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Abstract 

Stipes are the major waste from the processing of Lentinus edodes. To make full use of L. edodes stipes (LES), differ-
ent fractions of LES polysaccharides (LESPs) were first obtained by water extraction and gradient ethanol precipita-
tion. Afterwards, the LES residues were treated with an optimal combination of Aspergillus niger and Saccharomyces 
cerevisiae for the preparation of soluble/insoluble dietary fibers (LESS/LESI) using the response surface methodol-
ogy and the Box-Behnken design. Subsequently, the in vitro immunomodulatory activity of LESPs and LESS, as well 
as the adsorption capacities of LESI were evaluated. The results showed that LESPs were neutral polysaccharides, 
mainly containing glucose. The optimal parameters for modifying the residues of LES were the followings: 4% (w/w) 
A. niger, 8% (w/w) S. cerevisiae, 31 ℃, 3 d, and a solid–liquid ratio of 1:12.5 in a yield of 14.73%/82.45% of LESS/LESI, 
respectively. The in vitro immunomodulatory activity assays revealed that LESPs and LESS had potent immunostimula-
tory activity to increase phagocytosis, acid phosphatase activity and nitric oxide production of RAW264.7 murine cell 
macrophages. The evaluation of adsorption capacities revealed that LESI owned stronger water holding capacity, oil 
holding capacity and water swelling capacity. This research could provide an effective way to fully utilize discarded L. 
edodes stipes with high added-value.
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Graphical Abstract
An effective strategy was built to fully utilize discarded L. edodes stipes by preparing polysaccharides (LESPs-20, LESPs-
50 and LESPs-80), soluble and insoluble dietary fibers (LESS/LESI). Their products showed immunomodulatory activity 
and adsorption capacities.

Introduction
Lentinus edodes (Berk.), also known as Shiitake mush-
room, is the most widely consumed edible mushroom 
in the world due to its good taste, nutritional benefits 
and medicinal values (Roszczyk et al., 2022). L. edodes 
has been cultivated in China and Japan for about 2000 
years, and is also cultivated in Asia, Europe, North 
America and Australia nowadays (Sheng et  al., 2021). 
The fruit body of L. edodes is made up of pileus and 
stipes, accounting for approximately 75% and 25% of 
the whole fruit body on a dry basis (Li et al., 2018). In 
China, L. edodes has a huge annual production of more 
than 11.88 million tons (Zhu et  al., 2023). During the 
processing of L. edodes, especially in drying processes, 
a large number of stipes are residual and discarded. 
According to statistics, nearly 3 million tons of stipes 
are discarded and wasted every year merely in China 

(Lu et al., 2023). With the rapid development of the edi-
ble fungi industry in the world, the waste of by-prod-
ucts has led to a series of economic and environmental 
problems. Therefore, L. edodes stipes (LES) deserve 
more attention for rational utilization toward value-
added products (Tian et  al., 2022; Zhu et  al., 2023). 
Compared to the pileus of L. edodes, stipes are of low 
commercial use, due to their high crude fiber content 
and poor palatability (Zhang et al., 2012). However, LES 
still preserve the appropriate nutritional ingredients, 
which are primarily used for animal feed and compost-
ing (Chou et al., 2013). Besides, few studies are applied 
LES to prepare shiitake sauce, bread, noodle, bread and 
biscuit (Lin et al., 2008; Wang et al., 2020). Therefore, it 
is very important to find more alternative strategies for 
the use of valuable compounds (and/or nutrients) pre-
sent in LES.
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Since LES still preserve essential nutrients, which 
should not be underestimated or discarded directly (Li 
et  al., 2018). Previous studies have extracted umami 
compounds, polysaccharides and insoluble dietary fibers 
(IDF) from LES (Harada-Padermo et al., 2020; Jiao et al., 
2018; Tian et  al., 2022). Compared to L. edodes pileus, 
LES have significantly lower water, protein and ash con-
tent, while possessing markedly higher carbohydrate and 
fiber, accounting for 439.56 g / kg of carbohydrates and 
82.94 g / kg of fibers, respectively (Li et al., 2018). There-
fore, it is essential to make full use of carbohydrates and 
fibers in LES.

β-Glucans are the main polysaccharides in the fruit 
body of L. edodes, exhibiting various biological activities, 
such as immunomodulatory, anti-oxidant, anti-tumor, 
anti-diabetic, anti-aging and anti-viral activities, etc. 
(Roszczyk et  al., 2022; Sheng et  al., 2021; Yehia, 2022). 
Several studies have reported that stipes contain higher 
amounts of β-glucans than pileus, suggesting that stipes 
are more nutritional than pileus in some respects (Bak 
et al., 2014; Shimizu et al., 2003; Vetter, 2023). It is note-
worthy that β-glucans are potent immunological stimula-
tors, and some kinds of them have been used clinically in 
China and Japan (Chou et al., 2013). However, there are 
rarely studies on the immunomodulatory activity of poly-
saccharides isolated from LES.

In addition, the extraction of polysaccharides from LES 
(LESPs) could still produce a large amount of insoluble 
residues, which are rich in IDF. Therefore, the further 
recycling of the residues plays an important role in pro-
moting the effective and reasonable utilization of bio-
mass resources, and improving the economic benefits of 
edible fungi enterprises (Tian et al., 2022). Dietary fibers 
(DF), known as the seventh nutrient, have many benefits 
for human health, such as improving the intestinal flora 
and increasing its diversity and function, increasing fecal 
volume, promoting bowel movement, lowering blood 
glucose, and decreasing the probability of diabetes mel-
litus, obesity, cardiovascular and cancer diseases, etc. 
(Makki et  al., 2018; Shah et  al. 2020; Tian et  al., 2022). 
Considering the solubility of DF, they can be divided 
into soluble dietary fibers (SDF) and IDF, of which SDF 
are more important with respect to physiological and 
functional perspectives than IDF (Bader et al., 2019; Gan 
et al., 2021). Various modification methods have tried to 
convert IDF into SDF, including physical methods uti-
lizing blasting, extrusion, ultrafine comminution, high-
pressure microfluidization, high hydrostatic pressure, 
high-pressure homogenization, cavitation jet processing, 
chemical methods utilizing alkaline hydrogen peroxide, 
acid treatment, alkali treatment, carboxymethylation 
treatment, biological methods utilizing specific enzymes 
or microorganisms to enzymatic hydrolysis or ferment 

raw materials, physical method combined with physi-
cal method, chemical method or biological method, and 
biological method combined with biological method, etc. 
(Gan et al., 2021; Park et al., 2013; Wang et al., 2021; Yu 
et al., 2018; Zhang et al., 2020a, 2020b).

Among the above modification methods, biological 
methods received the most attention due to their advan-
tages of milder processing conditions, stabler processing 
process, higher processing efficiency, less operational 
risks, higher purity of processing products, and friend-
lier to the environment (Gan et al., 2021). Fermentation 
by Bacillus natto, Monascus anka, Trichoderma viride 
and Trichoderma harzianum has been commonly used to 
increase the content of SDF, which can produce various 
enzymes that could hydrolyze complex carbohydrates, 
such as hemicellulose, cellulose, etc. (Chen et al., 2020a, 
2020b; Chu et al., 2019; Jia et al., 2019; Sun et al., 2020). 
Aspergillus niger has been used by industries due to its 
strong growth ability, wide selection of substrates, and 
high efficiency in the secretion of cellulolytic enzymes 
(Ma et al., 2021; Zhang et al., 2017). Saccharomyces cer-
evisiae can secrete hydrolase to accelerate hydrolysis, 
improving the biodegradability of hemicellulose, cellu-
lose, lignin, etc. (Zhao et al., 2020). These two fungi are 
mainly used to produce organic acids, such as citric acid, 
lactic acid, methane, oxalic acid, etc. (Ma et  al., 2021; 
Roukas & Kotzekidou, 2020; Wang et  al., 2022; Zhao 
et al., 2020). However, few studies have used A. niger or S. 
cerevisiae as a modification method to increase the con-
tent of SDF (Xu et al., 2023), and no studies focused on 
the production of SDF by their co-fermentation.

Together, this study was aimed to explore an efficient 
strategy to make full of LES. The process to prepare 
LESPs and SDF from LES is shown in Fig. 1. In the first 
stage, different LESPs (LESPs-20, LESPs-50, LESPs-80) 
were obtained by water extraction and gradient ethanol 
precipitation. Afterwards, the LES residues were adjusted 
to prepare soluble/insoluble dietary fibers (LESS/LESI), 
through single-factor experiments and the response sur-
face methodology (RSM) based on a Box-Behnken design 
(BBD) by fermentation with A. niger and S. cerevisiae. 
Subsequently, the in vitro immunomodulatory activity of 
LESPs and LESS, as well as the adsorption capacities of 
LESI were further evaluated. This study will provide new 
ideas for the utilization of LES of high economic value.

Materials and methods
Materials
The dried LES were collected from an edible fungus fac-
tory in Longxian County (Shaanxi, China). A. niger was 
purchased from Hezhong Kangyuan Biotechnology Co., 
Ltd (Zibo, Shandong, China). S. cerevisiae was purchased 
from Angel Yeast Co., Ltd (Yichang, Hubei, China). 
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Soybean oil was purchased from Luhua Group Co., Ltd 
(Laiyang, Shandong, China). Monosaccharide stand-
ards, including rhamnose (Rha), fucose (Fuc), arabinose 
(Ara), xylose (Xyl), mannose (Man), glucose (Glc), galac-
tose (Gal), galacturonic acid (GalA) and glucuronic acid 
(GlcA); lipopolysaccharides (LPS), thiazolyl blue (MTT), 
neutral red staining solution, p-nitrophenyl phosphate, 
Triton X-100, Griess reagent, penicillin and streptomy-
cin were purchased from Aladdin Biochemical Tech-
nology Co., Ltd (Shanghai, China). Dextran standards 
with molecular weights of 5, 12, 25, 410 and 670 kDa, 
and dimethyl sulfoxide (DMSO) were purchased from 
Sigma-Aldrich (St. Louis, MO, USA). Murine monocyte-
macrophage RAW264.7 cells were obtained from the 
Institute of Cell Biological, Chinese Academy of Sciences 
(Shanghai, China). DMEM medium and fetal bovine 
serum (FBS) were purchased from HycloneTM by GE 
Healthcare Life Science (Logan, Utah, USA). L. edodes 
mycelia polysaccharides (LEMPs) tablet was purchased 
from Hubei Guangren Pharmaceutical Co., Ltd (Suizhou, 
Hubei, China). All other chemicals were of analytical 
grade.

Extraction of LESPs
The dried LES were powdered and then put through 
a 40-mesh sieve. The final powders were collected 
and used for polysaccharide extraction by our previ-
ous study with minor modifications (Sun et al., 2018a, 
2018b). Briefly, LES powders (50 g) were treated with 
2000 mL of deionized water at 60  °C for 4 h (twice). 
The extraction solution was then concentrated and 
precipitated with 20%, 50% and 80% (v/v) of etha-
nol at 4  °C for 24 h, respectively. The precipitate was 

centrifuged, deproteinated, dialyzed and lyophilized to 
obtain LESPs, named LESPs-20, LESPs-50 and LESPs-
80, respectively. The left residues were lyophilized for 
the following modification.

Modification of the LES residues with A. niger and S. 
cerevisiae
To investigate the optimal conditions for modification of 
the LES residues with A. niger and S. cerevisiae, the most 
favorable process parameters were determined by single-
factor experimental design and response surface optimi-
zation. The yield of LESS was the detection index.

Single‑factor experimental design

(1) Effect of adding ratio of A. niger and S. cerevisiae 
to raw material for the production of LESS: 10 g of 
dried LES residues were added to 100 mL of deion-
ized water at 30 °C for 3 days, the adding ratios 
were adjusted to 2%, 4%, 6%, 8% and 10% (w/w).

(2) Effect of fermentation temperature, time and ratio 
of water to raw material for the production of LESS: 
After determining the most favorable ratio of A. 
niger and S. cerevisiae to raw material, fermentation 
temperature, time and ratio of water to raw material 
were evaluated under the optimal adding ratio. The 
fermentation temperatures were tested of 26 °C, 28 
°C, 30 °C, 32 °C and 34 °C. The fermentation times 
were set at 1 day, 2 days, 3 days, 4 days and 5 days. 
The ratios of water to raw material were adjusted to 
6%, 8%, 10%, 12% and 14% (v/w).

Fig. 1 Flowsheet for the process to prepare LESPs and LESS/LESI from LES
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Experimental design of response surface optimization
After obtaining the appropriate range of the variables 
through single-factor experiments, three variables (fer-
mentation temperature, time and ratio of water to raw 
material) with three levels were selected for further opti-
mization of LESS production (Feng & Zhang, 2020).

Preparation of LESS and LESI
After fermentation, the whole supernatant was collected, 
concentrated and precipitated with a fourfold volume of 
95% (v/v) ethanol at 4 °C overnight. The precipitate was 
then collected and lyophilized to produce LESS, while the 
fermented residues were freeze-dried to produce LESI 
(Xie et al., 2017). The yield of LESS/LESI (%) = Ms / Mr; 
Where Ms is the dried weight of LESS/LESI, and Mr is 
the dried weight of the raw materials.

Measurements of structural characteristics
The total sugar content of LESPs and LESS was deter-
mined according to the phenol–sulfuric acid method 
using Glc as the standard (Dubois et al., 1956).

The monosaccharide composition of LESPs and LESS 
was analyzed by gas-chromatography (GC), according 
to our previous study with Rha, Fuc, Ara, Xyl, Man, Glc, 
Gal, GlcA and GalA as standards (Sun et al., 2022).

The molecular weight of LESPs and LESS was analyzed 
by high performance gel-permeation chromatography 
(HPGPC), according to our previous study with differ-
ent molecular weights of dextrans (5, 12, 25, 410 and 670 
kDa) as standards (Sun et al., 2022).

The microstructure and morphology of LESI were 
observed by scanning electron microscopy (SEM), 
according to our previous study (Sun et al., 2018a, 2018b).

The in vitro immunomodulatory activity analysis of LESPs 
and LESS
RAW264.7 cells were pre-cultured in a DMEM medium 
supplemented with 1% (v/v) penicillin and streptomycin, 
and 10% (v/v) fetal bovine serum at 37 °C in a 5%  CO2 
incubator. When the cell growth reached 70–80% of the 
bottom of culture box, a sub-culture was carried out for 
the assays of cell viability, phagocytosis, acid phosphatase 
activity and NO production based on our previous study 
(Sun et  al., 2018a, 2018b). The DMEM medium in the 
absence of polysaccharides was used as a blank control. 
LPS of 10 μg/mL, L. edodes mycelia polysaccharides 
(LEMPs) purchased from Pharmaceutical Co., Ltd of 200 
μg/mL, and L. edodes pileus polysaccharides (LEPPs) 
extracted by the above method and precipitated with 80% 
(v/v) ethanol of 200 μg/mL were used as positive controls.

The adsorption capacities analysis of LESI
Water holding capacity (WHC)
LESI (0.5 g,  M1) were mixed with 10 mL of deion-
ized water at 26 °C for 1 day. After centrifugating for 
8 min at 8000 × g, the supernatant of the mixture 
was discarded, while the sediment was collected and 
weighted as  M2 (Wang et al., 2021; Xu et al., 2023). The 
WHC was calculated by the following equation: WHC 
(g/g) =  (M2-M1)/M1.

Oil holding capacity (OHC)
LESI (1.0 g,  M1) were maintained with 20 mL of soy-
bean oil at 26 °C for 1 day. After centrifugating for 
8 min at 8000 × g, the sediment was collected and 
weighted as  M2 (Wang et al., 2021; Xu et al., 2023). The 
OHC was calculated by the following equation: OHC 
(g/g) =  (M2-M1)/M1.

Water swelling capacity (WSC)
LESI (1.0 g,  M1) were mixed with 20 mL of deionized 
water at 26 °C for 2 h. The sample volume before and 
after expansion was measured as  V1 and  V2, respectively 
(Gan et al., 2020; Xu et al., 2023). The WSC was calcu-
lated by the following equation: WSC (g/g) =  (V2-V1)/
M1.

Statistical analysis
All the experiments were carried out in triplicate and 
averaged. All the data are expressed as means ± stand-
ard deviation (SD) with significant analysis after pass-
ing an LSD test. Statistical analyses were processed 
with SPSS Statistics (SPSS 20.0 software, IBM Inc., Chi-
cago, IL, USA).

Results and discussion
The preparation and characterization of LESPs
Three LESPs (LESPs-20, LESPs-50 and LESPs-80) were 
obtained from LES by fractional precipitation with 20%, 
50% and 80% (v/v) of ethanol, yielding 11.42% ± 0.72%, 
2.51% ± 0.98% and 1.42% ± 0.42% of dry weight, respec-
tively. The total sugar content of LESPs-20, LESPs-50 
and LESPs-80 was 65.82% ± 3.23%, 84.31% ± 4.21% and 
71.21% ± 3.23%, suggesting that LESPs-50 had the high-
est polysaccharide content (p < 0.05).

The monosaccharide composition analysis of LESPs 
showed that LESPs-20, LESPs-50 and LESPs-80 were 
neutral polysaccharides and mainly consisted of Glc, 
but varied in minor differences. As shown in Fig. S1b-
S1d, LESPs-20 contained a small amount of Man in a 
ratio of 1.00 (Man): 5.09 (Glc); LESPs-50 and LESPs-80 
contained a small amount of Man and Gal in a ratio of 
1 (Man): 8.39 (Glc): 1.01 (Gal) and 1 (Man): 4.36 (Glc): 
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1.72 (Gal), respectively. Glucans are the most impor-
tant and abundant constituents in L. edodes. Their basic 
unit is Glc, however, other monosaccharides (e.g. Man 
and Gal) are generally found in the mushroom (Vetter, 
2023; Wang et al., 2017; Zhao et al., 2018).

The average molecular weight of LESPs was calcu-
lated by the calibration curve (y = -0.1655x + 7.5002, 
 R2 = 0.9681), showing that LESPs-20, LESPs-50 and 
LESPs-80 was 484.97 ± 18.85 kDa, 477.52 ± 25.34 kDa and 
470.60 ± 11.01 kDa, respectively (Fig. S2b-S2d). The result 
is consistent with previous studies, which have demon-
strated that the molecular weight of glucan fractions 
from L. edodes varies between 300 and 800 kDa, with an 
average of 500 kDa (Vetter, 2023; Zhang et al., 2011).

The preparation and characterization of LESS and LESI
After the polysaccharides were extracted from LES, there 
were still left a large amount of insoluble residues. To fur-
ther utilize the residues, A. niger and S. cerevisiae were 
employed to modify and improve the residues.

Single‑factor experimental analysis
The yields of LESS under different adding ratios of A. 
niger to raw material are shown in Fig.  2a. The results 
were evaluated by sequentially setting the ratio at 2%, 4%, 
6%, 8% and 10% (w/w) with the fermentation tempera-
ture, time and the ratio of water to raw material at 3 days, 
30 °C and 10% (v/w). The yield of LESS reached a maxi-
mum level of 10.04% ± 0.24%, when the A. niger adding 
ratio was 4%. According to the results, performing fer-
mentation with A. niger higher or lower than 4% signifi-
cantly suppressed the yield of LESS. Therefore, 4% was 
chosen as the optimal point for subsequent experiments.

The yields of LESS under different adding ratios of S. 
cerevisiae to raw material are shown in Fig.  2b. Simi-
larly, the effects were investigated by sequentially set-
ting the ratio at 2%, 4%, 6%, 8% and 10% (w/w) with the 
fermentation temperature, time and the ratio of water to 
raw material at 3 days, 30 °C and 10% (v/w). The yield of 
LESS achieved the highest value of 10.02% ± 0.16% when 
the S. cerevisiae adding ratio was 8%. According to the 
results, fermentation with S. cerevisiae higher or lower 

Fig. 2 Effect of (a) ratio of Aspergillus niger to raw material, (b) ratio of Saccharomyces cerevisiae to raw material, (c) fermentation temperature, (d) 
fermentation time and (e) ratio of water to raw material on the yield of LESS. Data are expressed as means ± SD (n = 3). The graph points marked 
with different letters on top represent statistical significances (p < 0.05) by an LSD test, whereas points marked with the same letter correspond 
to results without significant differences
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than 8% significantly suppressed the yield of LESS. There-
fore, 8% was chosen as the optimal point for subsequent 
experiments.

The yields of LESS under different fermentation tem-
peratures are shown in Fig. 2c. The results were evaluated 
by sequentially setting the temperature at 26 °C, 28 °C, 
30 °C, 32 °C and 34 °C with the adding ratio of A. niger 
and S. cerevisiae to raw material, fermentation time and 
the ratio of water to raw material at 4%, 8%, 3 days and 
12%. The yield of LESS reached a maximum level at a 
temperature of 30 °C. During the growth and metabolism 
of A. niger and S. cerevisiae, a large number of enzymes 
are produced and some enzymatic reactions occurred to 
hydrolyze cellulose, pectin and other macromolecules 
(Hao et al., 2020). Their growth and enzymatic hydroly-
sis largely depend on temperature, hence higher or lower 
temperature might suppress the yield of LESS.

The yields of LESS under different fermentation times 
are shown in Fig.  2d. The results were evaluated by 
sequentially setting the time at 1 day, 2 days, 3 days, 4 
days and 5 days with the adding ratio of A. niger and S. 
cerevisiae to raw material, fermentation temperature and 
the ratio of water to raw material at 4%, 8%, 30 °C and 
12%. The yield of LESS reached a maximum level in 3 
days. During the second day of fermentation, the myce-
lium of A. niger and S. cerevisiae grew and began to pro-
duce spores. The yield of LESS increased rapidly from 
the 2nd-3rd day, possibly due to the increased enzymatic 
activity of secretions. As time increased, the yield of LESS 
was decreased, which might result from some microbial 
cells beginning to die or some generated LESS continu-
ing to degrade. A similar finding has been reported in the 
previous study (Hao et al., 2020).

The yields of LESS under different ratios of water to raw 
material are shown in Fig. 2e. The results were evaluated 
by sequentially setting the ratios at 6%, 8%, 10%, 12% and 
14% (v/w) with the adding ratio of A. niger and S. cerevi-
siae to raw material, fermentation temperature and time 
at 4%, 8%, 30 °C and 3 days. The yield of LESS reached a 
maximum level at the water to raw material ratio of 12%. 
A greater contact surface area between the solid and liq-
uid phases could better access the solvent into intracel-
lular active substrates (Zhao et al., 2018), but the excess 
water could lead to the dilution of enzyme content, cause 
a larger humidity in the residues, and bring a poor gas 
exchange in the system, thus causing a decrease in LESS 
production.

Response surface analysis
RSM is an effective statistical method used to develop 
and optimize multivariable problems, which aids in the 
design of tests and uses multiple quadratic regression 
equations to fit functional models between factors and 

response values (Hao et  al., 2020; Zhao et  al., 2018). 
Since temperature, time and the ratio of water to raw 
material are important for microbial fermentation (Feng 
& Zhang, 2020; Xu et al., 2023), these three parameters 
were further optimized for response surface optimiza-
tion, choosing the fermentation temperature, time and 
the ratio of water to raw material at 30 °C, 3 days and 
12% as the center points for subsequent experiments. 
The levels and codes of fermentation variables used in 
the BBD are shown in Table 1. The BBD design and the 
results of LESS yield are shown in Table 2. Based on the 
experimental data of 17 test points obtained by the far 
regression method, the following quadratic regression 
equation can be used to explain the yield of LESS (Y, %) 
and test component variables:

Y    =  1 4 . 3 2   +  1 . 6 9 *  A  +  0 . 4 3  *  B  +   0 .  8 0 * 
C-0.43*A*B + 0.40*A*C-0.032*B*C-1.63*A2-2.20*B2-

Table 1 The levels and codes of fermentation variables used in 
Box-Behnken design (BBD)

Variables Coded 
symbols

Coded levels

-1 0 1

Fermentation temperature (oC) A 28 30 32

Fermentation time (d) B 2 3 4

Ratio of water to raw material (%) C 10 12 14

Table 2 The BBD experimental design and the results for LESS 
yield

A, B and C is fermentation temperature, time and ratio of water to raw material, 
respectively

Runs A B C LESS yield (%)

1 30 4 10 11.16

2 28 3 10 9.13

3 30 4 14 12.21

4 30 3 12 14.12

5 28 2 12 8.32

6 32 4 12 11.82

7 30 3 12 13.91

8 30 3 12 14.61

9 28 3 14 10.42

10 30 3 12 14.7

11 32 3 10 11.94

12 30 3 12 14.26

13 32 3 14 14.82

14 32 2 12 12.31

15 28 4 12 9.53

16 30 2 14 10.91

17 30 2 10 9.73
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1.12*C2; Where A, B and C is fermentation tem-
perature, time and the ratio of water to raw material, 
respectively.

The variance analysis of the BBD experimental results 
is displayed in Table  3. The p-value of the quadratic 
regression equation was 0.0001, which demonstrated 
that the model was significant. The lack-of-fit was not 
significant (p = 0.1405), demonstrating that the model 
used for the regression had a fair degree of fitting and a 
small amount of experimental error, thus the real value 
could be substituted for it when analyzing the findings. 
Furthermore, the high value of  R2  (R2 = 0.9791) indi-
cated that 97.91% of the variability and accuracy of the 
response were adequate and could be explained in the 
model; The  R2

Adj = 0.9522 implied that the model is in 
reasonable agreement with the  R2 value (Feng & Zhang, 
2020). The linear coefficients (A, B and C) and quad-
ratic coefficients  (A2,  B2 and  C2) showed significances, 
while other regression coefficients were not significant. 
According to the significance of the regression coeffi-
cients, fermentation temperature (A, p < 0.0001) exerted 
the greatest influence on the yield of LESS, followed by 
the ratio of water to raw material (C, p = 0.0019) and 
then fermentation time (B, p = 0.0347).

As presented in Fig.  3, the 2D contour plots and the 
3D response showed the combined effects of fermen-
tation temperature, time and the ratio of water to raw 
material on the yield of LESS. Figure  3a and b showed 
the effects of fermentation temperature and time, Fig. 3c 
and 4d showed the effects of fermentation temperature 
and the ratio of water to raw material, and Fig. 3e and 4f 
showed the effects of fermentation time and the ratio of 

water to raw material. The optimal fermentation condi-
tions obtained by the regression model were a fermenta-
tion temperature of 30.79 °C, a fermentation time of 3.10 
days, and a ratio of water to raw material of 12.37. Under 
the optimal condition, the predicted value of LESS yield 
was 14.91%. In view of the operability in actual produc-
tion, the fermentation process can be modified by the fer-
mentation temperature to 31 °C, the fermentation time to 
3 days and the water to raw material to 12.5. Three veri-
fication tests were conducted under the modified param-
eters, a final LESS yield of 14.73% ± 0.21% was obtained, 
which was quite agreed with the predicted value of the 
model. The result was also confirmed the accuracy and 
reliability of the regression model by the response surface 
optimization.

Structural characterization of LESS and LESI
The total sugar content of LESS was 67.92% ± 3.23%. As 
shown in Fig. S1e, monosaccharide composition analy-
sis of LESS showed that it was also consisted of Man 
and Glc, which was similar to that of LESPs-20. But after 
fermentation, the content of Xyl was increased in LESS, 
exhibiting a ratio of Xyl, Man and Glc as 0.89: 1: 6.29. 
IDF is usually composed of lignin, hemicellulose and 
cellulose, etc. (Xu et al., 2023). Thus, the release of SDF 
with Xyl, Man and Glc monosaccharides might be attrib-
uted to the decomposition of LES during fermentation. 
According to the previous studies, during the fermenta-
tion of A. niger and S. cerevisiae, a number of enzymes 
are produced, and some enzymatic reactions occur (Hao 
et al., 2020). A. niger can secrete amylase, cellulase, glu-
cosidase, endoglucanase, lignin peroxidase and xylanase, 

Table 3 Variance analysis of the BBD experimental results

A, B and C is fermentation temperature, time and ratio of water to raw material, respectively. The significances are presented as *p < 0.05, **p < 0.01 and ***p < 0.001

Variables Sum of squares df Mean square F-value p-value Prob. > F

Model 71.38 9 7.93 36.43  < 0.0001 ***

A 22.75 1 22.75 104.5  < 0.0001 ***

B 1.49 1 1.49 6.83 0.0347 *

C 5.12 1 5.12 23.52 0.0019 **

AB 0.72 1 0.72 3.32 0.1113

AC 0.63 1 0.63 2.9 0.1322

BC 0.00423 1 0.00423 0.019 0.8931

A2 11.12 1 11.12 51.08 0.0002 ***

B2 20.38 1 20.38 93.62  < 0.0001 ***

C2 5.26 1 5.26 24.16 0.0017 **

Pesidual 1.52 7 0.22 - -

Lack of fit 1.08 3 0.36 3.28 0.1405

Pure error 0.44 4 0.11 - -

Cor total 72.9 16 - - -

R2 = 0.9791;  R2
Adj = 0.9522
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and S. cerevisiae can secrete various glycoside hydro-
lases (e.g. cellulase, hemicellulase, xylanase), improving 
the biodegradability of starch, lignin, hemicellulose, cel-
lulose and other macromolecules (Hao et  al., 2020; He 

et al., 2021; Ma et al., 2021; Wang et al., 2022; Zhao et al., 
2020). Besides, as shown in Fig. S2e, the average molecu-
lar weight of LESS was 607.40 ± 41.11 kDa, which was sig-
nificantly higher than LESPs (p < 0.05).

Fig. 3 Response surface plots showing effects of fermentation temperature, time and ratio of water to raw material on the yield of LESS. (a, b) 
Interaction of fermentation temperature and time; (c, d) Interaction of fermentation temperature and ratio of water to raw material; (e, f) Interaction 
of fermentation time and ratio of water to raw material
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The microstructure of LESI was monitored by SEM 
at 1000 × and 3000 × magnifications. As shown in Fig. 4, 
compared with unfermented IDF from LES residues, 
LESI had more rough, irregular and complicated struc-
tures, with many looser folds on its surface. The irregu-
lar surface of LESI might be caused by the degradation 
of some fibers and semi-fibers, and the formation of 
a discontinuous loose surface of the fiber during the 
fermentation (Zhang et  al., 2020a, 2020b). Changes in 
the external and internal structures could impact the 
absorption abilities of dietary fibers, improving the 
WHC, OHC and WSC of dietary fibers (Wang et  al., 
2021).

The in vitro immunomodulatory activity of LESPs and LESS
Macrophages are important immune cells in ani-
mals, exhibiting many immunomodulatory functions. 
RAW264.7 is a mouse peritoneal macrophage, and is usu-
ally used for the in  vitro study of cell phagocytosis and 
cell immunity (Akhtar et al., 2020). Herein, cell viability, 
phagocytosis, acid phosphatase activity and NO produc-
tion were measured to evaluate the immunomodulatory 
activity of LESPs and LESS. Besides, to better compare 
the immunomodulatory activity of LESPs and LESS, L. 
edodes mycelia polysaccharides, named LEMPs, as well 
as L. edodes pileus polysaccharides, named LEPPs, were 
employed as positive controls.

Fig. 4 SEM micrographs of (a, b) unfermented IDF from LES residues and (c, d) LESI prepared after fermentation
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Effects of LESPs and LESS on cell viability of RAW264.7
The cell viability assay depends on the potential of via-
ble cells to metabolize a water-soluble tetrazolium salt 
into a water-insoluble formazan product (Akhtar et al., 
2020). The effects of LESPs-20, LESPs-50, LESPs-
80 and LESS on the proliferation rate of RAW264.7 
cells were measured by the MTT method. As shown 
in Fig.  5a, compared to the control group, LESPs had 
significant proliferation effects under low-concen-
tration treatments (p < 0.05), showing that LESPs-20 
enhanced the RAW264.7 cell viability at the concentra-
tions of 12.5–50 μg/mL, LESPs-50 improved the cell 
viability at the concentrations of 12.5–100 μg/mL, and 
LESPs-80 enhanced the cell viability at the concentra-
tions of 12.5–25 μg/mL, respectively. When compar-
ing LESPs-20, LESPs-50 and LESPs-80, LESPs-50 at a 
concentration of 12.5 μg/mL exhibited the best effect 
on the proliferation of RAW264.7 cells. LESS had sig-
nificantly increased impacts on the cell viability of 
RAW264.7 cells with all tested concentrations rang-
ing from 12.5–200 μg/mL, also showing a significantly 
higher effect than that of LESPs under the same treat-
ment concentration from 25–200 μg/mL (p < 0.05). In 
addition, compared to LEMPs, LESS of 25–50 μg/mL 
and LESPs-80 of 12.5 μg/mL showed higher impacts 
(p < 0.05); Compared to LEPPs, LESS and LESPs-
50 of 12.5–100 μg/mL, LESPs-20 of 12.5–50 μg/mL 
and LESPs-80 of 12.5 μg/mL showed higher impacts 
(p < 0.05).

Effects of LESPs and LESS on phagocytosis of RAW264.7
Phagocytosis of macrophages plays a vital role in 
immune function, which is described as the first and 
determining phase in the immune response (Akhtar 
et al., 2020). The effects of LESPs-20, LESPs-50, LESPs-
80 and LESS on the phagocytosis of RAW264.7 cells 
were measured with the neutral red assay. As shown in 
Fig. 5b, compared to the control group, the three puri-
fied fractions of LESPs and LESS could significantly 
enhance phagocytosis under the entirely tested concen-
trations from 12.5–200 μg/mL (p < 0.05). When com-
paring LESPs-20, LESPs-50 and LESPs-80, LESPs-50 at 
a concentration of 50 μg/mL exhibited the best effect 
on the phagocytosis of RAW264.7 cells. Among the 
concentrations of 50–200 μg/mL, LESS exhibited much 
stronger phagocytic activity than LESPs (p < 0.05). Fur-
thermore, compared to LEMPs, LESS of 12.5–200 μg/
mL, LESPs-50 of 12.5–25 μg/mL and LESPs-80 of 12.5 
μg/mL showed higher effects (p < 0.05); Compared to 
LEPPs, LESS of 12.5–200 μg/mL, LESPs-20, LESPs-
50 and LESPs-80 of 12.5–100 μg/mL showed higher 
impacts (p < 0.05).

Effects of LESPs and LESS on acid phosphatase activity 
of RAW264.7
Acid phosphatase is a signal enzyme for macrophage 
activation that functions as a lysosomal marker enzyme. 
The activity level of acid phosphatase directly reflects 
the immunocompetence of macrophages (Akhtar 
et al., 2020). As shown in Fig. 5c, compared to the con-
trol group, LESPs-20, LESPs-50 and LESPs-80 showed 
increased acid phosphatase activity at the concentra-
tions of 12.5–200 μg/mL (p < 0.05), whereas LESS showed 
enhanced acid phosphatase activity at the concentrations 
of 25–50 μg/mL (p < 0.05). When comparing LESPs-20, 
LESPs-50 and LESPs-80, LESPs-50 at the concentration 
of 100–200 μg/mL, as well as LESPs-20 at the concentra-
tion of 200 μg/mL and LESPs-80 at the concentration of 
100 exhibited the best effect on acid phosphatase activity 
of RAW264.7 cells. Moreover, compared to LEPPs, LESS 
of 25 μg/mL, LESPs-20 of 200 μg/mL, LESPs-50 of 100–
200 μg/mL and LESPs-80 of 100 μg/mL showed greater 
effects (p < 0.05).

Effects of LESPs and LESS on NO production of RAW264.7
NO is well known as a signaling molecule associated 
with the cytolytic action of RAW 264.7, and is essential 
for battling pathogens, parasites and cancer cells (Zhang 
et  al., 2020a, 2020b). As shown in Fig.  5d, compared to 
the control group, the three purified fractions of LESPs 
and LESS could significantly activate macrophages to 
release NO under the entirely tested concentrations from 
12.5–200 μg/mL (p < 0.05). When comparing among 
LESPs-20, LESPs-50 and LESPs-80, LESPs-50 at a con-
centration of 25 μg/mL exhibited the best effect on NO 
secretion of RAW264.7 cells. Among the concentra-
tions of 50–200 μg/mL, LESS exhibited much higher NO 
secretion than LESPs (p < 0.05). Furthermore, compared 
to LEMPs, LESS of 100–200 μg/mL had higher effects 
(p < 0.05); Compared to LEPPs, LESS of 12.5–200 μg/mL, 
LESPs-20 of 12.5–50 μg/mL, LESPs-50 of 12.5–100 μg/
mL and LESPs-80 of 25 μg/mL showed higher impacts 
(p < 0.05).

Thus, comprehensively considering the effects of LESPs 
and LESS on cell viability, phagocytosis, acid phosphatase 
activity and NO production of RAW264.7, LESS had bet-
ter immunomodulatory activity than LESPs, and LESPs-
50 was more potent than LESPs-20 and LESPs-80. These 
findings might be due to their structural characteristics. 
Various studies have reported that the biological activities 
of polysaccharides depend on their structural features, 
such as monosaccharide composition, molecular weight, 
functional group, glycosidic branching, etc. (Akhtar et al., 
2020). Monosaccharide composition is an important 
characteristic of polysaccharides (Wang et al., 2020). Pol-
ysaccharides bind immune cells via membrane receptors, 
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Fig. 5 Effects of LESPs and LESS on (a) cell viability, (b) phagocytosis, (c) acid phosphatase activity and (d) NO production of RAW 264.7 
macrophages in vitro. Data are expressed as means ± SD (n = 6). The graph bars labeled with different letters on top represent a statistical 
significance (p < 0.05) by an LSD test, whereas bars marked with the same letter correspond to results without significant differences
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resulting in the stimulation of intracellular signaling 
cascades for immunological responses. The stimulating 
activities of polysaccharides triggered by the recognition 
of the cell receptors depend on monosaccharide compo-
sition (Huang et al., 2014). Generally, L. edodes polysac-
charides are primarily composed of Glc, Man and Gal, 
but some other monosaccharides (e.g. Xyl, Fuc and Ara, 
etc.) are also detected with minor content (Tang et  al., 
2020; Vetter, 2023; Zhao et al., 2018). Glc, although pre-
sent as a major monosaccharide component in fungi and 
presumably forming the backbone of polysaccharides, is 
not a major determinant factor for in vitro macrophage 
stimulatory activities. Previous studies have reported that 
Xyl, Man and Gal played an important role in the stimu-
lation of macrophage (Lo et al., 2007; Wang et al., 2017; 
Yin et  al., 2019). It is also interesting that the polysac-
charides most rich in Xyl have higher immunomodula-
tory activity, suggesting that the presence of Xyl may be 
important for monocyte/macrophage immunomodula-
tory activity (Schepetkin et al., 2023; Zhang et al., 2014). 
Herein, LESS showed the strongest immunomodulatory 
activity might be attributed to its unique composition of 
Xyl monosaccharide residues. More detailed information 
on the mechanism behind the immunomodulatory activ-
ity of the Xyl monosaccharide residues will be explored in 
our future study.

Molecular weight also plays an important role in the 
functional properties of polysaccharides, but the dif-
ferences in molecular weight could be not as relevant 
as other structure features (Ferreira et  al., 2015). Some 
researchers have found that polysaccharides with a 
lower molecular weight have better immunomodulatory 
effects, but some studies have revealed that high molecu-
lar weight polysaccharides exhibit an immunoregulating 
effect, while the fractions of low molecular weight did 
not have an effect (Chen et al., 2020a, 2020b). Herein, the 
molecular weight of LESS was higher than that of LESPs, 
which might contribute to the immunomodulatory activ-
ity of LESS. Low molecular weight polysaccharides do 
not easily form a triple-helical conformation, therefore 
significantly influencing their bioactivity (Chen et  al., 
2009). However, single-helix glucans or heteroglucans 
without helical conformation also displayed stimulatory 
activity in immune cells (Ferreira et al., 2015). It has been 
suggested that the presence of other monosaccharide res-
idues surpasses the requirement of helical conformations 
for the exhibition of immunomodulatory activity.

In addition, LESPs-50 with the highest purity showed 
a better immunomodulatory effect than LESPs-20 and 
LESPs-80, but not stronger than LESS. Therefore, duo 
to the complexity and variety of structural features in 
polysaccharides, further studies are needed to determine 
which factor finally decides the immunomodulatory 

effect to affect their application in the fields of functional 
food and drug development.

The adsorption capacities of LESI
Adsorption capacities, such as WHC, OHC and WSC, 
are important indexes for evaluating the quality of die-
tary fibers. The WHC represents the capacity of the most 
material in water retention when an external compres-
sion or centrifugal gravity force is applied, such as hydro-
dynamic water, physically trapped water and linked water 
(Wang et al., 2021). High WHC can prevent the shrink-
age of foods and alter their viscosity (Elleuch et al., 2010). 
As shown in Fig. 6a, the WHC value of fermented LESI 
was up to 4.36 ± 0.17 g/g, which was 1.86 times to unfer-
mented IDF from LES residues. The improvement might 
be associated with the diverse dietary fibers surface areas, 
structures and densities, as well as the raised hydrophilic 
site chemical nature and quantity (Xie et al., 2016).

The OHC plays a vital role in various food processing 
processes, which is used to assess the ability of dietary 
fibers to prevent oil loss, such as preventing fat losses 
in the case of cooking, or removing excessive fat from 
high-fat foods (Raghav, 2018; Song et al., 2018). As shown 
in Fig. 6b, the OHC value of fermented LESI was up to 
4.51 ± 0.27 g/g, which was 1.94 times to unfermented 
IDF from LES residues. The changes might depend on 
the hydrophobicity, hydrocolloid surface property and 
overall electrical charge density (Jia et al., 2019; Yu et al., 
2018).

The WSC is significantly affected by the bonded micel-
lar networks, wrinkled surface and the fiber molecular 
structure (Jia et al., 2019). As shown in Fig. 6c, the WSC 
value of fermented LESI was up to 5.13 ± 0.36 g/g, which 
was 1.64 times to unfermented IDF from LES residues. 
The increase might be attributed to an increase in the 
amount of short chains and the surface area of dietary 
fibers caused by the fermentation (Chen et  al., 2014; 
Zhang et al., 2019).

Generally, after fermentation, the WHC, OHC and 
WSC of LESI were significantly higher than those of 
unfermented IDF (p < 0.05), suggesting that the fermen-
tation of A. niger and S. cerevisiae probably loosened 
the structure of dietary fibers with a rougher surface so 
that more polar and nonpolar groups as well as short 
chains were exposed, which could be an effective method 
applied for the modification of IDF in LES residues. The 
generated LESI could be a good dietary resource for 
related food products, which avoid water syneresis in 
formulated foods, act as an emulsifier for foods with a 
high fat content and improve mouth-feel experienced by 
consumers.

In total, it is of great research value and practical sig-
nificance to extract active polysaccharides and functional 
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dietary fibers from inexpensive L. edodes stipes. LESPs 
and LESS with potent immunomodulatory effects could 
be considered as potential immunoenhancers as food 
supplements for hypoimmunity (Li et  al., 2018). Addi-
tionally, LESI have been found to effectively improve the 

gel properties of pork myofibrillar gels, due to the high 
WHC capacity of LESI (Lu et  al., 2023). The fermented 
LESI have greater WHC, OHC and WSC capacities than 
LESI, which might have a wide application in the pro-
cessing of meat, baking, beverages and dairy products, 
to improve their stability, water absorption capacity and 
emulsion strength (Yu et al., 2018).

Conclusions
This study built an efficient strategy to make full of LES. 
Three polysaccharide fractions (LESPs-20, LESPs-50, 
LESPs-80) were first obtained by water extraction and 
gradient ethanol precipitation. The soluble/insoluble 
dietary fibers (LESS/LESI) were then prepared by A. 
niger and S. cerevisiae fermentation, and their optimized 
conditions consisted of A. niger set at 4% (w/w), S. cer-
evisiae at 8% (w/w), fermentation temperature at 31  °C, 
fermentation time at 3 d, the material-to-liquid ratio at 
1:12.5. LESS with unique Xyl monosaccharide residues 
and higher molecular weight showed stronger in  vitro 
immunomodulatory activity than LESPs. LESPs-50 with 
the highest purity showed a better immunomodula-
tory effect than LESPs-20 and LESPs-80. Besides, LESS 
related to more rough, irregular and complicated struc-
tures showed improved WHC, OHC and WSC capaci-
ties. Since the large amount of L. edodes stipes being 
discarded every day, this study could provide new ideas 
for the fully utilization of the waste, generating such by-
products with great potential to be used as functional 
additives in the food industry.
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