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GIL: a tightly coupled GNSS PPP/INS/LiDAR 
method for precise vehicle navigation
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Abstract 

Accurate positioning and navigation play a vital role in vehicle-related applications, such as autonomous driving and 
precision agriculture. With the rapid development of Global Navigation Satellite Systems (GNSS), Precise Point Positioning 
(PPP) technique, as a global positioning solution, has been widely applied due to its convenient operation. Nevertheless, 
the performance of PPP is severely affected by signal interference, especially in GNSS-challenged environments. Inertial 
Navigation System (INS) aided GNSS can significantly improve the continuity and accuracy of navigation in harsh envi-
ronments, but suffers from degradation during GNSS outages. LiDAR (Laser Imaging, Detection, and Ranging)-Inertial 
Odometry (LIO), which has performed well in local navigation, can restrain the divergence of Inertial Measurement Units 
(IMU). However, in long-range navigation, error accumulation is inevitable if no external aids are applied. To improve vehi-
cle navigation performance, we proposed a tightly coupled GNSS PPP/INS/LiDAR (GIL) integration method, which tightly 
integrates the raw measurements from multi-GNSS PPP, Micro-Electro-Mechanical System (MEMS)-IMU, and LiDAR to 
achieve high-accuracy and reliable navigation in urban environments. Several experiments were conducted to evaluate 
this method. The results indicate that in comparison with the multi-GNSS PPP/INS tightly coupled solution the position-
ing Root-Mean-Square Errors (RMSEs) of the proposed GIL method have the improvements of 63.0%, 51.3%, and 62.2% 
in east, north, and vertical components, respectively. The GIL method can achieve decimeter-level positioning accuracy 
in GNSS partly-blocked environment (i.e., the environment with GNSS signals partly-blocked) and meter-level positioning 
accuracy in GNSS difficult environment (i.e., the environment with GNSS hardly used). Besides, the accuracy of velocity 
and attitude estimation can also be enhanced with the GIL method.
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Introduction
Accurate and continuous navigation is one of the funda-
mental prerequisites for a reliable and intelligent driving 
system. Nevertheless, it is often difficult for a stand-alone 
sensor to meet the needs of robust navigation in complex 
scenarios (Groves et al., 2014; Li et al., 2021). Thus, multi-
sensor data fusion, which takes full advantage of different 
sensors (e.g., Global Navigation Satellite Systems (GNSS), 
Inertial Navigation System (INS),  Laser Imaging, Detec-
tion, and Ranging (LiDAR), camera), has become a hot-
spot in both academic and industrial sectors.

GNSS which is able to deliver accurate Position-
ing, Navigation, and Timing (PNT) services, is widely 
adopted in various fields. Compared with dynamic dif-
ferential positioning techniques, like Real-Time Kin-
ematic (RTK), Precise Point Positioning (PPP) method 
proposed by Zumberge et  al. (1997) can overcome the 
distance limitation and has the advantage of operational 
flexibility. Developments in satellite orbit and clock prod-
ucts (Kouba, 2013) further increase the practicality of the 
PPP (Tang et  al., 2017; Wright et  al., 2012). Along with 
the rapid development of GNSS, additional systems like 
Galileo navigation satellite system (Galileo) and BeiDou 
Navigation Satellite System (BDS) can enhance the geo-
metric strength of PPP observations (Afifi & El-Rabbany, 
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2015). With more GNSS satellites available, the GPS 
(Global Positioning System) + BDS + Galileo PPP has 
been confirmed to have faster convergence and higher 
accuracy than the GPS-only PPP solution (Guo et  al., 
2018; Li et al., 2018).

Despite its advantages, the multi-GNSS PPP cannot 
be immune to degradation in poor satellite visibility or 
weak constellation geometry (Zhang & Li, 2012), thereby 
making continuous and precise navigation in urban areas 
an intractable problem. To address this problem, a lot 
of work has been done to aid GNSS with INS (Cui et al., 
2019; Gao et al., 2017). As for the PPP, Roesler (2009) and 
Shin (2009) proved that the PPP/INS integration could 
achieve superior positioning accuracy and continuity 
in both open-sky and GNSS difficult environments (i.e., 
the environment with GNSS hardly used). Compared to 
loosely coupled approaches, tightly coupled integration 
has been demonstrated to be more effective and robust 
when the satellite availability is limited (Abd Rabbou & 
El-Rabbany, 2015a, 2015b). However, when GNSS signals 
are blocked, the navigation result degrades rapidly owing 
to the error accumulation, especially for Micro-Electro-
Mechanical System (MEMS) Inertial Measurement Units 
(IMUs) (Abd Rabbou & El-Rabbany, 2015a).

Fortunately, the integration of LiDAR and IMU, which 
shows excellent precision and reliability in local naviga-
tion, provides another solution for vehicle navigation. 
Typical methods, such as Laser Odometry and Map-
ping (LOAM) (Zhang & Singh, 2014), Catergapher (Hess 
et  al., 2016), and Lidar-IMU Odometry (LIO)-mapping 
(Ye et  al., 2019) can achieve decimeter-level position-
ing accuracy for indoor navigation tasks. These meth-
ods commonly formulate an optimization problem to 
determine the best estimation of LiDAR poses. Besides, 
there are also substantial researches that tried to realize 
the fusion through filter-based practices. For instance, 
Zhen et al. (2017) proposed a tightly coupled INS/LiDAR 
method based on a Gaussian particle filter and verified its 
effectiveness in various challenging conditions, such as 
a kidnapped robot. Qin et al. (2020) utilized an iterated 
error-state Kalman filter to achieve real-time ego-motion 
estimation. Generally, the optimization-based methods 
require significant computational resources to obtain 
high accuracy through an iterative process, while the 
filter-based algorithms have advantages in operational 
efficiency with comparable accuracy (Qin et  al., 2020). 
However, the error accumulation is unavoidable for the 
INS/LiDAR odometry in long-duration navigation with-
out available global corrections.

To take advantage of both local and global navigation 
and achieve global drift-free localization, many schol-
ars have conducted in-depth research on the integration 
of GNSS, INS, and LiDAR. One of the fusion schemes 

utilizes GNSS/INS results to estimate gravity’s orienta-
tion and predict LiDAR poses (Hess et  al., 2016). How-
ever, the scheme does not consider GPS and IMU data 
processing and heavily depends on LiDAR registration. 
Alternatively, by extending the conventional GNSS/INS 
scheme with LiDAR Simultaneous Location and Map-
ping (SLAM), the authors (Chiang et al., 2020) presented 
a lane-level navigation approach for moving vehicles. 
Other integration strategies aided the tightly coupled 
LiDAR/IMU odometry with optional GPS position con-
straints (Shan et  al., 2020; Koide, 2019). These strate-
gies take GNSS as a “black box”, describe the poses in a 
self-defined local framework and loosely merge local 
odometer results with GPS positioning results. Soloviev 
(2008) introduced a tightly coupled solution of GPS, 
two-Dimensional (2D) laser, and INS to improve the per-
formance of 2D plane positioning in urban areas. Never-
theless, this study only utilized GPS-derived horizontal 
positions.

In this contribution, we propose a tightly coupled 
multi-GNSS PPP/INS/LiDAR (GIL) algorithm to per-
form three-Dimensional (3D) large-scale vehicle navi-
gation in urban environments. Raw observations from 
multi-GNSS PPP, MEME-IMU, and 16-line LiDAR are 
integrated through an Extended Kalman Filter (EKF) to 
enhance the navigation performance in terms of posi-
tion, velocity and attitude. The experiments in the GNSS 
challenging environments around Wuhan University are 
designed to evaluate this method. The remaining paper 
is organized as follows. Firstly, we introduce the system 
state description. Then the process model is investigated, 
followed by the multi-GNSS PPP and LiDAR meas-
urement models. Thirdly, the overall flow of the GIL is 
organized. Subsequently, the experimental platform is 
briefly introduced, and the experiments and correspond-
ing analyses are presented. Finally, we summarize this 
study and the prospect for the follow-up research.

Mathematical model
State description
The state vector δx consists of the error states from INS, 
PPP, and LiDAR, which are represented by δxins , δxppp 
and δxlidar , respectively. The specific forms can be defined 
as:

In δxins , δθeb denotes the three-dimensional attitude 
errors. The symbols b and e indicate the body coordinate 

(1)

δxins= [δθeb,δv
e
b,δp

e
b,δba,δbg ]

T

δxppp=[δtr , δZwet, δNIF]
T

δxlidar =
[

δθel1 , δp
e
l1
, δθel2 , δp

e
l2
, . . . , δθelN , δp

e
lN

]T

δx = [δxins, δxppp, δxlidar]
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frame ( b-frame) and earth-centered earth-fixed frame ( e
-frame), respectively. Note that the IMU frame coincides 
with the b-frame in this study. The vectors δveb and δpeb are 
corrections of velocity and position in e-frame. Besides, 
the biases of the accelerometer and gyroscope ba,bg are 
modeled as random walks. The corresponding bias error 
variations δba and δbg are included in the state vector and 
estimated online.

As for δxppp , the position of the antenna center can be 
related to the INS position through the lever-arm. There-
fore, only the receiver clock offsets of different constella-
tion systems δtr , zenith tropospheric wet delay δZwet , and 
Ionospheric-Free (IF) ambiguity δNIF are stored in the 
PPP state vector (Li et al., 2015).

Furthermore, the LiDAR state can be represented 
by the attitude error δθel  and position error δpel  . Several 
LiDAR poses maintained by sliding window mechanism 
are stored in the state vector for the multistate constraint 
Kalman Filter model (Mourikis & Roumeliotis, 2007). 
Thus, the LiDAR-correlated state vector at epoch k can 
be expressed as:

Process model
The linearized continuous dynamic INS model (Shin, 
2005) can be written as:

where δṗeb , δv̇
e
b and δθ̇ eb refer to the derivative of position, 

velocity, and attitude errors, respectively. ωe
ie is the angu-

lar rate of the e-frame with respect to the inertial frame ( i
-frame), and fb and ωb

ib are the measurements of acceler-
ometer and gyroscope, respectively. Re

b denotes the rota-
tion matrix from b-frame to e-frame.

Specifically, the system model of the GIL method used 
for updating EKF is expressed as:

(2)δxklidar =
[

δθelk
, δpelk

]T

(3)





δṗeb
δv̇eb
δθ̇

e
b
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b
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where I is the identity matrix, ntr , nzwd,na,ng represent 
the noise of tr , dzwd,ba,bg measurements.

When a new LiDAR frame is available at epoch k+1 , 
the initial LiDAR pose 

(

R̂e
lk+1

, p̂elk+1

)

 can be derived from 
the simultaneous IMU pose 

(

R̂e
bk+!

, p̂ebk+1

)

 through the 
pre-calibrated extrinsic parameters between the IMU 
and LiDAR 

(

Rb
l ,p

b
l

)

 , which can be written as:

Then, the new LiDAR state δxk+1
lidar =

[

δθelk+1
, δpelk+1

]T
 at 

epoch k + 1 will be added into the system state vector, 
and the corresponding system covariance is also aug-
mented (Mourikis & Roumeliotis, 2007):

where δxk+1,k is the system state vector after δxk+1
lidar is 

added, Pk ,k and Pk+1.k are the covariance before and after 
the augmentation procedure, respectively. The non-zero 
elements in the jacobian matrix J can be expressed as:

Multi‑GNSS PPP measurement model
In PPP processing, the ionospheric-free (IF) model is 
used to eliminate the first-order ionospheric delay, which 
can be written as:

(5)
R̂e
lk+1

= R̂e
bk+1

Rb
l

p̂elk+!
= p̂ebk+1

+ R̂e
bk+1

pbl

(6)
δxk+1,k =

[

δxins, δxppp, δx
old
lidar, δx

k+1
lidar

]

Pk+1,k =

[

I
J

]

Pk ,k

[

I
J

]T

(7)J=


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−
�

R̂e
l
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03×3 03×3 03×3 03×3 ... 03×3

�

R̂e
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b
l ×

�
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



where s and r refer to the satellite and the receiver. Ps
r,IF 

and Lsr,IF are the ionosphere-free psedorange and carrier 
phase observations, respectively, ρ=|pr − ps| stands for 
the distance between the receiver and the satellite, c is 
the speed of light, ts and tr represent the offsets of satel-
lite clock and receiver clock, Ts

r  denotes the tropospheric 
delay. The wavelength and ambiguity of the IF model 
are represented by �IF and Ns

r,IF . e
s
r,IF and εsr,IF denote the 

measurement noise and multipath error of the IF pseu-
dorange and carrier phase, respectively.

According to (Böhm et  al., 2006), the tropospheric 
delay is composed of dry and wet components, which are 
computed with their zenith components 

(

Zdry,Zwet

)

 and 
corresponding mapping functions 

(

mdry,mwet

)

 . In this 
article, the dry component is corrected by a prior model, 
and the wet component is modeled as random walking. 
In the multi-constellation case of GPS (G), BDS (C), and 
Galileo (E), the linearized PPP observation equations can 
be expressed as:

where pr and ps are the position vector of receiver and 
satellite, respectively. µ denotes the unit vector from 
the satellite to the receiver. δNIF=

[

δNG
IF δNC

IF δNE
IF

]T 
is the ambiguity correction vector, and 
δtr =

[

δ tr,G δtr,C δtr,E
]T is the receiver clock correction 

vector. In the case of multi-GNSS observations, the dif-
ferent hardware time delays called Inter-System Biases 
(ISBs) should be taken into account (Li et al., 2015),

where ISBG,C and ISBG,E are the ISBs of BDS and Galileo 
with respect to GPS, which are modeled as random walks. 
Thus, the receiver clock offsets δtr =

[

δ tr,G δtr,C δtr,E
]T 

(8)
Ps
r,IF = ρ + c

(

tr − ts
)

+ Ts
r + esr,IF

Lsr,IF = ρ + c
(

tr − ts
)

+ �IFN
s
r,IF + Ts

r + εsr,IF

(9)
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ISBG,C

ISBG,E

]

=

[

tr,C − tr,G
tr,E − tr,G
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can be re-parameterized as δtr =
[

δ tr,G ISBG,C ISBG,E

]T

.
In the integrated system, the simultaneous IMU state 

is used to predict the GNSS-derived position, but the 
antenna center has a different reference point with 
respect to the INS predicted position, which leads to 
lever-arm offsets. The lever-arm is precisely measured in 
advance and its correction can be expressed as:

where lb denotes the lever-arm. The relationship between 
δpr and δpeb can be expressed from the differential of (11):

The linearized GNSS observation equations can be 
written as:

where k refers to the time epoch, δx denotes the system 
state vector, rPk and rLk are the residuals of psedorange 
and carrier measurements, nPk and nLk represent the cor-
responding noises. P̂k

ins and L̂kins are the INS-predicted 
GNSS measurements, and the designed matrix HPk ,HLk 
can be determined directly from (9) and (12).

LiDAR measurement model
Before introducing the LiDAR measurements, the sliding 
window mechanism is described in advance. As shown 
in Fig. 1, the threshold N  of LiDAR frames stored in the 
state vector is pre-defined, and the oldest frame will be 
discarded when the window is full. The newly obtained 
LiDAR frame will be matched with other LiDAR scans 
in the sliding window to establish the geometry relation-
ships between frames. We note that the N  value should 
not be set too large. A small window benefits computa-
tional efficiency, but the scan matching tends to be inac-
curate with a large distance between frames, particularly 
when the vehicle moves fast on the road. Considering 
some unreliable observations exist in the registration, 
a Chi-square test (Sun et  al., 2018; Zuo et  al., 2019) is 

(11)pr = peb + Re
bl

b

(12)δpr = δpeb+
⌊

Re
bl

b
×

⌋

δθeb

(13)
[

rPk
rLk

]

=

[

P̂k
ins − Pk

gnss,IF

L̂kins − Lkgnss,IF

]

=

[

HPk
HLk

]

δx+

[

nPk
nLk

]

employed to remove outliers from the scan matching, 
and only measurements that pass the test will be used for 
EKF measurement update.

When a new LiDAR frame arrives, feature extraction 
is first performed to select high-quality points that are 
approximately on edges or planes in the scan (Zhang & 
Singh, 2014). Then the edge or plane features are de-skew 
corrected (Ye et al., 2019) and projected to the old LiDAR 
frames to find the nearest line or plane correspondences. 
The spatial octree (De Berg et al., 2008) is constructed for 
fast indexing in this process. For more details on match-
ing the point-line pairs and point-plane pairs refer to 
(Zhang et al., 2017).

In the case of edge matching, assuming that pedge,lk+1

i  
is an edge feature in the newest LiDAR frame k + 1 , its 
projection in the frame k is pedge,lki  , and the correspond-
ing line found in the frame k can be represented by two 
points pedge,lka  and pedge,lkb  , thus the point-to-line distance 
d
edge
i  is expressed as:

As for plane matching, pplane,lki  denotes the projection 
of plane feature pplane,lk+1

i  from frame k + 1 to frame k , 
three points pplane,lka ,p

plane,lk
b ,p

plane,lk
c  are selected in the 

frame k to form the corresponding matching plane. The 
point-to-plane distance dplanei  is expressed as:

(14)

d
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∣
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p
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·
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p
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∣
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×
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∣
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LiDAR window
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Other LiDAR frames in the LiDAR window

Point cloud projection & matching
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Fig.1  The strategy for LiDAR sliding window
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The LiDAR observation equations can be represented 
by the distances in formulas (14) and (15):

where redgei , r
plane
i  are observation residuals, and nedge and 

nplane represent noises of edge and plane observations, 
respectively. Hk ,k+1

edge,i and Hk ,k+1
plane,i are the design matrixes, 

which can be calculated following the chain rule:

The subterms in the formula, ∂r
edge
i

∂p
edge,lk
i

 and ∂r
plane
i

∂p
plane,lk
i

 can be 

calculated according to (14) and (15). The relationship 
between pedge,lki ,p

plane,lk
i  and LiDAR states xklidar, x

k+1
lidar can 

be derived from the projection formulas:

(16)

r
edge
i = d

edge
i = Hk ,k+1

edge,i

[

δxklidar δxk+1
lidar

]T
+nedge

r
plane
i = d

plane
i = Hk ,k+1

plane,i

[

δxklidar δxk+1
lidar

]T
+nplane

(17)

Hk ,k+1
edge,i =

∂r
edge
i

∂p
edge,lk
i

(

∂p
edge,lk
i

∂xklidar

+
∂p

edge,lk
i

∂xk+1
lidar

)

Hk ,k+1
plane,i =

∂r
plane
i

∂p
plane,lk
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}

 are the poses of 
LiDAR frame k and k+1 , which can be obtained by refer-
ring to (5). Thus, the non-zero elements of edge or plane 

measurement in ∂δp
lk
i

∂xlidar
 can be expressed as:

(18)
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(19)
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Fig. 2  Flowchart of the GIL method
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Measurement update
When GNSS or LiDAR pre-processed observations are 
available at epoch k+1 , the corresponding measure-
ment update can be performed according to (13) and 
(16), which follows the standard EKF routines (Qin et al., 
2020) as:

(20)

rk+1=Hk+1δxk+1,k + nk+1

K = Pk+1,kH
T
k+1

(

Hk+1Pk+1,kH
T
k+1+Rn

)−1

δxk+1 = δxk+1,k ⊗ Krk+1

where nk+1 is the observation noise that meets the zero-
mean Gaussian noise assumption, whose covariance is 
Rn . K denotes the near-optimal Kalman gain, and the 
symbol ⊗ represents the compensation of the states. 
Meanwhile, the updated covariance matrix Pk+1,k+1 can 
be calculated by:

GIL algorithm implementation
Based on the mathematical model introduced above, the 
main process of the GIL method can be organized as 
Fig.  2. After the system initialization, the INS dynamic 
alignment (Han & Wang, 2010) is performed to obtain 
the initial pose of the vehicle, then the bias-compen-
sated IMU data will be adopted for INS mechanization. 
The EKF update will be performed to predict the states 
as well as the covariance. Before constructing the IF 

(21)
Pk+1,k+1 =

(

I− KHk+1

)

Pk+1,k

(

I− KHk+1

)T
+ KRnK

T

Fig. 3  Some typical scenarios in the experiments

Table 1  Strategies and models in multiple GNSS PPP processing

Items Model or strategy

GNSS systems GPS (G), BDS (C), Galileo (E)

Elevation cut-off angle 7°

Sampling rate 1 Hz

Combination model Ionospheric-free (IF) combination

Phase ambiguities No fixing

Observation weight Elevation-dependent model

Observation noises Pseudorange 3 m, carrier phases 0.03 cycles

Table 2  Strategies and models in LiDAR processing

Items Model or strategy

Slide window size 4

Sampling rate 10 Hz

Field of observation 5 m-100 m

Feature type Edge and plane features

Feature detection Detect based on curvature

Feature observation Point to line, point to plane

Outlier detection Chi-square test

Observation noises Point to line 0.1 m, Point to plane 0.2 m

Fig. 4  Installation of the experimental platform
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combination, to ensure measurements are reliable for the 
EKF update process, we first check the raw GNSS data for 
cycle slip and outlier detections (Fang et al., 2009). Simi-
larly, LiDAR feature detection (Zhang et  al., 2014) and 
de-skew (Ye et  al., 2019) are carried out in LiDAR data 
preparation, and the initial LiDAR pose is added to the 
system state through the augmentation procedure. When 
there are pre-processed GNSS and LiDAR measurements 
according to the mathematical models, the correspond-
ing measurement updates will be performed sequentially 
to update the filter states. Furthermore, the corrected 
gyroscope and accelerometer biases will be fed back to 
the next IMU data for restraining the INS divergence.

Experimental platform and strategies
To evaluate the performance of the proposed GIL 
method, experiments with different GNSS conditions 
were conducted in Wuhan, Hubei, on 27th October 2020. 
A road with tall trees and buildings on both sides was 
selected for the tests, which reflects the real situation of 

frequent signal interruptions in urbanized areas. Some 
typical scenarios in the experiments are shown in Fig. 3.

The detailed strategies used in the GNSS PPP and 
LiDAR processing are listed in Tables  1 and 2, respec-
tively. For the GNSS PPP, multiple GNSS systems, includ-
ing GPS (G), BDS (C), and Galileo (E) were considered 
in the GNSS processing. The precise orbit and clock 
products used in the processing were provided by the 
Center for Orbit Determination in Europe (CODE). As 
for LiDAR, the size of the sliding window was set to 4, 
and the observation noise was predefined separately 
for the two kinds of observations based on the LiDAR 
resolution.

The experiment data were collected with a mobile plat-
form shown in Fig. 4. A LiDAR (Velodyne Corporation, 
2021) with 16 lines was mounted above a MEMS-IMU 
(Analog Devices Corporation, 2019) to ensure unim-
peded scans during the experiments. A tactical IMU 
(StarNeto Corporation, 2014) was installed in the middle 
of the platform. Additionally, a GNSS antenna (NovAtel 
Corporation, 2015), which was linked to a GNSS receiver 
(Septentrio Corporation, 2019), is equipped. Time syn-
chronization on the hardware level unifies timestamps 
of all collected data to GPS time. For spatial synchroni-
zation, pre-calibration was performed to identify the 
extrinsic parameters between LiDAR and IMU (Lv et al., 
2020), and the lever arms between IMUs and the GNSS 
antenna were measured accurately.

Performance specifications of the two different grade 
IMUs are shown in Table  3. During the experiments, 
the sampling rate of the GNSS receiver was set to 1 Hz, 
and that of LiDAR was configured to 10  Hz. Both the 

Table 3  Technical specifications of the IMU sensors in the 
experimental platform

IMU 
Sensors

Bias Random Walk

Gyro (°/h) Acce (mGal) Angular 
(°/
√

h)
Velocity 
( m/s/

√

h)

Tactical-
IMU

0.3 100 0.01 –-

MEMS-
IMU

8 1500 0.34 0.18

150

50

−50

−150

−250

−350

−450
−250

X (m)

Y
 (m

)

−150 −50 50 150 250

Fig. 5  Field test trajectory. Left: top view of the trajectory on google earth; right: positioning result of PPP when using multi-GNSS data in GNSS 
partly-blocked experiment
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MEMS-IMU and Tactical IMU worked at 100  Hz. In 
addition, another GNSS receiver (Septentrio PolaRx5) 
was fixed on the rooftop of a tall building as a base 
station.

The reference solution calculated by commercial Iner-
tial Explorer 8.9 software (NovAtel Corporation, 2018) 
was the smoothed results of multi-GNSS Post-Processing 
Kinematic (PPK) and INS tight integration. The over-
all positioning accuracy of the solution can reach the 
centimeter-level with a fixed rate of more than 90% and 
high-precision extrapolated results of tactical IMU are 
provided in non-fixed periods (NovAtel Corporation, 
2018). On this basis, the accuracy of the reference solu-
tion is higher than that of the solutions to be analyzed 
by an order of magnitude, which can facilitate a fair and 
reliable performance comparison between different algo-
rithms in the following evaluation.

Result analysis
In this section, we separately analyzed the vehicle navi-
gation results in GNSS partly-blocked environment and 
GNSS difficult environment. In each experiment, the 
multi-GNSS PPP solution and satellite availability are 

first introduced. Then, the Position, Velocity, and Atti-
tude (PVA) estimation of the GIL method is presented. 
Meanwhile, the multiple GNSS PPP/INS tightly coupled 
solution is used for comparison to assess the GIL perfor-
mance in urban vehicle navigation.

PPP solution in GNSS partly‑blocked experiment
The first experiment focuses on GNSS partly-blocked 
environment. Figure  5 shows the top view of the route 
and the multi-GNSS PPP (G + C + E) positioning result, 
where colors represent the corresponding error distribu-
tion intervals. It is noticed that in some road sections, the 
harsh environment caused frequent and slow re-conver-
gence of PPP, resulting in positioning discontinuity and 
large abnormal offsets. Clearly, the multi-GNSS PPP 
result in this environment can hardly meet the require-
ment of high accuracy and continuous navigation.

In this study, the number of visible satellites, satellite 
elevation, continuity of satellite signal tracking, and the 
corresponding Position Dilution of Precision (PDOP) 
are utilized to verify the GNSS availability. The number 
of available satellites is shown in Fig.  6a. The enhance-
ment of GNSS observability is considerable when using 
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Fig. 6  Number of available GNSS satellites (a), continuity and 
elevation of satellites (b), PDOP of multi-GNSS PPP (c) in GNSS 
partly-blocked experiment
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multiple GNSS systems (Li et  al., 2015). The average 
number of satellites for the G + C + E combination is 
13.46, which is 3.5, 2.5, and 3.3 times the number of the 
visible satellites for the single GPS, BDS, and Galileo sys-
tems, respectively. According to the continuity of avail-
able satellites depicted in Fig.  6b, interruptions occur 
frequently in some segments, particularly for the sat-
ellites with low elevation. This is mainly due to the fact 
that roadside houses and trees cause severe GNSS sig-
nal obstructions. As one can see from the time series of 
the PDOP values shown in Fig.  6c, the dramatic jumps 
in PDOP always accompany severe tracking loss, and 
the maximum value of PDOP reaches 49.25. These facts 
reflect that the discontinuous tracking of satellites is a 
challenge for GNSS positioning.

GNSS partly‑blocked experiment analysis
Different from the absolute PPP, the PPP/INS integra-
tion system can produce high-frequency navigation out-
put and attitude information due to the characteristics 
of INS. To further overcome the drawback of INS diver-
gency in GNSS-constrained areas, we extend the fusion 
with LiDAR measurements. The solution of tightly cou-
pled multi-GNSS PPP/INS is employed as a contrast to 
the GIL solution.

The position errors in three directions over time are 
displayed in Fig.  7, and the corresponding RMSEs, and 
the maximum errors during the experiment are summa-
rized in Table 4. It can be found that the position differ-
ences in three directions have been improved noticeably 
with the aid of LiDAR data. The RMSEs of position are 
0.81, 0.76, and 0.82  m for the PPP/INS method in east, 
north, and up components, while these are 0.30, 0.37, 
and 0.31 m for the GIL method. Additionally, the maxi-
mum positioning errors are reduced from 7.01, 3.58, and 
7.55 m in east, north, and up directions to 1.39, 0.79, and 
1.00 m, with improvements of 80.2%, 77.9%, and 86.8%, 
respectively. Besides, the region with GNSS signal block-
age is usually rich in scene features, which is conducive 
for LiDAR registration. Thus, the LiDAR measurements 
can effectively assist the system to infer the vehicle move-
ment in the environments with no GNSS signals.

To further analyze the absolute positioning perfor-
mance with our method, we calculated the distribution 
frequency of position errors in different intervals, as plot-
ted in Fig. 8. According to the statistical diagram, the per-
centage of positioning difference within 0.5  m is 19.5% 
for the PPP/INS solution, which increases to 41.9% with 
LiDAR aided. Besides, the positioning accuracy for the 
GIL is within 1.0 m over 98% of the time in the field test. 
The results indicate that the addition of LiDAR can con-
strain the divergence of IMU error and contribute to the 
accurate positioning in urban areas. These improvements 
may benefit applications that require continuous and pre-
cise dynamic positioning.

For vehicle navigation, accurate velocity is another cru-
cial factor. Figure 9 shows the velocity difference between 
the two methods. For the PPP/INS solutions, velocity off-
sets above 0.5  m/s mainly occur in low GNSS availabil-
ity periods. Comparatively, after the inclusion of LiDAR 
data, the velocity offsets are within 0.1 m/s during most 
of the time. Besides, the statistics in Table 5 illustrate that 
the velocity RMSEs are 0.06, 0.03, and 0.04  m/s for the 
PPP/INS/LiDAR method in east, north, and up direc-
tions, with improvements of 60.0%, 50.0%, and 60.0% 
in comparison with the INS-aided PPP. Similarly, the 
maximum error drops from 0.66, 1.08, and 1.10  m/s in 

Table 4  RMSEs and maximum error of position for multi-GNSS PPP/INS and GIL solutions in GNSS partly-blocked experiment

Items Position RMSEs Maximum position error

East North Up East North Up

Multi-GNSS PPP/INS 
(m)

0.81 0.76 0.82 7.01 3.58 7.55

GIL (m) 0.30 0.37 0.31 1.39 0.79 1.00

Improvement (%) 63.0 51.3 62.2 80.2 77.9 86.8

Absolute position error (m)

PPP/INS(TC)
GIL

[0.5,1.0) [1.0,2.0) [2.0,3.0) [3.0,∞)[0.0,0.5)

Pe
rc

en
ta

ge
 (%

)

100

80

60

40

20

0

Fig. 8  Distribution of absolute position offsets of the multi-GNSS 
PPP/INS and GIL methods in GNSS partly-blocked experiment
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Table 5  RMSEs and maximum error of velocity for multi-GNSS PPP/INS and GIL solutions in GNSS partly-blocked experiment

Items Velocity RMSEs Maximum velocity error

East North Up East North Up

Multi-GNSS PPP/INS 
(m)

0.15 0.06 0.10 0.66 1.08 1.10

GIL (m) 0.06 0.03 0.04 0.23 0.28 0.22

Improvement (%) 60.0 50.0 60.0 65.2 74.1 80.0
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Fig. 10  Attitude offsets of multi-GNSS PPP/INS and GIL methods in 
GNSS partly-blocked experiment

Table 6  RMSEs of attitude for multi-GNSS PPP/INS and GIL solutions in GNSS partly-blocked experiment

Items Attitude RMSEs

Yaw Pitch Roll

Multi-GNSS PPP/INS (°) 3.97 0.17 0.19

GIL (°) 1.45 0.12 0.17

Improvement (%) 63.5 29.4 10.5
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the east, north, and up components to 0.23, 0.28, and 
0.22  m/s, respectively. Note that the velocity is propa-
gated by INS mechanization, whose performance mainly 
depends on the IMU. In this situation, LiDAR observa-
tions can effectively mitigate the drift problem of INS, 
especially for MEMS-IMU, which makes a great contri-
bution to the velocity estimation.

Similar to position and velocity, attitude is another vital 
information for vehicle applications. However, when the 
GNSS performance is degraded, the accuracy of attitude 
will also be affected especially for the yaw component. In 
this experiment, the two solutions’ attitude differences 
over time are depicted in Fig.  10, and corresponding 
RMSEs of attitude are shown in Table 6. In terms of pitch 
and roll, the RMSEs of the two methods show compara-
ble performance. Comparatively, the achievable accuracy 
of the yaw angle in both methods is much worse. This 
is due to the case that the yaw angle is unobservable in 
INS or LiDAR/INS systems (Hesch et al., 2013). Specifi-
cally, the RMSE of yaw angle for the PPP/INS solution is 
3.97 degrees, and the corresponding figure for the GIL 
method is 1.45 degrees, which has an improvement of 
63.5%. Generally, the LiDAR aiding can help the attitude-
correlated parameters to be estimated more accurately.

PPP solution in GNSS difficult experiment
To verify the universality of the GIL method, we con-
ducted another onboard vehicle experiment. As illus-
trated in Fig. 11, the condition was more challenging than 
the previous one with dense, tall houses and trees beside 
the road. The track length is approximately 1700 m and 
the vehicle traveled about 7  min. Severe signal block-
ages caused frequent re-convergence and the insufficient 
number of the observed satellites, resulting in poor posi-
tioning and frequently discontinuous PPP solution in this 
experiment. According to Fig.  11, though multi-GNSS 

observations are used, the PPP solution can hardly main-
tain meter level positioning accuracy.

Figure  12 shows the satellite availability over time. 
Compared with the previous experiment, severe inter-
ruptions occur even for the satellites with high elevation. 
The number of available satellites is 50% less than the 
previous test, and more fluctuates. The average number 
of GPS satellites is 2.23, while the corresponding value for 
the G + C combination is 4.49, which further increases to 
7.74 for the G + C + E combination. We also notice that, 
compared to the previous test, the average PDOP varia-
tion degrades from 3.54 to 6.99, and the corresponding 
Standard Deviation (SD) increases from 3.40 to 5.95. 
Obviously, the GNSS observation condition in this exper-
iment is much worse than the previous test, which leads 
to poor PPP result.

GNSS difficult experiment analysis
The position differences of the two methods with respect 
to the reference solution are shown in Fig.  13, and the 
corresponding position offsets distribution is shown in 
Fig.  14. The absolute RMSE of the PPP/INS positioning 
in this experiment reaches 4.56 m, which is about three 
times more than the value in the previous field test. 
Besides, position errors of more than 10 m can be found 
in both vertical and horizontal directions.

As shown in Fig.  13, the results with the inclusion of 
LiDAR measurements are significantly improved com-
pared to the PPP/INS solution. Table  7 summarizes the 
statistics of RMSEs and maximum errors for the PPP/
INS and GIL methods. Compared with the PPP/INS 
solution, the GIL method performs much better in posi-
tioning. The position RMSEs reduce from 2.82, 1.97, and 
2.99  m to 1.41, 1.25, and 1.70  m in east, north, and up 
directions, respectively. The percentage of the position 
error larger than 4  m decreases by 30.0% with LiDAR 
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Fig. 11  Field test trajectory. Left: top view of the trajectory on google earth, right: positioning result of PPP when using multi-GNSS data in GNSS 
difficult experiment
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Table 7  RMSEs and maximum error of position for PPP/INS and GIL solutions in GNSS difficult experiment

Items Position RMSEs Maximum position error

East North Up East North Up

Multi-GNSS PPP/
INS (m)

2.82 1.97 2.99 10.41 7.60 10.62

GIL (m) 1.41 1.25 1.70 3.35 5.05 3.56

Improvement (%) 50.0 36.5 43.1 67.8 33.6 66.5

Table 8  RMSEs and maximum error of velocity for PPP/INS and GIL solutions in GNSS difficult experiment

Items Velocity RMSEs Maximum velocity error

East North Up East North Up

Multi-GNSS PPP/INS 
(m)

0.20 0.21 0.18 0.85 1.09 0.93

GIL (m) 0.11 0.10 0.09 0.49 0.47 0.43

Improvement (%) 45.0 52.4 50.0 42.4 56.9 53.8
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aided. Generally, the positioning performance is signifi-
cantly enhanced when LiDAR data are augmented, which 
means the proposed fusion method can ameliorate the 
positioning even in bad environments. This progress is 
mainly due to the constraints between adjacent epochs 
provided by LiDAR measurements. The improved accu-
racy of position can benefit those position-critical tasks.

For velocity estimation, outperformance is also 
shown in the results of the GIL method, and the statis-
tics are summarized in Table 8. According to the veloc-
ity offsets reflected in Fig. 15, the velocity error is within 
0.3 m/s during most of the periods when using the GIL 
method. Specifically, the velocity RMSEs are 0.85, 1.09, 
and 0.93 m/s for the PPP/INS method in east, north, and 
up directions, which are improved by 42.4%, 56.9%, and 
53.8% after integrating LiDAR together. Those improve-
ments are mainly due to the geometry restraint estab-
lished by LiDAR measurements. As presented in Fig. 15, 
some obvious offsets occur in the PPP/INS velocity esti-
mation. Referring to Fig. 12, it is noticed that the corre-
sponding procedures are usually with insufficient satellite 
observations, and the deterioration over time occurs 
when GNSS cannot provide effective constraints for the 
PPP/INS integration. As for the GIL method, additional 

observations from LiDAR can deliver accurate velocity 
output, which helps maintain a high-accuracy velocity 
solution even when there are few available satellites.

The time series of attitude error is presented in Fig. 16, 
and the related RMSEs and maximum errors are listed 
in Table  9. Similarly, the results show higher accuracy 
in the estimation of roll and pitch angle, which may be 
related to the better observability of INS in the two direc-
tions. For the heading component, the RMSE of the GIL 
method has a significant improvement of 68.9% com-
pared to the PPP/INS method. Slight benefits are also 
visible in roll and pitch angles with the improvement of 
45.5% and 41.2%.

Table 9  RMSEs of attitude for PPP/INS and GIL solutions in GNSS difficult experiment

Items Attitude RMSEs

Yaw Pitch Roll

Multi-GNSS PPP/INS (°) 3.73 0.22 0.10

GIL (°) 1.16 0.12 0.10

Improvement (%) 68.9 45.5 41.2

PPP/INS(TC)

1.0

0.5

0.0
Ea

st
 (m

/s
)

−0.5

−1.0
1.0

0.5

0.0

N
or

th
 (m

/s
)

−0.5

−1.0
1.0

0.5

0.0

U
p 

(m
/s

)

−0.5

−1.0
0 70 140 210 280 350 420

GPS Time (s)

GIL

Fig. 15  Velocity offsets of multi-GNSS PPP/INS and GIL methods in 
GNSS difficult experiment

PPP/INS(TC)

GIL

[0.0,2.0)

Pe
rc

en
ta

ge
 (%

)

[2.0,4.0)

100

80

60

40

20

0
[4.0,6.0)

Absolute position error (m)

[6.0,8.0) [8.0,∞)
Fig. 14  Distribution of absolute position offsets of the multi-GNSS 
PPP/INS and GIL methods in GNSS difficult experiment



Page 15 of 17Li et al. Satellite Navigation            (2021) 2:26 	

Conclusion
In recent years, the demand for stable, continuous, and 
accurate navigation has gradually become prominent in 
autonomous driving applications. In this contribution, 
we proposed a tightly coupled multi-GNSS PPP/INS/
LiDAR method to improve the navigation performance 
in heavily urbanized areas. By formulating an EKF sys-
tem driven by INS mechanization, the observations from 
LiDAR and PPP constructed the corresponding measure-
ment updates to restrict the rapid error growth of INS. 
An efficient sliding window strategy was designed to deal 
with LiDAR data processing. Several field experiments in 
typical urban areas were conducted to validate the model, 
and the performance of the GIL method was assessed in 
terms of position, velocity, and attitude.

The statistics data demonstrate that compared to the 
GPS-only constellation, there are about three times more 
available satellites when three constellations of GPS, 
BDS, and Galileo are considered. However, the observa-
tion quality is still limited due to GNSS signal interrup-
tions. In addition, the experimental results illustrate that 
our GIL method can maintain more accurate and sta-
ble navigation than the traditional tightly coupled PPP/

INS solution. In GNSS partly-blocked environments, 
the position RMSEs in east-north-vertical directions are 
dramatically reduced from 0.81, 0.76, and 0.82 m to 0.30, 
0.37, and 0.31  m compared with the PPP/INS solution. 
When the conditions are more difficult for GNSS meas-
urements, the GIL method also shows an excellent per-
formance in positioning with the improvements of 50.0%, 
36.5%, and 43.1% in east, north, and vertical components, 
respectively. It is worth mentioning that the maximum 
positioning error has also been significantly reduced 
when using the GIL method. According to the experi-
ment in GNSS partly-blocked areas, the velocity RMSEs 
of the PPP/INS solution are 0.15, 0.06, and 0.10  m/s in 
east, north, and up directions, respectively. The addition 
of LiDAR to the above solution can reduce the RMSEs 
to 0.06, 0.03, and 0.04  m/s. The attitude-related param-
eters can also be accurately estimated with integration 
of multi-GNSS and LiDAR data. In both GNSS partly-
blocked and difficult environments, the GIL method has 
superior performances in the determination of roll and 
pitch angles, with average improvements of 37.5% and 
25.9%. Meanwhile, significant improvements by 63.5% 
and 68.9% for both experiments are found in the yaw 
direction compared to the multi-GNSS PPP/INS results.

In conclusion, this paper presented a novel tight fusion 
method, which shows great potential in position, veloc-
ity, and attitude determination. The results from the field 
tests demonstrate that the GIL fusion outperforms the 
multi-GNSS PPP/INS integration and achieves better 
accuracy in dynamic vehicle scenarios. The further study 
is to take full advantage of LiDAR measurements. A point 
cloud map will be established for registration and closed-
loop detection. Meanwhile, more efforts should also be 
devoted to eliminating the adverse effects of the outliers 
in each sensor measurements.
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