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Abstract 

The BeiDou Navigation Satellite System (BDS) is essentially a precise time measurement and time synchronization 
system for a large-scale space near the Earth. General relativity is the basic theoretical framework for the information 
processing in the master control station of BDS. Having introduced the basic conceptions of relativistic space–time 
reference systems, the space–time references of BDS are analyzed and the function and acquisition method of the 
Earth Orientation Parameters (EOP) are briefly discussed. The basic space reference of BDS is BeiDou Coordinate 
System (BDCS), and the time standard is the BDS Time (BDT). BDCS and BDT are the realizations of the Geocentric 
Terrestrial Reference System (GTRS) and the Terrestrial Time (TT) for BDS, respectively. The station coordinates in the 
BDCS are consistent with those in International Terrestrial Reference Frame (ITRF)2014 at the cm–level and the dif-
ference in scale is about 1.1× 10

−8 . The time deviation of BDT relative to International Atomic Time (TAI) is less than 
50 ns and the frequency deviation is less than 2× 10

−14 . The Geocentric Celestial Reference System (GCRS) and the 
solar Barycentric Celestial Reference System (BCRS) are also involved in the operation of BDS. The observation models 
for time synchronization and precise orbit determination are established within the GCRS framework. The coordinate 
transformation between BDCS and GCRS is consistent with the International Earth Rotation and Reference Systems 
Service (IERS). In the autonomous operation mode without the support of the ground master control station, Earth 
Orientation Parameters (EOP) is obtained by means of long-term prediction and on-board observation. The observa-
tion models for the on-board astrometry should be established within the BCRS framework.
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Introduction
Since July 31, 2020, BeiDou-3 Navigation Satellite Sys-
tem (BDS-3) has been officially operational. As a major 
national infrastructure, BDS-3 provides global position-
ing, navigation, and timing, as well as Global Short Mes-
sage Communication (GSMC) and Search and Rescue 
(SAR) services. It also provides Satellite-Based Augmen-
tation Service (SBAS), Precise Point Positioning (PPP), 
Regional Short Message Communication (RSMC) and 
other services in and around China (Yang et  al., 2018; 
Guo et al., 2019).

Precise orbit determination and time synchronization are 
conducted with different methods, but the basic observation 
data are the same, i.e., pseudo-ranges at the ground moni-
tor stations. The joint calculation method of satellite orbit 
and satellite clock offset is adopted by Global Positioning 
System (GPS) and Galileo Navigation Satellite System (Gali-
leo), which will result in a strong correlation between the 
derived satellite orbit and satellite clock offset (Demetrios 
et al., 2008). There is no doubt that the longer the satellite’s 
tracking arc and the higher the frequency stability of the on-
board clock, the more accurate the results of the orbit and 
the clock offset will be. Considering the limited deployment 
range of monitor stations and the non-ideal stability of the 
satellite clocks during the initial construction of BeiDou 
Navigation Satellite (Regional) System (BDS-2) (the daily 
stability was at 1× 10−13 level), to prevent the mutual error 
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pollution between the satellite clock and the satellite orbit, 
BDS-2 adopted a time synchronization technology which is 
completely different from that of GPS, GLObal NAvigation 
Satellite System (GLONASS) and Galileo (Liu et  al., 2009; 
Domnin et al., 2009). Two-Way Time and Frequency Trans-
fer (TWTFT) is used between the satellites and ground 
stations, including the master station and the time synchro-
nization/upload stations. The results of the long-term oper-
ation of BDS-2 show that the time synchronization is very 
successful with the uncertainty of satellite-to-ground time 
comparison better than 1  ns, which effectively improves 
the orbit and time synchronization accuracy of the satellites 
(Liu et al., 2009; Han et al., 2013; Guo et al., 2018). For this 
reason, the BDS-3 continues to use this time synchroniza-
tion technique, and further adds inter-satellite time com-
parison links to directly measure the distances and relative 
clock offsets between the satellites (Liu  et al., 2019; Chen 
et al. 2016). The distinctive time synchronization technique 
is one of the important innovations of BeiDou Navigation 
Satellite System (BDS).

BDS is essentially a system of precision time measurement 
and time synchronization in a large-scale space near the 
Earth. At present, with the daily frequency stability of the 
BDS satellite atomic clock at the level of 1× 10−15 , the time 
synchronization uncertainty is required to reach 1  ns or 
even higher, and the accuracy of the space–time measure-
ment and observation model is required to reach the order 
of picosecond (Han and Cai 2019). The constellation of BDS 
is composed of Geostationary Earth Orbit (GEO), Inclined 
Geo-Synchronous Orbit (IGSO) and Medium Earth Orbit 
(MEO) satellites, covering a space range of 40,000 km near 
the Earth (Tan, 2017). Although it is in the scope of the 
Earth’s gravitational field, the influence of the sun and moon 
gravitational fields on the satellite orbit and satellite clock 
cannot be ignored (Petit and Wolf, 1994; Wolf and Petit, 
1995; Klioner, 2003). Under such a large scale of space and 
high-precision index requirements, the space–time theory 
of Euclidean geometry and Newtonian mechanics is difficult 
to meet the needs of high-precision measurement modeling 
(the accuracy of Newtonian mechanics is equivalent to the 
level of 1× 10−8 ). Relativity is the theoretical basis for pre-
cise orbit determination, time synchronization, and meas-
urement modeling of BDS (Han, 2002; Han and Cai, 2019).

As a typical realization of the basic theory of relativistic 
space–time reference system, the definition and realization 
of BDS space–time reference system will be discussed in 
depth below. At the same time, in view of the autonomous 
operation of navigation satellite constellation, the processing 
method of Earth Orientation Parameter (EOP) will also be 
briefly analyzed.

Basic concepts of the space–time reference system
Newton’s time and space reference system
Under the framework of Newtonian mechanics, time and 
space are independent of each other. Time passes evenly 
and space is uniform everywhere which satisfies Euclidean 
geometry. Under this assumption, the space–time reference 
system can be simply understood as a Three-Dimensional 
(3D) space frame and a clock carried by an observer. The 
former is used as a space reference for direction and dis-
tance, and the later as a time reference. A space frame is 
somewhat alike an electronic total station that can meas-
ure distance and direction. Due to the flatness of space, the 
measurement range of the space frame has no limits theo-
retically. Therefore, the space–time reference system can 
be defined by a time scale and a 3D space reference system. 
A time scale is composed of a starting point and the time 
unit, which has nothing to do with the choice of space posi-
tion and coordinates. A space reference system is defined by 
its origin, orientation of axes and scale or unit of distance. 
For convenience, it is usually required that the three axes 
are orthogonal to each other and have the same coordinate 
unit. There is a special kind of space reference systems in 
Newtonian mechanics, called inertial reference systems, in 
which Newton’s law of inertia are satisfied. The laws of phys-
ics have the same form of expression in all inertial reference 
systems, which are called Galileo’s principle of relativity.

Practically, a complete space reference system needs to 
define not only a reference frame, but also some geometric 
parameters and related physical field parameters, such as 
the reference ellipsoid, the geocentric gravitational constant 
and gravitational model in the terrestrial reference system, 
etc..

The concepts of relativistic space–time reference system
Compared with Newtonian mechanics, the concepts of 
relativistic space–time reference system are much more 
complicated. First, the physical time and space are not 
absolutely independent. They are interrelated and cannot 
be completely separated. In fact, whether the objects in the 
universe are moving or static, whether the moving speed is 
large or small, and whether the motion path is a straight or 
a curve are all determined by the observer or the frame of 
reference. The space point of one observer may be a line in 
the eyes of another. What one sees is a straight line may be 
a curve seen by another. The spatial points, straight lines, 
curves, even planes and curved surfaces in Euclidean geom-
etry do not have complete objectivity. The distance between 
two different events in the universe is closely related to the 
observer or the frame of reference. For different spatial 
points, the observer’s definition of simultaneity is related to 
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distance, and the relativity of distance will inevitably lead to 
the correlation between time and space. For any two events 
that occur in the universe, the time intervals and spatial dis-
tances measured by observers moving relatively are differ-
ent, even if they use same clocks and rulers. Therefore, the 
theory of relativity considers time and space as a whole and 
supposes that the space-time interval between two events is 
an invariant quantity that has nothing to do with the observ-
ers (Han, 2017). Under this assumption, the coordinate rela-
tionship between the two relative moving inertial reference 
systems no longer satisfies the classic Galileo transforma-
tion, but the Lorentz transformation. All the laws of phys-
ics remain unchanged under the Lorentz transformation, 
which is called the principle of special relativity.

Secondly, space–time has non-uniformity or non-Euclid-
ean characteristics. There is a universal interaction among 
all objects in the universe. The uneven distribution of mat-
ter will inevitably lead to the unevenness of the space–time 
gravitational field, and hence there is no objective straight 
line in a large-scale space. We know that the basic postu-
late of Euclidean geometry is straight line, so Euclidean 
geometry does not hold in a large-scale space. The general 
theory of relativity considers that space-time including the 
gravitational field is a curved four-dimensional pseudo-
Riemann Space. Therefore, it is impossible to construct a 
Cartesian coordinate system with a large-scale spatial cov-
erage. Space–time is the basic form of material existence. 
The vacuum or space without matter is only the result of 
artificial abstraction, and space–time itself does not have 
the characteristics of straight or bending. Fundamentally, 
the curvature of space–time is just the result of gravitation 
geometrization in general relativity. Therefore, it is easier to 
be understood if saying that space-time is inhomogeneous 
rather than that curved (Han, 2017).

The inhomogeneity of space–time also leads to no ideal 
inertial space in our universe. Both inertia and gravitation 
are the result of the interaction of substance in the universe. 
It is impossible to separate them completely. In studying 
dynamic and kinematic problems, we cannot take all the 
celestial bodies into account. An effective way is to separate 
them into two groups, i.e., the near celestial bodies and the 
far distant ones. The effect of the former is called gravita-
tion, and that of the later is the inertia, which is the so-called 
Mach principle. Therefore, both gravitational field and iner-
tial space are relative. Inertial space is not only local but also 
approximate. The   spatial scope of application of the inertia 
depends on remoteness of the celestial bodies that forms the 
inertial effect, as well as our requirements for the accuracy 
of space–time measurement.

The benchmark of space–time metric in relativity is 
essentially the light (Han, 1997). For two determined events, 
the time intervals measured by observers at different spa-
tial positions are different, even they are relatively static and 

carry the same ideal atomic clocks which are always consist-
ent with the SI second. Therefore, we believe that the gravi-
tational field will change the frequency or clock speed of an 
atomic clock. Due to the local flatness of space, the concept 
of space frame used in Newtonian mechanics is still appli-
cable, but the difference is that it can only be used locally by 
the observer and cannot extend outward infinitely.

A relativistic space-time reference system consists of a 
Four-Dimensional (4D) coordinate system and the cor-
responding metric coefficients. It maps the space-time 
points, one by one, to the Minkowski Space in which one 
dimension is imaginary and other three are real. Therefore 
every event occurred in the universe has a set of clear and 
unique space–time coordinates, while the trajectory of any 
object and the measurement characteristics of space–time 
are determined by the space–time metric. The space–time 
metric is a second-order symmetric tensor field, which is 
determined by the matter distribution of space–time and 
satisfies the Einstein field equation. The metric tensor has 
10 independent coordinate components, which are the so 
called metric coefficients. Obviously, the metric coefficients 
are the functions of space–time points and closely related to 
the basis vectors of coordinates. Different basis vectors lead 
to different metric coefficients. The Einstein field equation 
has 6 independent nonlinear equations. To solve for 10 met-
ric coefficients, 4 coordinate conditions are required. In the 
theory of relativity, the coordinate conditions can be arbi-
trarily selected. Then the space–time coordinates in general 
relativity have no clear physical or geometric meaning, but 
arbitrariness and equivalence. Therefore, the coordinates of 
a space–time point in the gravitational field depend not only 
on the space–time reference frame located at the coordinate 
origin, but also on the space–time metric or the coordinate 
conditions.

Local inertial reference system
According to the principle of equivalence of relativity, for 
any mass point as an observer that moves freely in space–
time, an inertial space reference frame or a local inertial 
reference system that is applicable to the observer local 
space–time can be constructed. The local inertial reference 
system, which may also be called local Lorentz reference 
frame, meets the following basic conditions:

• The coordinate origin is a mass point freely moving in 
the space–time.

• The time reference is the reading of the atomic clock 
coming with the origin.

• The space axes or the coordinate base vectors do not 
rotate relative to inertial gyroscopes.

Note that the reason why inertial gyroscopes are used here 
instead of distant celestial bodies to define the non-rotating 



Page 4 of 10Han et al. Satell Navig            (2021) 2:18 

characteristics of inertial space is that the influences of non-
far-distant celestial bodies need to be taken into account for 
the local inertial space. The spin of a gyro will undergo a so-
called de Sitter precession relative to the far-distant celestial 
bodies, which is also named as geodesic precession.

There is no doubt that the gravitation forces acting on the 
particles near the origin are almost the same, and free particles 
move in a uniform form in the eyes of the observer located 
at the origin. Therefore, we need no gravitation but inertia 
to describe the particle motions in the local space, in which 
the tidal forces generated by external celestial bodies can be 
ignored. However, the local Lorentz reference frame satisfies 
the Newtonian inertia condition is just a differential approxi-
mation in mathematics, and its spatial application range is 
very limited. Due to the non-uniform nature of the gravita-
tional field, there is no true Newtonian inertial space in the 
real large-scale space–time.

For a curved space, if the coordinate basis vectors {eα} of 
a coordinate system {xα} are orthogonal to a certain space-
time point P

(

x�A
)

 , and its affine connection coefficients are 
zero, then the reference frame formed by the coordinate 
basis vectors of the point is a Lorenz reference frame. There-
fore, it forms a local inertial coordinate system nearby. The 
basic conditions can be expressed as:

where gµν
(

x�A
)

 are the common metric coefficients, ημν 
are the Minkowski ones, Γ µ

αβ

(

x�A
)

 are the affine coeffi-
cients of connection or expressed in vectors:

The first equation of Eq.  (1) or Eq. (2) is is the orthogo-
nal normalization condition of the coordinate basis vectors. 
Although orthogonal normalization is not a necessary con-
dition for the inertial reference system, the Cartesian coor-
dinate system has natural application advantages. Therefore, 
when establishing a reference system, we always hope that 
the coordinate bases can meet the condition of orthogonal 
normalization. The second condition equation is the core of 
the local inertial system, which requires the coordinate basis 
vectors to satisfy the characteristics of parallel movement at 
the origin. In other words, the time axis of the local inertial 
system is a time-like geodesic, and the space coordinate axes 
near the origin are space-like geodesic lines.

The coordinates that satisfy the geodesic condition are 
called Fermi coordinates, so the local inertial system is 
an orthogonal Fermi coordinate system or Fermi normal 
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coordinates. Due to the in-homogeneity of space–time, the 
local inertial system of a space–time point is limited not 
only in space, but also in time. In practice, we often need 
a local inertial system that is not limited in time, such as a 
local inertial system centered at a spacecraft. For such a local 
reference system, the scope of adaptation is not a sphere 
but a pipeline in the 4D space–time. This unrestricted local 
inertial system in time is the local Lorentz reference frame 
for a free observer.

It is very convenient to use the observer’s local inertial 
system to express the events that occur in the space near 
the observer. But in most cases, a global coordinate system 
must be used which covers the entire space–time range to 
describe the movement of substance in a large-scale space. 
Therefore, it is often necessary to give the transformation 
relationship between the local inertial system and the global 
coordinate system.

According to Eqs. (1) or (2), the relationship between the 
local inertial system {x′α} and the global coordinate system 
{xα} can be expressed as:

or

It can be seen from the coordinate relationship Eq. (4) that 
the relationship is nonlinear between the local inertial sys-
tem and the global coordinate system. Since the coordinate 
relationship is developed approximately by using the Taylor 
series of 1/c , the applicable scope of the local inertial system is 
determined by the convergence of the series.

The barycentric celestial reference system
In astronomy, the mass center of the celestial body or system 
under study is generally chosen as the origin of the space–time 
reference system, and its coordinate axes are required to have 
spatial non-rotating characteristics. The so-called non-rotating 
has two meanings. One is that the space coordinate axes have 
no spatial rotation relative to a far-distant celestial body such as 
the extragalactic radio sources, which is named as the kinemat-
ical non-rotating, and the other is that they are relative to gyro 
or the inertial space and named as the dynamical non-rotating 
(Han, 1997).

For an isolated celestial system, the kinematic non-rota-
tion and the dynamic non-rotation are equivalent. How-
ever, for non-isolated systems, due to the influence of local 
substance on space–time there will be a slight difference 
between them. For example, there is a very slow spatial 
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rotation between the geocentric local inertial frame and the 
geocentric kinematic non-rotating reference frame, which 
is about 1.92 arc seconds per hundred years and named as 
geodesic precession. Because of the small dynamical effect 
on the motion of objects, it can be ignored in the usual 
cases.

In modern astrometry and space geodesy, there are three 
most important space–time reference systems, i.e., the Bar-
ycentric Celestial Reference System (BCRS), the Geocentric 
Celestial Reference System (GCRS) and the Geocentric Ter-
restrial Reference System (GTRS). The origin of BCRS is the 
mass center of the Solar System, which takes into account 
the distributions of all the masses of the Sun and the planets, 
and the coordinate axes are required to have no spatial rota-
tion relative to far-distant celestial bodies. It is mainly used to 
study the orbital motion of celestial bodies of the solar system 
and the observation modeling of distant celestial bodies. The 
coordinate origin of GCRS is defined at the center of Earth’s 
mass and the spatial axes have no spatial rotation relative to 
BCRS. GCRS is mainly used to study the rotation of the Earth 
and the orbital motion of artificial Earth satellites. The coor-
dinate origin of GTRS is the same as GCRS, but the space 
coordinate axes are fixed to the Earth and rotate daily with it, 
which is mainly used to describe the locations of ground sta-
tions and various geophysical phenomena.

Obviously, there exists arbitrariness in the definition and 
implementation of these reference systems. If there were no 
standards, the results of observation or research given by 
different teams could not be compared, communicated or 
shared. To this end, international organizations, such as the 
International Astronomical Union (IAU), the International 
Union of Geodesy and Geophysics (IUGG), and the Inter-
national Bureau of Weights and Measures (BIPM) have long 
term commitments in the definition, implementation, and 
coordination of the recommendations for the space–time 
reference system and the related physical constants.

According to IAU2000 resolution B1.3, both the BCRS 
and the GCRS are required to meet the harmonic condi-
tions (Petit, 2000; Soffel et al., 2003). The BCRS space–time 
metric form can be expressed as:

where δij is Kronecker delta, w and wi are the Newtonian 
and vector potentials of the gravitational field respec-
tively. Where potential functions

(5)
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here t = TCB , called barycentric coordinate time, and σ 
and σ i denote mass density and flow density respectively, 
G is the gravitational constant. Obviously, the potential 
functions of the metric are zero at infinity (Deng, 2012).

The BCRS can be regarded as a very good inertial reference 
system in dynamics. The stars outside the solar system are 
very far away, and the tidal effect generated by them is negligi-
ble in the solar system. Therefore, it is not difficult to imagine 
that if the observer was at the barycenter of the solar system 
and moved together without rotation with respect to the far-
distant celestial bodies, he would have a very flat space, apart 
from the interaction of the celestial bodies in the solar system, 
and the time given by the carried atomic clock would be also 
very uniform. Thus, we can regard the solar system as an iso-
lated system and the BCRS as a space–time reference system 
with good inertia characteristics and orthogonal coordinates. 
The interaction among the celestial bodies in the solar sys-
tem is expressed by the space–time metric determined by the 
coordinates.

Though IAU2000 Resolution B1.3 has given the form of 
space–time metric for BCRS, the orientation of the spatial 
coordinate axes are not given. For this reason, IAU2006 Res-
olution B2 further clarifies that for all practical applications, 
unless otherwise stated, the BCRS is assumed to be oriented 
according to the ICRS axes.

ICRS is the International Celestial Reference System, 
which is a realization of BCRS, including the International 
Celestial Reference Frame (ICRF) and related standards, 
constants, and models. ICRF realizes an ideal reference sys-
tem by precise equatorial coordinates of extragalactic radio 
sources observed with Very Long Baseline Interferometry 
(VLBI). It is established and maintained by the International 
Earth Rotation and Reference Systems Service (IERS). IERS 
was jointly established by IAU and IUGG in 1987. Its basic 
mission is to provide Earth rotation, space reference systems 
and related data and standard services for astronomy, geod-
esy, and geophysics. The establishment and maintenance of 
the time scale is the responsibility of BIPM.

The geocentric celestial reference system
Due to the orbital motion of the Earth’s center of mass 
relative to the solar barycenter and the influence of tidal 
forces caused by other celestial bodies of the solar sys-
tem, the Earth cannot be regarded as an isolated body. 
The geocentric reference system is very complicated in 
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conception and definition. Simply, the coordinate origin 
of GCRS is defined at the mass center of the Earth, and 
the coordinate axes near the Earth are orthogonal to each 
other with no spatial rotation relative to the coordinate 
axes of BCRS. The coordinate axes of GCRS are essen-
tially defined by the coordinate relationship between 
GCRS and BCRS, which are only locally straight and 
orthogonal. Therefore, if BCRS were viewed as straight 
line coordinates, GCRS would be curvilinear coordinates.

According to IAU2000 Resolution B1.3, the spatial 
coordinate axes of GCRS are consistent with the spatial 
orientation of BCRS. The metric of GCRS is required to 
take the same form as the barycentric one:

W = W0 is the scalar potential, which is the sum of the 
earth’s gravitational potential and the tide forces of the 
Sun and other external celestial bodies. Where the poten-
tial functions:

W
µ
E ,W

µ
ext represent the geocentric potentials and the 

external potentials. In the outer space of the Earth, the 
geocentric potentials can be expressed as:

(7)
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Here T ≡ TCG , called Geocentric Coordinate Time 
(TCG), ME denotes the mass of the Earth, R is the radius 
of the earth, Plm(cosθ) is Legendre expansion, SiE the 
angular momentum of Earth rotation, aE the semi-major 
axis of the Earth’s equator, and (Clm, Slm) the geocentric 
gravitational potential coefficients.

IAU2006 Resolution B2 clearly stated that GCRS orien-
tation is derived from ICRS-oriented BCRS. According to 
the Eq. (4), if the geodesic precession is ignored, under the 
post-Newtonian approximation, the coordinate relation-
ship between GCRS and BCRS can be expressed as follows:

where

and xiE, v
i
E, a

i
E are respectively the position, velocity, and 

acceleration of the center of the Earth in BCRS, wE,w
i
E 

the scalar potential and the vector potential at the center 
of the Earth. It can be seen from the coordinate relation-
ships Eqs. (4) and (10) that if the coordinates in BCRS 
are considered as Euclidean linear coordinates, the coor-
dinates of GCRS are curvilinear coordinates. Moreover, 
the scope of application of GCRS is limited to the local 
space near the Earth, which is much smaller than the 
space range of the Earth-Moon system. Since the tidal 
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potentials of the space–time metric in GCRS are from 
the BCRS, the definition of GCRS is conceptually derived 
from BCRS.

Geocentric terrestrial reference system
The definition of GTRS is given by IAU2000 Resolution 
B1.3. It is a space coordinate system whose origin is at the 
center of the Earth and makes diurnal apparent motion 
with the Earth. In this reference system, the coordinates 
of points on the solid surface of the Earth remain almost 
unchanged except of the small changes caused by geo-
physical effects. IUGG2007 Resolution 2 clarified that 
GTRS was a geocentric space–time coordinate system 
under the framework of the theory of relativity. The coor-
dinate transformation between GTRS and GCRS is real-
ized through a space rotation determined with EOP.

The International Terrestrial Reference System (ITRS) 
maintained by IERS is an implementation of GTRS, 
which constitutes a set of prescriptions and conventions 
together with the modeling required to define the ori-
gin, scale, orientation, and time evolution. The system is 
realized as the International Terrestrial Reference Frame 
(ITRF) based upon the estimated coordinates and veloci-
ties of a set of stations observed by VLBI, Lunar Laser 
Ranging (LLR), GPS, Satellite Laser Ranging (SLR), and 
Doppler Orbitography and Radiopositioning Integrated 
by Satellite (DORIS). According to IERS, ITRS meet the 
following:

• The origin is at the mass center of the Earth, includ-
ing oceans and atmosphere.

• The unit of length (scale) is the meter (SI).
• The orientation is initially given by the Bureau Inter-

national de I’Heure(BIH) orientation at 1984.0.
• The time evolution of the orientation is ensured by 

using a no-net-rotation condition with regard to hor-
izontal tectonic motions over the whole Earth.

Up to now, there are 12 ITRF realizations: ITRF89, 
ITRF90, ITRF91, ITRF92, ITRF93, ITRF94, ITRF96, 
ITRF97, ITRF2000, ITRF2005, ITRF2008, ITRF2014 
(https:// www. iers. org/).

The space–time references of BDS
A Global Navigation Satellite System (GNSS) involves a 
large space–time range near the Earth. To achieve high-
precision Positioning, Navigation, and Timing (PNT), the 
unified and high-precision space–time reference systems 
must be established. The construction of observation 
models for the precise satellite orbit determination, time 
synchronization, and other information process should 
be performed within a framework of the same space–
time benchmark.

Conceptually, two space-time reference systems are 
mainly involved in BDS in the operation mode supported 
by the master control station and monitor stations. One 
is GCRS which is a unified space-time reference for its 
precise orbit determination, time synchronization, and 
observation information processing, and the other is 
GTRS which is the reference of the Earth’s surface and 
geostationary space and mainly used to express the posi-
tions of the users and the ground stations.

The observation modeling of satellite precise orbit 
determination and time synchronization in BDS are 
all based on GCRS. Since the positions of satellites and 
ground stations are separately expressed in two spa-
tial reference systems, GCRS and GTRS, the coordinate 
transformation between them is required. The relation-
ship can be written as follows:

Here, Q(t),R(t),W (t) are respectively the matrices of 
precession and nutation, the Earth rotation, and the polar 
motion, and.

Where R1, R2, and R3 represent the rotation matrices 
about the X, Y, and Z axes respectively. The acquisition 
and calculation methods of each parameter were given in 
IERS 2010 Technical Note (Petit and Luzum, 2010).

The geocentric terrestrial reference system used in 
BDS is called BeiDou Coordinate System (BDCS) and its 
definition is consistent with ITRS (Wu, 2018). The ori-
gin of the coordinates is at the mass center of the Earth, 
and the direction and scale of the coordinate axes are the 
same as ITRF. Table 1 shows the reference ellipsoid and 
the Earth’s gravitational field constants defined in BDCS, 
including the semi-major axis and the flatness of the ref-
erence ellipsoid, the geocentric gravitational constant 
and the angular velocity of the Earth rotation.

The latest implementation of BDCS is done by using 
more than 100 globally distributed ground stations as 

(12)[GCRS]=Q(t)R(t)W (t)[GTRS]

(13)Q(t) ≡ R3(−E)R2(−d)R3(E+s)

(14)R(t) ≡ R3(ωE)

(15)W (t) ≡ R3(−s′)R2(xp)R1(yp)

Table 1 The reference ellipsoid and geocentric gravitational 
constant adopted in BDCS

Semi-major axis a = 6,378,137.0 m

Geocentric gravitational constant (Mass 
of Earth’s atmosphere included)

μ = 3.986,004,418 ×  1014  m3/s2

Factor of ellipsoid flatness f = 1/298.257222101

Mean angular velocity of the earth 
rotation

Ω̇e = 7.292115 ×  10−5 rad/s

https://www.iers.org/
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reference frame points (Liu, 2019). About 10 monitor-
ing stations, 3 International GNSS Service (IGS) stations 
in China and some other IGS stations around the world 
are involved in the BDCS. GNSS observations are mainly 
used at present, and other observations, such as VLBI, 
SLR, may also be used. The frame points are monitored 
continuously and their coordinates are adjusted together 
with IGS stations. The coordinates and velocities of frame 
points will be determined regularly.

The coordinates are in accordance with ITRF2014 at 
centimeter level. The scale difference is about 1.1× 10−8 . 
Table  2 shows the transformation parameters between 
the two coordinate systems (Liu, 2018), where mas is 
the milliarcsecond and ppb is one part per 1,000,000,000 
 (109) parts.

BDCS is a realization of GTRS, and its relationship 
with GCRS satisfies Eq. (12). At present, the implementa-
tion accuracy of BDCS can only reach the magnitude of 
centimeters. In the future, in order to meet the applica-
tion needs with higher accuracy, we must realize BDCS 
with millimeter accuracy, improve the accuracy of obser-
vations, use multi-source data, and continuously improve 
the accuracy of reference frame points and EOP. EOP is 
indispensable for the precise orbit determination and 
prediction of BDS satellites and precise time synchro-
nization. However, the dynamical modeling error, the 
so-called Coriolis force of non-inertial reference frame 
caused by the error of EOP, is not significant in the oper-
ation mode supported by MCS. Although the orbit is 
given in the GCRS, the positions of navigation satellites 
are essentially determined by the ground monitor sta-
tions. Usually, the orbit determination arc is not long, 
about a few days, the systematic influence of the EOP 
error on the coordinates can be ignored because the 
orbit parameters broadcast by the navigation satellite are 
transformed back to the BDCS through almost the same 
coordinate transformation. Essentially, in this operation 
mode the process of positioning and timing is determin-
ing the space–time coordinates of an unknown station 
or user by the known ground stations. High accuracy of 
EOP is not needed, and milli-arcsecond level is enough.

In the autonomous operation mode where the system 
loses the support of MCS, there are two ways to obtain 
the EOP: one is the long-term forecasting with the 

accuracy depending on the length of the forecast time; 
and the other is the autonomous solution on the satel-
lite. The EOP is essentially three Euler angles between 
GCRS and GTRS. To solve for EOP the observations that 
connect two reference systems are needed. The satellites 
need to observe celestial bodies, which reflect the orien-
tation of GCRS, and the ground stations, called anchor 
stations, which reflect the orientation of GTRS. In this 
case, the solution accuracy of EOP depends on not only 
the astronomical observations but also the number and 
distribution of anchor stations. Similar to the mode with 
the supports of MCS, the ground anchor stations have 
great impacts on the accuracy of the user’s positioning 
and timing.

It should be noted that the observation model of EOP 
in the autonomous operation mode must be established 
within the BCRS framework, considering that celestial 
bodies are very far away and the scope of application of 
GCRS is limited to the vicinity of the Earth.

BDS time
The time reference for BDS Time (BDT) synchroniza-
tion, precise orbit determination and system operation is 
BDT. Similar to GPS Time (GPST), BDT is different from 
Coordinated Universal Time (UTC). It is a continuous 
time scale without leap seconds. In the BDS Radio Navi-
gation Satellite Service (RNSS), BDT is counted in Week 
Number (WN) and Seconds of Week (SOW). The repeti-
tion period of WN in BDS is 8 times larger than that of 
GPS, and the maximum of WN does not exceed 8192. In 
the BDS Radio Determination Satellite Service (RDSS), 
BDT is counted in Year Number (YN) and Minutes of 
Year (MOY). The zero point of BDT is UTC 00:00:00 
on January 1, 2006. At this moment WN and SOW are 
equal to zero, YN is 6 and MOY is 480. Compared with 
the system times of GPS and Galileo, the choice of the 
zero point of BDT is not only for saving bytes, but also 
for being easier to remember. It is the beginning of the 
year (Han et al., 2011).

Conceptually, BDT is an implementation of Terrestrial 
Time (TT). According to IAU2000 Resolution B1.9, the 
following relationship holds between TT and TCG (Han, 
2017; Soffel et al., 2003):

Table 2 Seven parameters of conversion between BDCS and ITRF2014

Item Tx (mm) Ty (mm) Tz (mm) Rx in mas Ry in mas Rz in mas Scale 
factor in 
ppb

Value  − 0.37 1.12  − 0.55 0.01  − 0.02 0.05 0.011

RMS 0.74 0.74 0.74 0.03 0.03 0.04 0.012
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where  JDTT is the Julian Days at the time of TT, and

The starting point of TT is International Atomic Time 
(TAI) 00:00:00 of January 1, 1977. T0 is the corresponding 
number of Julian days. At this moment, TT is different 
from TAI by 0.0003725d = 32.184s , so the relationship 
between TAI and TT can be written as:

And then the relationships between BDT, TAI and TT 
can be approximately expressed as:

Here �BDTPPS is the time deviation of the second pulse 
of BDT relative to TAI or UTC, expressed as:

BDT is realized in the form of composed clock by an 
ensemble of atomic clocks of the master control station, 
and aligned with UTC through the National Time Ser-
vice Center (NTSC) of the Chinese Academy of Sciences 
and China National Institute of Metrology (NIM). The 
clock ensemble consists of several active hydrogen maser 
and cesium atomic clocks. A new time scale algorithm 
derived from ALGOS algorithm is adopted. The time dif-
ferences between BDT and UTC(k)/UTC are monitored 
continuously by the links of GNSS common view and 
TWTFT. When it is necessary, frequency adjustment will 
be introduced into BDT to keep the consistency between 
BDT and UTC. Under normal circumstances, the fre-
quency deviation of BDT relative to TAI or UTC is less 
than 2× 10−14 , and the absolute time deviation does not 

(16)















dTT

dTCG
≡ 1− LG

TCG− TT =
LG

1− LG
(JDTT − T0)× 86400

(17)
{

LG ≡ 6.969290134 × 10−10

T0 ≡ 2443144.5003725

(18)TT = TAI+ 32.184s

(19)
{

BDT = TAI+�BDTPPS − 33s

TT = BDT+�BDTPPS + 65.184s

(20)�BDTPPS = BDTPPS − TAIPPS

exceed 50 ns (Zhang and Cai, 2018). Therefore, the differ-
ence between BDT and TT is negligible when being used 
as time reference. The time offset between BDT and UTC 
is shown in figure (Fig. 1).

Conclusions
BDS adopts a technique for time synchronization com-
pletely different from GPS, GLONASS, and Galileo. 
TWTFT technology is used in BDS to directly measure 
the clock offsets between satellites and ground stations. 
Therefore, BDS is essentially a precision time measure-
ment and time synchronization system for a large-scale 
space near the Earth. General relativity is the basic the-
oretical framework for the data processing in BDS. The 
spatial reference of BDS is BDCS, and the time reference 
is BDT. BDCS and BDT are the realizations of GTRS and 
TT in BDS, respectively. The BDS ground station coor-
dinates are consistent with ITRF2014 at the centimeter 
level. The scale difference is approximately 1.1× 10−8 . 
BDT is maintained by the master control station of BDS. 
The frequency deviation of BDT is less than 2× 10−14 , 
and the time offset is less than 50  ns relative to TAI or 
UTC.

In addition to BDCS and BDT, GCRS and BCRS are 
also involved in the operation of BDS. The observation 
model of time synchronization and precise orbit deter-
mination is established within the GCRS framework. The 
coordinate transformation between BDCS and GCRS 
is consistent with IERS. In the autonomous operation 
mode without the support of ground master control sta-
tion, EOP is obtained by means of long-term prediction 
and on-board observation. Observation models for on-
board astrometry should be established within the BCRS 
framework.
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