progress to T2DM if not
checked. This shows that GDM is a strong risk factor for
T2DM, thus, its detection and management may reduce
the prevalence of DM worldwide. Of the GDM candidate
genes identified, the variants of TCF7L2, MTNR1B,

CDKAL1, IRS1 and KCNQ1 are the most widespread,
while some others are confined to certain ethnic groups.
A genetic testing procedure can be developed around
these genes to predict the likelihood of GDM or deter-
mine its genetic and epigenetic etiology. This will go a
long way in stemming the incidence of DM worldwide.
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