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Abstract 

Introduction  In recent years, there has been a significant increase in the development of artificial intelligence (AI) 
algorithms aimed at reviewing radiographs after total joint arthroplasty (TJA). This disruptive technology is particularly 
promising in the context of preoperative planning for revision TJA. Yet, the efficacy of AI algorithms regarding TJA 
implant analysis has not been examined comprehensively.

Methods  PubMed, EBSCO, and Google Scholar electronic databases were utilized to identify all studies evaluating AI 
algorithms related to TJA implant analysis between 1 January 2000, and 27 February 2023 (PROSPERO study protocol 
registration: CRD42023403497). The mean methodological index for non-randomized studies score was 20.4 ± 0.6. We 
reported the accuracy, sensitivity, specificity, positive predictive value, and area under the curve (AUC) for the perfor-
mance of each outcome measure.

Results  Our initial search yielded 374 articles, and a total of 20 studies with three main use cases were included. 
Sixteen studies analyzed implant identification, two addressed implant failure, and two addressed implant measure-
ments. Each use case had a median AUC and accuracy above 0.90 and 90%, respectively, indicative of a well-perform-
ing AI algorithm. Most studies failed to include explainability methods and conduct external validity testing.

Conclusion  These findings highlight the promising role of AI in recognizing implants in TJA. Preliminary studies have 
shown strong performance in implant identification, implant failure, and accurately measuring implant dimensions. 
Future research should follow a standardized guideline to develop and train models and place a strong emphasis 
on transparency and clarity in reporting results.

Level of Evidence  Level III.
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Background
Total hip arthroplasty (THA) and total knee arthroplasty 
(TKA) are increasingly high-volume orthopaedic proce-
dures expected to grow by 71% and 85% by 2030, respec-
tively [1–4]. This growing population of arthroplasty 
patients is paired with an increasing volume of total joint 
arthroplasty (TJA) reoperations [5–8]. Radiographic 
assessment is the most prevalent method to identify 
the correct positioning of the implant, monitor implant 
wear, exclude complications, and identify implant design 
before revision surgery [9, 10]. However, these analyses 
place a significant burden upon arthroplasty surgeons. 
For instance, inconsistent implant records can complicate 
implant identification before revision surgery, increasing 
perioperative morbidity and cost of care [11]. In a 2012 
survey of arthroplasty surgeons, 88% of respondents 
claimed that identifying components of a failed implant 
takes a significant amount of time [12].

Artificial intelligence (AI) presents an alternative to this 
time-consuming process, and the reduction of human 
error could further optimize preoperative planning. 
AI algorithms can extract rules and patterns from large 
amounts of data to predict outcomes with sets of similar 
data [13]. Machine learning (ML) and deep learning mod-
els, known as convolutional neural networks (CNNs), are 
subsets of AI modeled after the human brain to identify 
rules and patterns in images [14–17]. AI algorithms have 
been utilized to detect mammographic lesions [18], skin 
cancer [19], and have a growing presence in orthopaedic 
surgery [14, 15, 17]. AI has been promising in preopera-
tive planning for revision TJA where multiple aspects of 
the implant need to be analyzed [20, 21].

As the rate of revision TJAs is rising for a multitude 
of reasons, AI implant recognition may reduce sur-
geon workload, save resources, and reduce inaccuracies 
necessitating another revision. Because of the plethora 
of different AI algorithms, a systematic review of cur-
rent studies exploring the nature of these algorithms is 
critical to understanding the efficacy and potential use 
cases. Therefore, we asked: (1) What are the currently 
established use cases for AI in TJA? (2) What is the per-
formance of these algorithms? (3) What are the current 
limitations of these AI algorithms?

Methods
This review was conducted according to the Preferred 
Reporting Items for Systematic Reviews (PROSPERO 
registration of the study protocol: CRD42023403497, 27 
February 2023).

Search strategy
The PubMed, EBSCOhost, Medline, and Google Scholar 
electronic databases were searched on 27 February 

2023, to identify all studies published between 1 Janu-
ary 2000, and 27 February 2023 evaluating AI-mediated 
implant analysis in hip and knee arthroplasty. The fol-
lowing keywords and Medical Subject Headings were 
used in combination with the “AND” or “OR” Boolean 
operators: (“Total Joint Arthroplasty [Mesh]” OR “Total 
Knee Arthroplasty [Mesh]” OR “Total Hip Arthroplasty 
[Mesh]” OR “THA” OR “TKA” OR “TJA”) AND (“Arti-
ficial Intelligence” OR “AI” OR “Machine Learning” OR 
“ML”) AND (“Implant”).

Eligibility criteria
Articles were included if (1) full-text manuscripts in Eng-
lish were available and (2) the study investigated the use 
of artificial intelligence algorithms in TJA implant analy-
sis. Additionally, the following studies were excluded 
from our analysis: (1) case reports, (2) systematic 
reviews, (3) duplicate studies among databases, (4) gray 
literature such as abstracts and articles on pre-print serv-
ers, and (5) publications in languages other than English.

Study selection
Two independent reviewers assessed the eligibility of 
each included article. Disagreements were discussed 
with a third independent reviewer to achieve consen-
sus. Upon removing duplicates, the initial query yielded 
257 articles, which were then screened for appropriate 
studies aligning with the purpose of this review. 36 stud-
ies were selected for further consideration after the title 
and abstract screening. The full text of each article was 
reviewed, 20 of which fulfilled our inclusion criteria. Rea-
sons for full-text exclusion included the study not directly 
addressing implant analysis in TJA (n = 13), and the study 
not assessing the efficacy of an AI model (n = 3). A review 
of each study’s reference list yielded no additional articles 
(Fig. 1).

Study characteristics
A total of 20 studies evaluating 66,190 radiographs were 
included in the final analysis (Table 1). The efficacy of AI-
mediated implant recognition was reported for TKA in 
10 studies, for THA in 8 studies, and for both in 2. The 
included studies were conducted between 2020 and 2023, 
with all 20 reviewing radiographs retrospectively. While 
13 studies were conducted with data from single.

Institutions, 7 studies utilized data from multiple insti-
tutions. All studies were diagnostic trials exploring the 
efficacy of AI algorithms regarding TJA.

Risk of bias in individual studies
Two independent reviewers assessed the risk of bias by 
using the Methodological Index for Nonrandomized 
Studies (MINORS) tool. This is a validated assessment 
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tool that grades comparative studies from 0 to 24 based 
on 12 criteria related to study design, outcomes assessed, 
and follow-up, with higher scores reflecting better study 
quality. Per domain, each item was scored 0 if low, 1 if 
moderate, and 2 if high (Supplemental Fig.  1). Discrep-
ancies in grading were resolved by achieving consensus 
through consulting a third reviewer. The mean MINORS 
score was 20.4 ± 0.6.

Primary and secondary outcomes
Firstly, we identified the currently established use cases 
for AI in TJA implant analysis. These were found to be 
implanted style identification, implant failure identifica-
tion, and implant measurement. The primary goal of this 
study was to present the efficacy of current AI algorithms 
in implant recognition following total joint arthroplasty. 
To achieve this, we performed an analysis of the accuracy, 
the area under the curve (AUC) for the receiver operat-
ing characteristic (ROC) curve, sensitivity, specificity, 
and positive predictive value (PPV) for each use case. The 

median and interquartile ranges (IQR) were calculated 
using Excel (Microsoft Corporation, Redmond, Washing-
ton, USA) for the highest-scoring AI algorithm in each 
study. As a secondary goal, we synthesized key limita-
tions that the authors of each study had noted.

Results
Implant identification
Most studies (n = 16) included in this review explored 
the efficacy of AI algorithms in identifying implant 
shape, model, and manufacturer. Seven of these studies 
were TKA implant-specific, seven were THA implant-
specific, and two included implants for both surgeries. 
For TKA algorithms, the AUC ranged from 0.9857 to 1, 
accuracy ranged from 22.2% to 100%, sensitivity ranged 
from 22.2% to 100%, PPV ranged from 22.2% to 100%, 
and specificity ranged from 97.8% to 100% (Table 2). The 
median (IQR) for each of these domains was AUC: 0.996 
(0.990 to 1), accuracy: 98.9% (96.9% to 99.8%), sensitivity: 
98.1% (94.8% to 99.7%), PPV: 99.6% (99.0% to 100%), and 
specificity: 99.4% (98.1% to 100%). Of note, one study was 

Fig. 1  PRISMA diagram depicting the study selection process
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able to develop an algorithm with perfect scores across 
all reported domains [35]. For THA algorithms, the AUC 
ranged from 0.99 to 0.999, accuracy ranged from 83.7% 
to 100%, sensitivity ranged from 75.4% to 98.90%, PPV 
ranged from 83.7% to 99.0%, and specificity ranged from 
98.0% to 99.80% (Table 3). The median (IQR) for each of 

these domains was AUC: 0.999 (0.995 to 0.999), accu-
racy: 98.2% (91.7% to 99.6%), sensitivity: 94.6% (94.3% 
to 95.7%), PPV: 96.3% (93.1% to 99.0%), and specificity: 
99.2% (98.5% to 99.8%).

Additionally, three studies were able to compare the 
identification capabilities of AI relative to that of a 
human expert [20, 25, 31]. Of these three studies, two 

Table 2  Performance of artificial intelligence algorithms in identifying implants for total knee arthroplasty

CNN Convolutional Neural Network, DCNN Deep Convolutional Neural Network, AUC​ area under the receiver operating characteristic curve, PPV positive predictive 
power, ResNet Residual Network, SD standard deviation, NR not reported, NA not applicable

Author AI Technique DCNN AUC​ Accuracy Sensitivity/
Recall

Precision/PPV Specificity

Belete et al., 2021 
[22]

Hyperparameter, 
Manual Segmen-
tation Pre-
Processing, Data 
Augmentation

ResNet-18 1 100% NR NR NR

Bonnin et al., 
2023 [23]

Exam Quality 
Control CNN 
Deep Learning

X-TKA NR 99.9% 99.8% 100% 100%

Ghose et al. 2020 
[26]

Histogram 
Equalization Data 
Augmentation, 
Albumentations 
Deep Learning 
DCNN

MobileNetV2 NR 96.7% NR NR NR

Karnuta et al., 
2021 [7, 8]

DCNN InceptionV3 0.992 98.9% 94.6% 94.6% 99.4%

Klemt et al., 2022 
[30]

CNN Pre-
processing 
Hyp,erparameter 
Optimization, 
Class Activation 
Heat Maps

InceptionV3 NR Primary TKA: 
97.4%
Revision TKA: 
96.3%

Primary TKA: 
94.9%
Revision TKA: 
94.5%

NR Primary TKA: 
97.8%
Revision TKA: 
98.1%

Patel et al., 2021 
[31]

DCNN, Hyper-
parameter Opti-
mization, Image 
Segmentation/
Data Augmenta-
tion Ensembled 
Networks

EfficientNet & 
U-Net

NR 98.9%
Human: 76.1%

98.9% 99% NR

Sharma et al., 
2021 [34]

BRISQUE Data 
Augmentation 
Fine-Tuning 
in Transfer Learn-
ing DCNN

ResNet-50v2, 
VGG16, 
MobileNetV2, 
DenseNet-201

0.9857 96.4% 97.20% NR NR

Tiwari et al., 2022 
[20]

Transfer Machine 
Learning Models

ResNet-50, 
MobileNet, 
Efficient Net B7, 
InceptionV3, 
Nasnet, VGG16, 
Xception, 
Human

NR ResNet-50-51.4%
MobileNet -99.6%
Efficient Net B7 
-22.2%
Incep-
tionV3-96.2%
Nasnet-94.6%
VGG16-99.0%
Xception-93.1%
Human-78.2%

ResNet-50-42.0%
MobileNet-99.6%
Efficient Net 
B7-22.2%
Incep-
tionV3-96.2%
Nasnet-94.6%
VGG16-99.0%
Xception-93.1%
Human-50.0%

ResNet-50-62.0%
MobileNet-99.6%
Efficient Net 
B7-22.2%
Incep-
tionV3-96.2%
Nasnet-94.6%
VGG16-99.0%
Xception-93.4%
Human-80.1%

NR

Yi et al., 2020 [35] Data Augmenta-
tion DCNN

ResNet-18 1 100% 100% 100% 100%

Median (IQR) NA NA 0.996 (0.990–1) 98.9% (96.9%–
99.8%)

98.1% (94.8%–
99.7%)

99.6% (99.0%–
100%)

99.4% (98.1%–
100%)
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showed improved performance from a certain AI archi-
tecture when compared to arthroplasty clinicians [20, 
31]. However, one study showed poorer performance 
from their AI architecture when compared to experts 
[25]. Three studies also reported the average time spent 
per radiograph by their algorithm, which was less than 
one second [21, 25, 36]. In comparison, one study 
reported the time required for a surgeon to analyze a 
radiograph with which they had no experience to be 
greater than eight minutes [36].

The most common limitation noted by authors was the 
limited dataset upon which the algorithms were trained 
[7, 8, 22, 24–27, 29, 35]. In addition to a limited num-
ber of radiographs, authors also faced challenges with 
developing an algorithm with generalizability due to a 
limited library of implants [7, 8, 20–22, 26, 27, 30, 31, 35, 
36]. authors noted a lack of high-quality radiographs of 
implants from various imaging positions and modalities 
[7, 29, 30, 35], which further hampers their generalizabil-
ity. Lastly, authors advocated for a need to validate these 
algorithms through comparison with the judgment of 
both surgeons of varying experience [23, 27, 30].

Implant failure detection
Two studies aimed to detect implant failure through the 
utilization of AI algorithms [32, 37] (Table 4). One study 
sought to assess implant loosening in TKA [37]. When 
compared to the baselines set by two orthopaedic spe-
cialists, the image-based algorithm attained an accuracy 
of 96.3% with no improvement upon adding clinical 
information. Additionally, class activation maps (CAMs) 
showed signals over the loosened bone-implant inter-
face, the parameters for detecting implant loosening. 
The other study developed a deep learning tool to quan-
tify femoral component subsidence between serial AP 
radiographs of the hip [32]. Parameters included distance 
from the tip of the stem to the most superior point on the 
greater trochanter, angle of the femoral axis, and distance 
between magnification markers. The model was able 

to achieve an accuracy of 97% for detecting the femur, 
98% for detecting the implant, and 94% for detecting the 
magnification markers. When compared to the manual 
measurements of two orthopaedic surgeon reviewers, 
the automatic measurements had an absolute mean error 
of 0.6 (21%) ± 0.7 mm. The measurements bore a strong 
correlation of 0.96 (P < 0.001). The median (IQR, if appli-
cable) for implant failure detection algorithms was AUC: 
0.935, accuracy: 97.2% (96.7%–97.6%), sensitivity: 96.1%, 
PPV: 92.4%, and specificity: 90.9%.

Both studies acknowledged similar limitations: small 
datasets, the use of cemented implants limiting external 
validity as the use of cementless implants is rising, and 
alterations in the radiographic appearance of bones due 
to heterotopic ossification, bisphosphonate administra-
tion, and magnesium coatings over implants [32, 37].

Implant measurement
Two studies assessed the measurement capabilities of AI 
in total joint arthroplasty [28, 33] (Table 5). In one study, 
the authors attempted to build an algorithm to deline-
ate the epiphyseal, metaphyseal, and diaphyseal fixation 
zones and cone placements following revision TKA [28]. 
To accomplish this, the widest condylar width, most infe-
rior points of the femoral implant, widest tibial width, 
and most proximal points of the tibial implant were used 
as parameters to construct squares on the femur and 
tibia. 98% of zones were able to be delineated, and when 
compared to a fellowship-trained orthopaedic surgeon, 
the algorithm achieved a 90% zonal mapping accuracy, 
with 97.8% tibial and 100% femoral cone identification. 
Runtime for the algorithm was 8 ± 0.3  s per radiograph 
[28]. In another study, an algorithm was trained on long 
leg radiographs (LLR) following TKA to assess the align-
ment of knee systems with reads of the hip-knee-ankle 
(HKA), femur component (FCA), and tibial component 
(TCA) angles [33]. This study was conducted using the 
commercially available AI software IB Lab LAMA (Leg 

Table 4  Performance of artificial intelligence algorithms detecting implant failure in total joint arthroplasty

DCNN Deep Convolutional Neural Network, AUC​ area under the receiver operating characteristic curve, PPV positive predictive power, SD standard deviation, NR not 
reported, NA not applicable

Author AI Technique DCNN AUC​ Accuracy Sensitivity/Recall Precision/PPV Specificity

Lau et al., 2022 [37] Pre-Trained on Ima-
geNet and Tensor 
Flow

Xception Model 0.935 96.3% 96.1% 92.4% 90.9%

Rouzrokh et al., 2022 [32] U-Net Model Efficient Net B0 NR Femur-97.0%
Implant-98.0%
Magnification 
Markers: 94.0%

NR NR NR

Median (IQR) NA NA 0.935 (NA) 97.2%
(96.7%–97.6%)

96.1%
(NA)

92.4%
(NA)

90.9% (NA)
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Angle Measurement Assistant, version 1.03, IB Lab 
GmbH, Vienna, Austria), which localizes anatomical fea-
tures of the femur, tibia, and calibration ball to measure 
leg angles. When compared to two orthopaedic surgeons 
who regularly perform LLR measurements, the algo-
rithm achieved an accuracy of 99% for HKA, 99% for 
FCA, and 97% for TCA. For these measurement studies, 
the median (standard deviation) of the highest accuracy 
achieved was 97.3% (94.5% to 99.3%). Noted limitations 
included limited knee systems for algorithm training and 
limited cohorts for external validation, especially those 
with varying degrees of image quality [28, 33].

Discussion
AI algorithms for TJA implant analysis have shown 
promising preliminary results regarding identification, 
failure detection, and measurement. For all these use 
cases, algorithms have been able to demonstrate high 
accuracy, PPV, sensitivity, and specificity. Some studies 
were also able to demonstrate that these algorithms could 
outperform human experts. Yet still, a major limitation 
noted by almost all studies was a limited radiographic 
dataset size which limits their extrapolation, as the AI 
needs to be trained on all types of inputs it is expected 
to perform upon. Overall, AI algorithms show promise 
in implant identification, failure detection, and meas-
urement with the ability to improve orthopaedic work-
flow similar to prior integrations of AI into workflows 
[38–41]. For wider implementation and validation of AI, 
future algorithms need to be trained on a robust set of 
high-quality datasets, externally validated, and publish 
explainability methods.

The lack of robust and high-quality datasets has been 
identified as a significant limitation in multiple studies, 

adversely affecting the performance of AI algorithms. 
Consequently, some of these studies failed to meet the 
desired thresholds for excellent algorithm performance, 
namely an AUC of 0.90 and an accuracy of 90%. The 
performance of algorithms that did not have access to 
a large dataset of high-quality images will most likely 
worsen when externally validated [42–44]. Nonethe-
less, the approximate volume of imaging samples needed 
for high sensitivity and specificity can be relatively low 
(< 500). All but one of the studies reporting these metrics 
[27] were able to achieve high sensitivity and specificity 
for implant identification even though the image sam-
ple sizes ranged from 274 to 11,204 images in total. Even 
when considering implant design, a very low quantity of 
images per design is required. Many studies used aug-
mentation techniques to increase the number of images 
for training through contrast editing, flipping, and rotat-
ing of raw image data. Through this technique, Kang et al. 
were able to create 3606 augmented images from 179 
images of 29 hip implant designs with some having less 
than 5 radiographs and still achieve an AUC of 0.99 [29]. 
However, even algorithms that demonstrated excellent 
performance are limited by the catalog of implants and 
radiographs presented to them. To improve the AUC and 
accuracy of future studies, high-quantity and high-qual-
ity datasets need to be publicly available [45]. Datasets 
including all training images from DICOM to standard 
JPG formats would be beneficial to allow for AI train-
ing on multiple image mediums. Few well-curated imag-
ing datasets are currently available due to a lack of image 
organization, anonymization, annotation, and linkage to 
a ground-truth diagnosis [45].

Institutional-level datasets limit the ability for exter-
nal validation. As a result, fourteen out of the twenty 

Table 5  Performance of artificial intelligence algorithms measuring implants in total joint arthroplasty

CNN Convolutional Neural Network, DCNN Deep Convolutional Neural Network, AUC​ area under the receiver operating characteristic curve, PPV positive predictive 
power, SD standard deviation, NR not reported, NA not applicable, HKA hip-knee-ankle angle, FCA femoral component angle, TCA​ tibial component angle

Author AI Technique DCNN AUC​ Accuracy Sensitivity/
Recall

Precision/PPV Specificity

Jang et al., 2023 [28] CNN Transfer Learning 
to Segment Relevant 
Landmarks

U-Net Model NR Zonal Mapping:
Femoral-89%
Tibial-91%
All Zones-90%
Cone Identification:
Femoral-97.8%
Tibial-100%
Cone Placement:
Femoral-95.7%
Tibial-89.1%

NR NR NR

Schwarz et al., 2022 [33] IB Lab LAMA NR NR HKA: 99%
FCA: 99%
TCA: 97%

NR NR NR

Median (IQR) NA NA NA 97.3% (94.5%–99.3%) NA NA NA
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included studies did not test their algorithms against an 
external dataset, making it difficult to understand if these 
results are reproducible in a different environment [46]. 
Park and Han stress the importance of testing all algo-
rithms against a well-defined clinical cohort to eliminate 
potential overestimation of the algorithms’ performance 
due to overfitting or overparameterization [47]. Fail-
ing to test against external datasets is not uncommon, 
with only 6% of prior radiological AI papers using an 
external test set [48]. To improve the reproducibility of 
the AI algorithms, future studies ought to conduct tests 
against external datasets [38, 42, 43, 47, 49, 50]. Devel-
opers ought to consider the external validity of the algo-
rithm and minimize the risk of overestimation by testing 
with an external dataset and utilizing a strongly defined 
clinical cohort, respectively. Developers will have greater 
success at the institutional level compared to the global 
scale due to the vast library of implants that joint recon-
structive surgeons use. A long-term solution for these 
concerns would be to create an implant library that any 
reconstructive surgeon at any institution could utilize to 
create new algorithms. While external validity is a con-
cern for these algorithms, the internal validity is still 
very high so developers can create institution-specific 
algorithms based on the catalog of implants that their 
reconstructive surgeon routinely uses. With algorithmic 
training on high-quality publicly available datasets and 
external testing, the clinical feasibility of these algorithms 
may be better assessed.

Lastly, AI models have a “black box” phenomenon as 
most users are unable to understand how the algorithm 
reaches its decision. This phenomenon has been faced 
with criticism on whether or not to trust AI as one can-
not trace the logic [51]. Saliency mapping and CAMs 
are methods to explain the region of the image that was 
relevant in the algorithm’s decision [52]. For example, a 
saliency map for identifying THA implants disclosed that 
the region around the tip of the femoral component was 
of utmost importance, something which has not been 
commonly used as a distinguishing factor between mod-
els [24]. However, these maps may not be enough as a few 
studies included in this review [22, 24, 26, 31, 34] demon-
strated that AI-based implant measurement and failure 
detection require various other parameters. Therefore, 
all future studies should report the parameters as well 
as the saliency maps associated with decision-making to 
improve the transparency of the AI algorithms for poten-
tial clinician adopters.

Limitations
This study has its limitations. Firstly, not all values for 
AUC, accuracy, sensitivity, PPV, and specificity were 
included. The variation in performance reporting 

limits the accuracy of generalizations regarding the per-
formance of these algorithms. Along these lines, the algo-
rithms each have their own library of implants upon 
which they were trained. Due to this, overarching com-
parisons between studies are difficult to make as the algo-
rithms were tested upon different images and implants. 
Additionally, very few studies reported demographic 
information corresponding to radiographic datasets. This 
will be crucial in the future as biased clinical data will 
negatively affect model performance [53]. Nonetheless, 
the results reported in included studies show promising 
results for AI-based implant analysis.

Conclusion
AI models hold great potential as a disruptive tool in the 
field of adult reconstructive surgery, specifically in the 
analysis of implants. This is particularly important con-
sidering the rising demand for revision TJA. AI-based 
implant analysis can reduce the workload of surgeons, 
save resources, and minimize inaccuracies that might 
necessitate further revisions. These findings highlight the 
promising role of AI in recognizing implants in TJA. Ini-
tial studies have demonstrated impressive performance 
in implant classification, analysis of implant failures, and 
measurements derived from radiographs. However, to 
develop more robust models, it is essential to have access 
to larger datasets of radiographs. Future research should 
adhere to standardized guidelines for model develop-
ment and training while emphasizing the importance of 
transparency in presenting the results.
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