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Abstract 

Wi-Fi technology has become an important candidate for localization due to its low cost and no need of additional 
installation. The Wi-Fi fingerprint-based positioning is widely used because of its ready hardware and acceptable accu-
racy, especially with the current fingerprint localization algorithms based on Machine Learning (ML) and Deep Learn-
ing (DL). However, there exists two challenges. Firstly, the traditional ML methods train a specific classification model 
for each scene; therefore, it is hard to deploy and manage it on the cloud. Secondly, it is difficult to train an effective 
multi-classification model by using a small number of fingerprint samples. To solve these two problems, a novel 
binary classification model based on the samples’ differences is proposed in this paper. We divide the raw fingerprint 
pairs into positive and negative samples based on each pair’s distance. New relative features (e.g., sort features) are 
introduced to replace the traditional pair features which use the Media Access Control (MAC) address and Received 
Signal Strength (RSS). Finally, the boosting algorithm is used to train the classification model. The UJIndoorLoc dataset 
including the data from three different buildings is used to evaluate our proposed method. The preliminary results 
show that the floor success detection rate of the proposed method can reach 99.54% (eXtreme Gradient Boosting, 
XGBoost) and 99.22% (Gradient Boosting Decision Tree, GBDT), and the positioning error can reach 3.460 m (XGBoost) 
and 4.022 m (GBDT). Another important advantage of the proposed algorithm is that the model trained by one build-
ing’s data can be well applied to another building, which shows strong generalizable ability.

Keywords:  Fingerprint-based positioning, Sample difference, Binary-classification, Boosting, Machine learning, Wi-Fi 
positioning
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Introduction
The outdoor location service has increasingly matured 
with the rapid development of the Global Navigation Sat-
ellite System (GNSS) (Liu et  al., 2020). However, GNSS 
fails to provide indoor positioning service due to its sig-
nal obstruction and attenuation. While indoor position-
ing has become more and more important in people’s 
daily activities, such as shopping, parking, and health 
monitoring. Accordingly, many scholars have conducted 
considerable research on indoor positioning with various 

techniques, such as Wi-Fi, Bluetooth, geomagnetic locali-
zation, Radio Frequency Identification (RFID), ultra-wide-
band, wireless local area network, computer vision, light 
visible communication, and Pedestrian Dead Reckoning 
(PDR) assisted by accelerator and gyroscope (He & Chan, 
2016; Naser and Li, 2021; Zhuang et al., 2018; Yang et al., 
2015; El-Sheimy & Li, 2021; El-Sheimy & Youssef, 2020).

Among these techniques, Wi-Fi positioning has 
become a research hotspot due to its mature hardware 
and software ecology, low cost, and no need of extra 
deployment. Main Wi-Fi positioning algorithms include 
Access Point (AP) proximity-aware (Hodes et  al., 1997), 
fingerprint-based positioning (Zhuang et  al., 2016), and 
trilateration localization based on the signal propagation 
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model (Bahl & Padmanabhan, 2000). But the fingerprint-
ing algorithm is more widely used because it can achieve 
the highest positioning accuracy.

Currently, the neighbor point mismatch is a prime 
problem in Wi-Fi fingerprint-based positioning. The tra-
ditional solution calculates the similarity between the 
fingerprint RSS vector and the observation RSS vector 
using different indices, like the Euclidean distance (Kae-
marungsi & Krishnamurthy, 2004), cosine similarity (Han 
et al., 2015), Pearson coefficient (Li et al., 2019), and oth-
ers (Machaj et al., 2011). Most of these methods use the 
direct differential computation method by the means of 
RSS vectors. However, it is difficult to describe the com-
plex nonlinear relationship between signal vectors accu-
rately. Therefore, many scholars recently use Machine 
Learning (ML) and Deep Learning (DL) for neighbor 
point matching. It can be broadly divided into two groups 
One is the supervised learning methods which use vari-
ous classification methods, like Random Forest (RF) (Lee 
et  al., 2019), Decision Tree (DT) (Chanama & Wong-
wirat, 2018), Bayes (Chen et  al., 2013), Support Vector 
Machine (SVM), Neural Network (NN) (Zhang et  al., 
2013; Esmond & Bernard, 2013), Convolutional Neural 
Network (CNN) (Shao et al., 2018) and other classifica-
tion algorithms (Feng et  al., 2014; Li et  al., 2021). The 
other is unsupervised learning using the methods of 
clustering, K-Means (Chen et al., 2015), fuzzy cluster (Bi 
et al. 2018), Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) (Deng et al., 2018), etc.

These two groups of methods have their obvious weak-
nesses and strengths. The classification algorithms always 
require a high demand, which includes both sample qual-
ity and sample quantity. Considering the time and labor 
costs, we can easily find that classification, especially the 
multi-classification, may not be suitable for fingerprint-
based positioning since the classifier training requires 
each of these categories has a large number of samples. 
Therefore, many methods for sample enhancement have 
been proposed, for example, crowdsourced data collec-
tion (Guo & Pun, 2019), interpolation methods for sam-
ple creation (Kolakowski, 2020), and the DL to increase 
the size of samples, in which the most common method 
is the Generative Adversarial Network (GAN) (Liu & 
Wang, 2020; Zou et al., 2020). But the data generated by 
this method has poor quality, and the generation model is 
hard to converge when using GAN.

The clustering algorithm also has some problems. 
Firstly, the computational complexity of the clustering 
is too high to be used in real-time positioning. Secondly, 
clustering is more applicable for zone localization, and 
the accuracy of the point localization using this algo-
rithm is always low. In addition, most of the clustering 
algorithms require a known number of classes and some 

initial centers of the clusters, which makes it hard for 
practical use. The abnormal data has a greater effect on 
the final result when compared with other methods.

The above ML-based or DL-based methods all face the 
same problem. They use the APs’ RSS values as the input 
features, but the RSS values have a strong relationship 
with the location of the fingerprint. The classifier trained 
by the fingerprint data of one building cannot be used 
in another building, sometimes even on another floor. It 
requires that each building or floor trains and manages its 
own classifier, which can cause some problems. The first 
and foremost problem is the model deployment in the 
servers for practical application. It is necessary to deploy 
a huge number of models and update the models peri-
odically, which is costly. Another problem is the model 
management if there are many models on the cloud. It is 
hard to maintain effectively, and also requires countless 
resources for the operation of the whole cloud platform.

To solve the above problems, a novel method is pro-
posed using the differences among the samples. To make 
full use of the differences, we adopt the relative features, 
like the repeated AP, the signal similarity, and the other 
features rather than the commonly used absolute fea-
tures. The boosting algorithms of the eXtreme Gradient 
Boosting (XGBoost) and the Gradient Boosting Decision 
Tree (GBDT) are used in this paper for binary classifica-
tion model training rather than the multi-classification, 
because they are widely used in binary classification and 
their performance is much better than others. The test 
datasets perform well by using the classifier trained by 
the same building’s data, or another building’s data.

System components and methodology
System components
Figure  1 shows the proposed positioning system that 
involves two main phases, i.e., offline and online.

In the offline phase, the main work is the fingerprint 
collection and the classification model training. To 
improve the quality of the samples, it is better to collect 
RSS values serval times in each fingerprint. After the RSS 
values are collected, all the samples are paired. If the two 
samples of one pair come from the same points or neigh-
bor points, these pairs are regarded as positive pairs, like 
FPA1 and FPA2 which are collected in Point A in Fig. 1. If 
they come from different points and the distance between 
them is large enough, they belong to a negative pair, like 
FPA1 which is collected in Point A and FPB1 which is col-
lected in Point B in Fig. 1. We choose the FPs that come 
from different fingerprint points as a negative pair in this 
paper. Then, new features which represent the difference 
between two samples in each pair are calculated. The new 
extracted features are the inputs of the classifier rather 
than the original MAC-RSS pairs. The boosting algorithm 
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is used for classifier training. Some base classifiers are 
used for the training process, and the output of the previ-
ous classifier works as the input of the next classifier. The 
misclassified samples will be considered more in the next 
classification. A binary classification model will be the 
output at the end. The output of the model is the probabil-
ity with which the observation and the fingerprint come 
from the same point or neighbor points.

In the positioning phase, some key fingerprint points 
which have the common MAC with the observation list 
are selected for the next calculation. Then, the features 
from these fingerprints and observation data are calcu-
lated. The features are input into the model trained in the 
offline phase. And the model will output the probability 
of each fingerprint point and the attribute (neighbor point 
or not) of each fingerprint point. Finally, the point which 
holds highest probability is the final localization result.

Feature selection
The traditional fingerprinting methods always use the 
MAC-RSS pairs as the features. This means the features 
have a strong relationship with the locations of the fin-
gerprint points, which limits the use of the multiple 
classifiers. We proposed a method to use positive and 
negative pairs for classification. If the two samples of 
one pair come from the same point or neighbor points, 
these pairs are regarded as positive pairs. If they come 
from different points and their spacing is large enough, 
they are negative pairs, which is shown in Fig.  2. Then, 
the features which represent the difference between two 
samples in each pair are calculated.

The new features are divided into four types, i.e., 
the coincidence number features, the sort feature, the 

similarity feature, and the transposition feature. All 
these features are listed in Fig. 3.

Figure  4 and the following equations show how to 
calculate these features.

The similarity features can be calculated by the fol-
lowing equations:

a.	 Euclidean Distance:

where rss(apiinSA) and rss(apiinSB) represent the RSS 
value of api in scanlist SA and SB respectively. m is 
the repeated MAC number of scanlist SA and SB.

b.	 Cosine Similarity:
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c.	 Chebyshev Distance:

where Max(·) denotes the maximum function.
d.	 Pearson’s Coefficient:
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where rssSA and rssSB are the means of the RSS values 
of scanlist SA and SB.

e.	 Manhattan Distance:

f.	 Dot Product Ratio (DPR):

g.	 Normalization Dot Product Ratio (NDPR):

h.	 Morphological Similarity Distance:

The transposition feature can be calculated by the fol-
lowing formulas:

a.	 Location Square Deviation (LSD)

where N represents the length of the AP scanlist, and 
SA, SB are the different AP scanlists. api[SA] denotes 
the sort of api in A, api[SB] has the same meaning as 
api[SA].

b.	 Location Mean Deviation (LMD):

c.	 Swap Deviation (SD):

where SA → SB represents the sift operation from 
SA to SB, W (·) is the weight function, and Min(·) is 
the minimum function.
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d.	 Swap Distance Deviation (SDD):

where i, j represents one AP’s sort in AP scanlist SA 
and SB, respectively.

Additional processes
Removal of unreliable APs
There are many mobile phones or other mobile devices 
in the building, and they may have a great influence 
on fingerprint information collecting and online posi-
tioning. In addition, the proposed method requires the 
ordering information. It is necessary to delete these 
mobile APs firstly.

The mobile MAC in fingerprint data is easy to be 
found and deleted by the statistical means, like the 
number of repeated occurrences, the cover area, the 
RSS values and so on.

It is hard to delete the mobile MAC in online posi-
tioning due to the limited information in the observa-
tion. There are two general solutions. The first one is 
comparing the current observation with the historical 
observation. Some abnormal MAC can be found. The 
second solution requires the system to maintain an 
abnormal field list to detect the abnormal MAC in real 
time. The abnormal field list may contain some obvi-
ous abnormal fields, like ‘Mobile’, ‘HUAWEI’, ‘OPPO’, 
‘VIVO’, ‘XIAOMI’, ‘smartphone’, and so on.

RSS normalization
The RSS received by different types of devices is dif-
ferent because of the device heterogeneity. Thus, we 
must map them to a uniform range using Eq. (13) (Song 
and Wang 2017), which can mitigate the impact of the 
device heterogeneity to some extent.

where rss and rssstd respectively represents the mean 
value and the standard value of the RSS list.

Feature enhancement
The total number of the new features is 23, which is 
limited for model training. Except for the whole RSS 

(12)

Dsdd = Min(W (SA → SB)) = Min

(

∑

s∈SA→SB

∣

∣i − j
∣

∣

)
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rssstd



Page 6 of 15Cao et al. Satellite Navigation            (2021) 2:27 

list, we also choose the top three list and the top five 
list to calculate these features respectively, and then the 
total number of the features is increased to 57. In the 
real test, the added features can improve the accuracy. 
However, some features are strongly correlated; there-
fore, a part of the useless features should be dropped in 
the next experiment.

Experiment and result discussion
Data declaration
The UJIndoorLoc Dataset (Torres-Sospedra et  al. 2014) 
collection covers an area of 108,703  m2, including three 
buildings with 3–5 floors. The Wi-Fi data are collected 
by more than 20 collectors using 25 different types of 
smartphones, and the total number of AP is more than 
500. Table 1 lists the detailed data information for each 
building, which tells the dataset diversity and complexity 
are high enough. The fingerprint points’ distribution for 
each building is visualized in Fig. 5. And Table 2 gives the 
number of MAC repetitions between each building.

Experiments setting
The fingerprint data used for the classifier training is 
from one building, but the validation data may come 
from different buildings to test the adaptability of differ-
ent classifiers. Table  3 shows the setting of the experi-
ment with M representing the Model and T the Test. 

For example, M0-T1 means the data for model training 
come from Building0 and the validation data come from 
Building1.

Experiment results
To validate the effectiveness of the proposed method, the 
results are compared with the results with other meth-
ods in the relevant articles. Many comparative experi-
ments are conducted. We test the performance of the 
Nearest Neighbor (NN), DT, and Ensemble Learning 
(EL) algorithms, including the bagging algorithms (Bag-
ging and RF) and the boosting algorithms (XGBoost and 
GBDT). To test the feasibility of the proposed method 

Table 1  The detailed data information for each building

Building ID Floors Training 
samples

Testing samples All samples

Building0 4 4199 1050 5249

Building1 4 4157 1039 5196

Building2 5 7594 1898 9492
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Fig. 5  The fingerprint points’ distribution of each building

Table 2  The number of MAC repetitions between each building

Building ID Building0 Building1 Building2

Building0 199 59 7

Building1 59 207 82

Building2 7 82 203

Table 3  The different experimental test groups

Training data source Testing data source Experiment id

Building 0 Building 0 M0-T0

Building 1 M0-T1

Building 2 M0-T2

Building 1 Building 0 M1-T0

Building 1 M1-T1

Building 2 M1-T2

Building 2 Building 0 M2-T0

Building 1 M2-T1

Building 2 M2-T2
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for different buildings, the classifiers and the test samples 
from three different buildings are used for validation. In 
addition, some experiments are performed to test the 
effectiveness of the features, including the cases of 23 fea-
tures, 57 features, and the low-scored features deleted.

Compared with existing methods
Since the UJIndoorLoc Dataset is widely used to test the 
performance of the fingerprint positioning algorithms, 
the result of the proposed method is compared with the 
results of other approaches listed in Table 4. We can see 
from the table that the proposed novel method has a bet-
ter performance not only in the positioning error but also 
in the building and floor judgment accuracy. The first 
proposed method uses the XGBoost and achieves the 
mean positioning error of 3.42 m and the floor judgment 
accuracy of up to 99.40%. The second proposed method 
uses the GBDT and achieves the mean positioning error 
of 2.45 m and the floor judgment of 99.14%.

Comparison with popular algorithms
There are three main evaluation indices: floor detection 
accuracy, point matching accuracy, and mean positioning 
error. The point matching accuracy represents the rate 
of the final result matches the chosen testing fingerprint 
point.

The NN is one of the most popular methods in finger-
print positioning. We transfer the multi-classification 
into the binary classification in this paper, and the pre-
vious works show that tree models perform well in the 
binary classification. Thus, the DT and its enhanced 
algorithm-EL, including bagging algorithm and boost-
ing algorithm, are chosen to evaluate the performance 
of the proposed method. The bagging algorithm includes 
the bagging and the RF, while the boosting algorithm 
includes XGBoost and GBDT. The detailed results are 
shown in Table  5. It is obvious that the performance of 
the single tree is much poorer than the EL. And the per-
formance of the bagging algorithm is poorer than the 
boosting algorithm. As shown in Table 5, the positioning 
accuracy is slightly higher when using the GBDT. How-
ever, the XGBoost performs better in floor detection. Fig-
ure 6 shows the CDFs of different algorithms.

Classifiers trained by different buildings
The main objective of our method is to improve the 
adaptability of the classifier, making the classifier trained 
by one building usable in another building. The test data 
from three buildings are used to test the validity of the 
proposed method. The success rate of the floor judgment 
and point judgment, and the mean positioning error are 
recorded in the following tables. The performance of 
the DT, bagging algorithm, and boosting algorithm are 
tested, respectively. It is obvious that the boosting algo-
rithm performs better than other methods, and the pro-
posed method performs well even if the data come from 
different buildings. Tables 6, 7, 8 show the results of each 
building, and Figs. 7, 8, 9 show the CDFs of each method.

Table 4  The results of other articles and the method we 
proposed

*T represents the testing dataset, V is the validation dataset

Article Mean 
positioning 
error

Floor judgment accuracy

Torres-Sospedra et al. (2014) 7.90 m 89.92%

Berkvens et al. (2016) 9.20 m 90.10%

Torres-Sospedra et al. (2015) 6.86 m 94.78%

Song et al. (2019) 11.78 m 96.03%

Nowicki and Wietrzykowski 
(2017)

– T:92% (V:99%)

Proposed method 1 
(XGBoost)

4.02 m 99.22%

Proposed method 2 (GBDT) 3.46 m 98.54%

Table 5  The performance of different methods when the training data and validation data come from the same building

Algorithm Building0 Building1 Building2

Floor 
accuracy 
(%)

Point 
accuracy 
(%)

Mean error (m) Floor 
accuracy 
(%)

Point 
accuracy 
(%)

Mean error (m) Floor 
accuracy 
(%)

Point 
accuracy 
(%)

Mean error (m)

NN 92.35 71.54 4.063 97.41 82.68 3.278 79.49 63.23 13.098

DT 37.89 2.73 23.602 46.43 6.12% 24.317 33.25 1.29 39.034

RF 98.44 71.88 2.102 97.96 73.98 3.050 96.39 74.23 1.880

Bagging 95.70 61.33 3.611 95.41 63.78 4.403 95.62 63.40 3.488

XGBoost 99.22 66.41 2.414 98.98 65.31 4.269 100.00 62.11 3.563

GBDT 100.00 78.52 1.399 98.98 76.53 2.873 98.45 74.49 3.089
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Fig. 6  The CDFs of different methods

Table 6  The results of different classifiers and testing samples using XGBoost

Model-test GBDT XGBoost

Floor success rate 
(%)

Point success rate 
(%)

Mean error (m) Floor success rate 
(%)

Point success rate 
(%)

Mean error (m)

M0-T0 100.00 78.52 1.399 99.22 66.41 2.414

M0-T1 100.00 81.63 2.927 100.00 70.41 4.336

M0-T2 96.39 54.12 6.005 100.00 60.31 4.808

M1-T0 99.22 59.38 3.002 96.48 46.09 4.639

M1-T1 98.98 76.53 2.873 98.98 65.31 4.269

M1-T2 93.81 52.06 7.257 99.49 55.16 5.109

M2-T0 100.00 75.00 1.803 98.83 55.86 3.122

M2-T1 100.00 78.06 2.804 100.00 67.86 3.936

M2-T2 98.45 74.49 3.089 100.00 62.11 3.563

Mean 98.54 69.98 3.460 99.22 61.06 4.022

Table 7  The results of different classifiers and testing samples using Bagging

Model-test Bagging RF

Floor success rate 
(%)

Point success rate 
(%)

Mean error (m) Floor success rate 
(%)

Point success rate 
(%)

Mean error (m)

M0-T0 95.70 61.33 3.611 98.44 71.88 2.102

M0-T1 96.43 63.78 6.821 98.98 71.94 5.455

M0-T2 87.63 41.50 8.949 96.65 56.44 6.408

M1-T0 94.92 51.17 3.872 98.44 64.45 3.033

M1-T1 95.41 63.78 4.403 97.96 73.98 3.050

M1-T2 95.62 39.43 7.253 99.23 64.69 3.493

M2-T0 95.70 48.44 4.277 100.00 69.14 2.102

M2-T1 96.94 66.33 5.057 99.49 70.41 4.720

M2-T2 95.62 63.40 3.488 96.39 74.23 1.880

Mean 94.89 55.46 5.303 98.40 68.57 3.583
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Feature dimension reduction
23 features are chosen to test the proposed method. 
Table 9 shows the result by using the classifier trained by 
23 features. To improve the dimension of the feature, we 
increase the number of the feature to 57, Table 6 shows 
its performance.

When we use XGBoost and GBDT, the score of each 
feature can be output after training. To improve the accu-
racy of each classifier, Figs. 10, 11, 12 show the score of 
each feature. But the low-score features are different for 
different classifiers. Thus, some common low-score fea-
tures are deleted. The remaining features are used to train 
a new classifier, and the performance of the new classifier 
also is tested. Table 10 shows the performance after delet-
ing some features. We can find no obvious improvement 

in the validity after deleting the low-score features. Fig-
ures 10, 11, 12 show the score of each feature in different 
buildings.

Conclusion and future work
To improve the performance of the indoor fingerprint-
based positioning, it is a trend to use the method of ML 
or DL. However, current methods using the MAC-RSS 
pairs as the features face many problems, like low scene 
adaptability and the accuracy of the localization model. 
Thus, we proposed a novel method to solve these prob-
lems. To improve the model generalizable ability, we 
divided the samples into positive pairs and negative 
pairs and calculated the relative features rather than the 
absolute features from these pairs. Some methods were 
used to enhance the dimension of the features. Then the 
binary classification was used to replace the multi-classi-
fication, and the boosting algorithm was used to improve 
the accuracy of the classification model. The open-source 
dataset-UJIndoorLoc Dataset was used to test the perfor-
mance of the proposed method. The results show that the 
proposed method performs better in floor judgment suc-
cess rate and positioning error when compared with the 
NN and other binary classification models. Further stud-
ies are necessary, including the development of a method 
to construct more effective positive samples and negative 
samples and the employment of the DL rather than ML 
(Figs. 13, 14).

Table 8  The results of different classifiers and testing samples 
using DT

Model-test Floor success 
rate (%)

Point success 
rate (%)

Mean error (m)

M0-T0 37.89 2.73 23.602

M0-T1 52.55 6.12 29.683

M0-T2 32.22 1.29 48.224

M1-T0 37.50 2.34 21.025

M1-T1 46.43 6.12 24.317

M1-T2 35.05 1.03 42.775

M2-T0 39.84 3.13 22.828

M2-T1 51.53 7.65 19.929

M2-T2 33.25 1.29 39.034

Mean 40.70 3.52 30.157
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Fig. 7  The CDFs of Building0 using traditional methods and the proposed method
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Fig. 8  The CDFs of Building1 using traditional methods and the proposed method
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Table 9  The results of different testing samples using 23 features with XGBoost and GBDT

Model-test XGBoost GBDT

Floor success rate 
(%)

Point success rate 
(%)

Mean error (m) Floor success rate 
(%)

Point success rate 
(%)

Mean error (m)

M0-T0 98.83 60.94 2.527 100.00 81.25 1.300

M0-T1 98.98 68.37 4.311 98.98 79.08 3.231

M0-T2 99.23 59.28 4.753 96.65 59.02 7.421

M1-T0 98.83 57.81 3.104 99.61 69.14 2.363

M1-T1 99.49 62.76 4.861 99.49 78.06 2.535

M1-T2 99.23 47.42 5.835 83.25 44.85 9.109

M2-T0 97.66 48.83 4.241 100.00 75.00 2.035

M2-T1 100.00 59.69 5.241 100.00 80.10 2.757

M2-T2 99.49 45.88 5.227 97.68 75.26 3.032

Mean 99.08 56.77 4.460 97.30 71.31 3.750

Fig. 10  The score of each feature using the data which comes from Building0



Page 12 of 15Cao et al. Satellite Navigation            (2021) 2:27 

Fig. 11  The score of each feature using the data which comes from Building1

Fig. 12  The score of each feature using the data which comes from building2
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Table 10  The results of different testing samples using XGBoost and GBDT after deleting the low-score Features

Model-test GBDT XGBoost

Floor success rate 
(%)

Point success rate 
(%)

Mean error (m) Floor success rate 
(%)

Point success rate 
(%)

Mean error (m)

M0-T0 100.00 79.69 1.455 98.05 64.45 2.534

M0-T1 100.00 80.61 3.070 98.98 66.33 4.933

M0-T2 95.62 52.84 6.293 99.23 55.67 4.943

M1-T0 99.22 60.55 2.783 97.66 39.06 4.899

M1-T1 99.49 73.98 3.294 96.94 57.14 4.661

M1-T2 94.07 55.67 7.631 98.71 55.41 4.854

M2-T0 100.00 74.61 1.855 98.44 46.09 3.846

M2-T1 100.00 79.08 2.715 100.00 63.27 4.781

M2-T2 99.74 76.55 2.657 100.00 57.22 3.920

Mean 98.68 70.40 3.530 98.67 56.07 4.370
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