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Abstract 

The oral and craniofacial region consists of various types of hard and soft tissues with the intricate organization. 
With the high prevalence of tissue defects in this specific region, it is highly desirable to enhance tissue regeneration 
through the development and use of engineered biomaterials. Collagen, the major component of tissue extracellular 
matrix, has come into the limelight in regenerative medicine. Although collagen has been widely used as an essen-
tial component in biomaterial engineering owing to its low immunogenicity, high biocompatibility, and convenient 
extraction procedures, there is a limited number of reviews on this specific clinic sector. The need for mechanical 
enhancement and functional engineering drives intensive efforts in collagen-based biomaterials concentrating on 
therapeutical outcomes and clinical translation in oral and craniofacial tissue regeneration. Herein, we highlighted the 
status quo of the design and applications of collagen-based biomaterials in oral and craniofacial tissue reconstruction. 
The discussion expanded on the inspiration from the leather tanning process on modifications of collagen-based bio-
materials and the prospects of multi-tissue reconstruction in this particular dynamic microenvironment. The existing 
findings will lay a new foundation for the optimization of current collagen-based biomaterials for rebuilding oral and 
craniofacial tissues in the future.
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Graphical Abstract

1 Introduction
The oral and craniofacial region is a complex area con-
sisting of various types of hard and soft tissues, such 
as bones, cartilage, teeth, oral mucosa, and muscles. 
Disorders in this region will impair not only physical 
functions, such as mastication and speech but also psy-
chological well-being and social acceptance. Oral and 
craniofacial disorders are estimated to have the highest 
prevalence and incidence worldwide, which calls for a 
concerted global health response [1]. However, current 
treatment modalities in clinical settings are still unable 
to achieve ideal therapeutic outcomes.

Tissue engineering approaches hold great promise for 
oral and craniofacial tissue repair. However, the incred-
ible tissue diversity and sophisticated architectures 
of the region present great challenges to structural 
and functional tissue regeneration. Therefore, intense 
efforts have been devoted to the optimization of tissue-
engineering biomaterials to meet the clinical demands 
[2–4]. Biomaterials based on natural polymers are 
attractive with biocompatibility and functional prop-
erties, providing a favorable milieu to deliver cells or 
cytokines for tissue regeneration [5, 6]. As one major 
organic polymer in the extracellular matrix (ECM) of 
both hard and soft tissues, collagen has inspired the 
construction of biomaterials to impart biomimetic 
characteristics.

Collagen serves as the biogenic building block of mul-
tiple tissues in the oral and craniofacial region. With 
low immunogenicity, high biocompatibility, and con-
venient preparation procedures from extensive sources, 
collagen offers a promising source of commercial ingre-
dients for biomaterial fabrication [7]. However, insuffi-
cient mechanical strength, high biodegradation rate, and 
shrinkage of natural collagen limit the results in regen-
erative effects and clinical translation, especially in the 
treatment of oral and craniofacial disorders. Molecu-
lar re-engineering by crosslinking or incorporation of 
organic/inorganic components can accelerate the devel-
opment of novel collagen-based biomaterials with higher 
adaptability to practical applications. In addition, the nat-
ural assembling and mineralization processes of collagen 
also shed light on biomimetic remineralization in crani-
ofacial bone and dental tissue regeneration [8].

Extensive reviews are focusing on collagen materials in 
regenerative medicine, especially in bone regeneration; 
however, only few review article concentrates on oral 
and craniofacial tissue regeneration. Due to the unique 
nano-/microstructure of these tissues, the conventional 
engineering approaches of collagen-based materials may 
not be fully adaptable in this highly specific facial sector 
in the clinic. Therefore, we aim to provide a summary of 
the state-of-the-art findings in the laboratory and clini-
cal applications of collagen-based biomaterials with a 



Page 3 of 20Zhang et al. Collagen and Leather            (2023) 5:14  

comprehensive focus on different hard and soft tissues 
in oral and craniofacial regions. Based on the literature 
review, we highlight the challenges and prospects of 
further optimization of collagen-based biomaterials in 
rebuilding oral and craniofacial tissues, which will assist 
in bridging laboratory advances and clinical demands in 
the future.

2  Collagen‑based biomaterials in the oral 
and craniofacial system

Collagen is a type of self-assembled protein, compris-
ing up to 25–35% of proteins in humans [9]. As the main 
structural component of ECM, type I, II, and III collagens 
represent the lion’s share of fibrous collagen in bone, car-
tilage, dentin, and mucosa tissues in oral and craniofacial 
system structures [10]. Collagen is a trimeric molecule 
featuring a unique tertiary structure, in which three left-
handed parallel polypeptide α chains weave together into 
a right-handed triple helix bundle [7]. The natural hier-
archical architecture of collagen fibrils and covalently 
intermolecular crosslinking make them stable in the tis-
sue microenvironment and resilient to enzyme degrada-
tion [7].

To date, extracted collagen from numerous species is 
commercially and clinically available in dentistry [11]. 
However, the natural crosslinking of collagen fibrils will 
be damaged during extraction procedures, resulting in 
poor mechanical strength and stability of reconstituted 
collagen assemblies in  vitro [12, 13]. As collagen offers 
exciting opportunities in tissue regeneration, researchers 
have reengineered collagen-inspired biomedical mate-
rials in different forms, mainly including scaffolds and 
particles, to achieve biomimetic regeneration of oral and 
craniofacial tissues with both structural and biological 
properties (Fig. 1).

2.1  Scaffold
Porous scaffolds are usually designed to simulate com-
positions and structures of hard tissues, providing bio-
mimetic support for cell adhesion, proliferation, and 
differentiation. Ideal scaffolds for tissue engineering 
should possess favorable biocompatibility to promote cell 
adhesion and ECM formation, proper porosity to transfer 
bioactive molecules, and tunable biodegradation rate as 
the new tissue forms, as well as enough mechanical prop-
erties for surgical operation [14].

Multiple types of collagen-based scaffolds have 
been employed as artificial grafts for tissue repair and 
reconstruction. However, natural collagen scaffolds 
fabricated by freeze-drying or electrospinning lack 
mechanical strength and biostability [15], which triggers 
continuous efforts into physical, chemical, and biologi-
cal modifications. Ultraviolet or gamma irradiation and 

dehydrothermal treatment (DHT) are commonly applied 
to collagen scaffolds as physical crosslinking methods 
[16]. Chemical agents, such as glutaraldehyde, 1-ethyl-
3-(3-dimethylaminopropyl)-carbodiimide hydrochloride, 
and hexamethylene diisocyanate, achieve crosslinking 
of collagen by covalent amine/imine linkage [17]. How-
ever, chemical crosslinking inevitably causes cytotoxic 
residues in scaffolds which impairs cell growth. Thus, a 
mixture of other natural or synthetic polymers with col-
lagen stands out as another strategy to overcome the 
drawbacks of natural collagen scaffolds. Natural poly-
mers, such as chitosan and fibroin, and synthetic poly-
mers, such as poly (ε-caprolactone) (PCL), polylactic acid 
(PLA), and poly(lactide-co-glycolide) (PLGA), polyethyl-
ene glycolhave (PEG) been incorporated into collagen-
based scaffolds [18]. In addition, the hybridization of 
inorganic components, such as hydroxyapatite (HA) and 
β-tricalcium phosphate (β-TCP), can form mineralized 
collagen scaffolds to enhance the mechanical proper-
ties, biodegradability and osteogenic inducibility of scaf-
folds [19]. However, the collagen/mineral hybrid scaffolds 
only achieve extrafibrillar mineralization, which is differ-
ent from the natural mineralization architecture in the 
collagen matrix of hard tissues. Therefore, strategies to 
drive intrafibrillar mineralization of collagen by chemical 
agents or proteins have recently drawn great attention in 
the repair of oral and craniofacial hard tissues [8].

2.1.1  Hydrogel
Hydrogels are featured by their unique ability to absorb 
and retain water [20]. With the capability to gel, swell, 
self-aggregate, and degrade, hydrogels based on colla-
gen have been extensively applied in oral and craniofa-
cial tissue engineering of both hard and soft tissues. The 
appropriate biocompatibility of collage-based hydrogels 
enables them to deliver various types of cells, drugs, or 
cytokines; and to act as platforms for the three-dimen-
sional culture of cells together with the reconstruction of 
biomimetic tissues in  vitro. However, high degradation 
rate and contraction in cell culture systems and trans-
plantation sites greatly limit the application of pure colla-
gen hydrogels in oral and craniofacial tissue engineering 
[21].

In order to optimize hydrogels, natural collagen is 
physically/chemically crosslinked, mixed with polysac-
charides or synthetic polymers, or combined with inor-
ganic compounds [22]. In addition, injectable hydrogels 
based on collagen are attractive to provide simple and 
minimally invasive transplantation procedures in tissue 
engineering. Several kinds of injectable hydrogels incor-
porating collagen, such as alginate/collagen hydrogel, 
nano-hydroxyapatite (n-HA)/collagen hydrogel, PEG-
PCL-PEG copolymer/collagen/n-HA hydrogel, thiolated 
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hyaluronic acid/ collagen were designed to promote cra-
nial bone or condyle cartilage regeneration [23–25].

2.1.2  Membrane
Membranes are special forms of scaffolds widely 
applied in the oral and craniofacial region. Guided 
bone regeneration (GBR) is the most attractive strategy 

for applying both bone grafts and barrier membranes 
for oral and craniofacial bone repair [26]. Membrane 
biomaterials determine the clinical success of GBR by 
providing platforms for regeneration of bone and spa-
tial barriers for the growth of fibrous connective tissues 
[26]. Therefore, GBR membranes should have sufficient 
mechanical strength and tunable biodegradability to 
provide spatiotemporal support for bone regeneration.

Fig. 1 Collagen-inspired biomaterials in oral and craniofacial tissue regeneration. A Illustration of the hierarchical structure of collagen fibers in 
the extracellular matrix of tissues. B Main forms of collagen-based biomaterials used in tissue regeneration of the oral and craniofacial region. C 
Widespread applications of collagen-based biomaterials in oral and craniofacial tissue regeneration and typical repair mechanisms
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Non-absorbable membranes based on synthetic 
polymers have the disadvantages of secondary surgi-
cal removal and early exposure of membranes during 
healing [27]. Thus, bioabsorbable membranes based on 
natural polymers, especially collagen, are the most com-
monly used membranes in GBR for craniofacial bone 
regeneration [28]. Multiple strategies have been applied 
to enhance mechanical strength and prolong resorption 
time of collage membranes, including physical and chem-
ical crosslinking, and the combination of other polymers 
or calcium phosphates. Additionally, bioactive molecules, 
such as fibroblast growth factor and bone morphogenetic 
proteins, can be delivered by collagen-based membranes 
to enhance osteoinductive effects [29].

2.2  Microparticles and nanoparticles
Collagen can also be formulated into particles with dif-
ferent sizes for multiple applications. The fabrication of 
collagen microparticles or nanoparticles is mainly based 
on techniques of emulsion in water/organic solvents, 
thermally induced phase separation, or complex coacer-
vation [30, 31]. However, with a porous inner structure, 
natural collagen particles are fragile and require further 
crosslinking to improve their mechanical properties. 
Recently, the spray-drying processing strategy has been 
applied in the fabrication of collagen microparticles, in 
which diluted acid-soluble collagen solution was atom-
ized to form a mist of thin droplets, and immediately 
dried by evaporation of the solvent [32].

Collagen microparticles and nanoparticles are efficient 
microcarriers for the delivery of drugs or proteins in tis-
sue engineering. Multiple types of antibacterial drugs 
and growth factors have been encapsulated and delivered 
by collagen particles for bone tissue regeneration [33]. 
Additionally, the incorporation of apatite or β-TCP into 
collagen particles can also be applied to enhance cranial 
bone regeneration [34].

2.3  ECM
ECM is a highly organized extracellular network gener-
ated and maintained by tissue-resident cells [35]. Func-
tioning as a specialized network of bioactive molecules, 
ECM is the structural and biological signaling center for 
surrounding cells, providing mechanical and biochemi-
cal cues for tissue homeostasis and repair [36]. Proteins 
in native ECM are highly conserved over species, among 
which collagen is the most abundant and pivotal compo-
nent [35]. Researchers have successfully obtained decel-
lularized ECM scaffolds by demineralization of hard 
tissues and removal of cells while retaining the overall 
architecture and bioactivity of natural ECM [37]. The 
obtained native ECM can be freeze-dried and optimized 
via crosslinking or mineral incorporation to generate 

multiple forms of biomaterials, including scaffolds and 
particles. Decellularized ECM can provide multiple types 
of matrix-associated growth factors and extracellular 
vesicles, promoting growth and differentiation of resident 
cells and providing an anti-inflammatory effect [38].

ECM-derived biomaterials have been successfully fab-
ricated from multiple types of human or xenogeneic 
tissues from oral and craniofacial regions, including car-
tilage, dentin, dental pulp, oral mucosa, and tongue, for 
corresponding tissue regeneration. In addition, ECM 
extracted from the human dermis and amniotic mem-
brane, xenogeneic dermis (Mucoderm®), and small intes-
tine submucosa (DynaMatrix®) have also been applied to 
promote tissue regeneration in dental clinical surgeries 
for soft and hard tissue augmentation [39].

3  Applications of collagen‑based biomaterials 
in oral and craniofacial tissue regeneration

3.1  Craniofacial bone regeneration
Physical and functional reconstruction of craniofacial 
bone defects remains a clinical challenge for maxillofacial 
surgeons. Transplantation of bone grafts along with bar-
rier membranes is a common clinical treatment modality 
for craniofacial bone defects [40]. The challenging situa-
tions of the clinical use of natural bone grafts encourage 
the investigations on artificial alternatives with bio-
responsive features to boost the formation of new bone 
[41].

Cranialfacial bone exhibits hierarchically staggered 
architecture with sophisticated integration of both 
organic and inorganic phases at multiscale [42, 43] 
(Fig. 2A). As the major organic components, type I col-
lagen fibrils are critical in templating and guiding mineral 
sequestration, nucleation, and growth to form mineral-
ized collagen fibrils [44]. Notably, though bone tissues 
at different anatomical sites share similar structures and 
components, craniofacial bone contains a higher profu-
sion of collagen than long bone [45]. Therefore, collagen-
based scaffolds, hydrogels, and membranes have been 
essential components in biomaterials for craniofacial 
bone regeneration. Ideal collagen-based biomaterials for 
craniofacial bone regeneration should possess enough 
stiffness to support mechanical loading, bioactive charac-
teristics to promote osteogenesis and angiogenesis, and 
biomimetic microarchitecture similar to native bone tis-
sue as well.

Refining the mechanical properties and biodegra-
dation rate of collagen-based biomaterials is criti-
cal for repair outcomes. In order to overcome the 
poor mechanical properties and structural stability 
of unmodified collagen-based grafts and membranes 
in craniofacial bone reconstruction, multiple types 
of natural or synthetic polymers have been blended 
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with collagen for modifications, such as chitosan [46–
48], alginate [49], PCL [50], PLGA [51], bioceramics, 
β-TCP, and HA [52–54] (Fig.  2B–D). Entrapping bio-
active molecules in scaffolds is an alternative strategy 
for the optimization of collagen-based grafts. Colla-
gen-based scaffolds can achieve sustainable release of 
multiple osteoinductive and angioinductive biomol-
ecules, such as bone morphogenetic protein-2, stromal 
cell-derived factor-1, and vascular endothelial growth 

factor [49, 55–59]. The above methods can be com-
bined to exert synthetic effects respectively. In a recent 
study, Verma et al. designed a composite scaffold with 
N,O-carboxymethyl chitosan (NOCC), and type I col-
lagen cross-linked by glutaraldehyde as a supporting 
matrix [60]. The subsequent grafting of epigallocat-
echin gallate (EGCG) and entrapping of adenosine in 
the matrix enabled the scaffold to sustainably deliver 
the bioactive components. The optimized osteogenic 

Fig. 2 Collagen-based biomaterials in craniofacial bone regeneration. A Scheme of bone structure. Reproduced with permission from [42]. 
B Illustration of the fabrication of the chitosan/collagen (CS/Col) composite scaffold incorporated with the nano-hydroxyapatite (n-HA) and  Fe3O4 
for cranial bone reconstruction. Reproduced with permission from [46] C Scheme of the formation of the 3D hybrid nanofiber aerogels composed 
of PLGA-collagen-gelatin (PCG) and Sr–Cu codoped bioactive glass (BG) fibers, and the scanning electron microscopy images of the structure. 
Reproduced with permission from [51]. D Schematic illustration of the preparation of atelocollagen-coated biphasic calcium phosphate granules. 
Reproduced with permission from [53]. E Schematic illustration of the fabrication of graphene oxide-functionalized collagen scaffold for cranial 
bone regeneration. Reproduced with permission from [69]
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scaffold provided a microenvironment for cell migra-
tion and osteogenesis in  vitro, and promote cranial 
bone regeneration in vivo [60].

Biomimetic mineralization provides a novel ave-
nue for modifications of collagen-based biomateri-
als. The traditional methods to incorporate mineral 
contents by electrodeposition, co-precipitation, or 
immersion in the mineral-forming fluid can merely 
enhance extrafibrillar collagen mineralization [61, 
62]. Therefore, researchers have taken advantage of 
natural non-collagenous proteins (NCPs) or their ana-
logs for biomimetic mineralization of collagen grafts 
and membranes, which involves both intrafibrillar 
and extrafibrillar precipitation of HA. Poly(acrylic 
acid) (PAA) is the most widely investigated substi-
tute for natural NCPs mineralization [63, 64]. Liu 
et  al. harnessed the role of PAA and constructed a 
collagen-based scaffold with multiscale hierarchy and 
self-assembly resembling the bone matrix. The incor-
poration of PAA promoted hierarchical intrafibrillarly 
mineralization of collagen fibrils after SBF soaking 
scaffold [65, 66]. The intrafibrillar mineralized scaffold 
significantly enhanced the osteogenesis of stem cells 
and mandibular bone regeneration [66] (Fig.  3A–C). 
Li et  al. designed self-mineralizable membranes by 
covalently attaching high-molecular weight polyacrylic 
acid (HPAA) to collagen membranes. Simulating the 
function of NCPs, HPAA induced intrafibrillar min-
eralization of collagen, thereby increasing the stiffness 
of the membrane and promoting osteogenesis of mes-
enchymal stem cells and cranial bone formation [67]. 
Additionally, surface silanized nano-bioactive glasses 
and graphene oxide have also been introduced to pro-
mote biomimetic biomineralization of collagen scaf-
folds for cranial bone regeneration [68, 69] (Fig.  2E). 
Amorphous silica could serve as an alternative to 
carbonated apatite in the mineralization of collagen-
based scaffolds for bone regeneration. The infiltration 
of collagen matrices with silica could form a three-
dimensional intrafibrillar silicified collagen scaffold 
with hierarchical structures, which represented good 
biodegradable, osteoinductive, angioinductive, and 
immunomodulatory properties to promote cranial 
bone regeneration in vivo [70–72].

Biomimetic structural modifications of collagen-
based biomaterials could also provide therapeutic ben-
efits for craniofacial defects. Yu et  al. took a different 
method for biomimetic craniofacial bone regeneration. 
They simulated the micropattern of the bone structure 
by constructing a multilayer cell-collagen scaffold with 
an angle-ply structure. The scaffold presented improved 
osteogenic properties under mechanical loading [73] 
(Fig. 3D).

3.2  Alveolar bone regeneration
Alveolar bone refers to the unique intraoral bone tissue 
supporting teeth. Collagen-based membranes and bone 
grafts serve as promising candidates for clinical alveo-
lar bone augmentation [74, 75].

Implantation of natural collagen membranes are the 
standard surgery procedure for the majority of GBR 
indications to increase the volume of alveolar bone 
[76]. However, the poor mechanical properties of natu-
ral collagen scaffolds have driven researchers to apply 
crosslinking strategies and incorporate mineral content 
or bioactive molecules in collagen scaffolds to enhance 
their effects on alveolar bone regeneration [34, 77–80]. 
Some clinical trials have reported enhanced alveolar 
bone regeneration by implantation of crosslinked or 
inorganic compound-modified collagen matrix [81, 82]. 
However, according to other reports, crosslinked colla-
gen scaffolds presented inferior ability in alveolar bone 
regeneration to natural collagen matrix due to foreign 
body reaction and prolonged biodegradation time [83].

Given the spreading of bacterial pathogens in the 
oral cavity, antimicrobial properties of biomaterials are 
also expected for alveolar bone repair. Collagen-based 
biomaterials can serve as platforms for the sustain-
able release of antibiotics, such as metronidazole and 
minocycline [84, 85]. In addition, silver nanoparticles 
(AgNPs) were also used to enhance the antibacterial 
and anti-inflammatory effects of collagen-based scaf-
folds [86]. Qian et al. coated the surface of electrospun 
PLGA/PCL scaffolds with polydopamine, AgNPs, and 
type I collagen, constructing a multifunctional scaffold 
with antibacterial and osteoinductive properties for 
alveolar bone regeneration [87].

A further challenge for functionally repairing alveo-
lar bone comes from the complex relationship between 
bone and tooth, which is connected by periodontal 
ligament fibers to form the periodontium. Functional 
healing of periodontium is expected to achieve the syn-
chronized repair entailing osteogenesis, cementogen-
esis, and reattachment of aligned periodontal ligaments 
[88], which leads to the advocation of biomimetic scaf-
folds with multiphasic structures [89]. In a recent study, 
Ye et al. developed a hierarchical bilayer scaffold based 
on collagen for periodontium regeneration [90]. Col-
lagen fibrils and nano-HA were assembled to form the 
porous mineralized layer, which was then combined 
with the parallel-arranged layer of unmineralized colla-
gen-reinforced concentrated growth factor fibrils [90]. 
In vivo, the bilayer collagen-based scaffold successfully 
achieved complete periodontium regeneration of alve-
olar bone, periodontal ligaments, and cementum via 
stem cell recruitment and Smad3 activation [90].
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3.3  Joint disk and cartilage regeneration in TMJ
The TMJ, consisting of the mandibular condyle, TMJ 
disc, and glenoid fossa-articular eminence, is a type of 

ginglymoarthrodial joint responsible for the complex 
movement of the mandible in the craniofacial system. 
The regeneration of TMJ tissues after surgical removal 

Fig. 3 Biomimetic collagen-based biomaterials for craniofacial bone repair. A. Hierarchically intrafibrillarly mineralized collagen scaffold for 
mandibular bone regeneration. Images of scanning electron microscopy, transmission electron microscopy, and anatomic force microscopy 
showed the nanotopography and nanomechanical properties of hierarchically intrafibrillarly mineralized collagen (HIMC) scaffold, nonhierarchical, 
intrafibrillarly mineralized collagen (NIMC) scaffold, and extrafibrillarly mineralized collagen (EMC) scaffold. Reproduced with permission from [66]. 
B Images of micro-CT, Hematoxylin and Eosin staining and transmission electron microscopy presented the effect of in vivo mandibular bone 
regeneration promoted by different collagen scaffolds. Reproduced with permission from [66]. C Transmission electron microscopy images of 
natural bone and newly formed bone by different collagen scaffolds. Reproduced with permission from [66]. D Scheme of biomimetic laminated 
cell-collagen scaffold with angle-ply structure and its feature presented by scanning electron microscopy and confocal laser scanning microscope. 
Reproduced with permission from [73]
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remains clinically challenging due to the complexity of 
TMJ structures, dynamic mechanical stimulus, and avas-
cular microenvironment [91]. Therefore, collagen-based 
biomaterials are expected to have enough physical prop-
erties to bear dynamic mechanical loading, and biomi-
metic configuration for functional repair.

3.3.1  TMJ disc
The TMJ disc is a biconcave and fibrocartilaginous struc-
ture located between the condyle and glenoid fossa-artic-
ular eminence region [92]. It functions as a cushion of 
mechanical loading during mandible movement, working 
in a dynamic mechanical microenvironment, including 
compression, tension, and shear [93]. Therefore, graft-
ing biomaterials are expected to possess the mechanical 
properties of native TMJ discs to achieve the long-term 
functional repair. With native microstructure and tissue-
specific composition, decellularized ECM is a favorable 
choice for TMJ disc regeneration. Juran et  al. [94] pre-
treated decellularized ECM of porcine TMJ discs by laser 
micropatterning, improving compressive modulus by 1.5 
times higher than native disc (3  MPa). Liang et  al. [95] 
also utilized ECM of porcine TMJ disc but processed it 
into injectable multiporous hydrogels by pepsin digestion 
in disc regeneration. In addition, an ECM scaffold derived 
from small intestinal submucosa could also promote the 
infiltration of host cells and the formation of TMJ disc-
like fibrocartilage tissue with peripheral muscular and 
tendinous attachments [96]. Notably, mimicking the ani-
sotropic collagen fiber orientation and inhomogeneous 
fibrocartilaginous matrix distribution of TMJ disc is criti-
cal for functional repair, which requires further investiga-
tion in the optimization of collagen-based scaffolds.

3.3.2  Mandibular condyle
The mandibular condyle originates from the mandibular 
ramus, located adjacent to the articulating surface of the 
TMJ disc. Different from other synovial joints with hya-
line cartilage cover on the articular surface, the structures 
of the condyle include a layer of fibrous tissue, articular 
cartilage, which is made up of collagen-abundant fibro-
cartilage, and subchondral bone consisting of cortical 
and trabecular bone [97].

Collagen-based porous scaffolds displayed positive 
results in TMJ condyle regeneration with the ability to 
promote chondrocyte adherence and maintain cell dif-
ferentiated phenotype [98]. Embree et al. have found that 
ectopic transplantation of native bovine collagen sponge 
(Helistat) loaded with condyle-derived fibrocartilage 
stem cells could achieve the formation of cartilaginous-
like tissue after three weeks of transplantation, and tran-
sitional tissue with bone and cartilage tissues after four 
weeks of transplantation respectively [99]. Crosslinking 

and incorporation of HA could promote mechani-
cal strength and improve resilience to hydrolytic and 
enzymatic degradation of collagen-based scaffolds for 
functional regeneration of TMJ condylar cartilage regen-
eration movement [100, 101].

The biomimetic concept is also adopted due to the 
hierarchical structure of the mandible condyle. Wang 
et al. designed a bilayer scaffold based on thiolated hyalu-
ronic acid (HA-SH)/type I collagen hydrogel and bipha-
sic calcium phosphate (BCP) ceramics for osteochondral 
regeneration of mandible condyle [25]. The upper layer 
of the hydrogel loaded with bone marrow mesenchymal 
stem cells or chondrocytes formed the fibrocartilage 
layer of the condyle, while the BCP layer mimicked bone 
structure [25]. The implantation of the scaffold success-
fully repaired osteochondral defects in rabbits by forming 
complete condyle-like newborn tissues [25] (Fig. 4).

3.4  Pulp–dentin regeneration
Dental caries is an extremely common oral health con-
dition causing defects of tooth hard tissues, which will 
ultimately lead to irreversible inflammation in pulp tissue 
[102]. Currently, clinical treatment modalities of dental 
caries and pulpitis, including fillings of caries cavity and 
endodontic treatments, all rely on synthetic materials. 
Recent advances in regenerative medicines have directed 
paradigm shifts in the development of treatment modali-
ties for tooth decay.

3.4.1  Biomimetic remineralization of dentin collagen
Dentin forms the main bulk of teeth. Conventional 
treatments of dentin damage done by caries can lead to 
trauma of healthy dentin, develop microleakage between 
dentin and filling materials, and provoke dentin hyper-
sensitivity [8]. The apparent drawbacks of current treat-
ment options have fueled the growing interest in dentin 
remineralization. However, dentin lacks self-regenerative 
capacity, which makes dentin regeneration particularly 
challenging.

Similar to bone tissues at the nanoscale, dentin is char-
acterized by mineralized hierarchical architecture con-
sisting of the inorganic phase and organic matrix [103]. 
Collagen molecules formed by odontoblasts account for 
about 90% of the organic matrix, with NCPs constituting 
the other 10% [104]. The self-assembled collagen fibrils 
play a central role in natural dentin remineralization by 
providing the template and mechanical support for NCP 
localization, and crystal nucleation and growth [105].

The essential role of NCPs in the regulation of min-
eral crystallization and stabilization in dentin collagen 
has attracted considerable attention. NCP-inspired pep-
tides, such as 8DSS peptide, P26, and peptides derived 
from dentin matrix protein 1 and cementum protein 1, 
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Fig. 4 Injectable blend hydrogel-BCP ceramic scaffold for TMJ condylar osteochondral repair. A Scheme for preparation of bilayer scaffold. B 
Scanning electron microscopy images of rabbit bone mesenchymal stem cells (rBMSCs) and chondrocytes cultured in injectable self-crosslinking 
thiolated hyaluronic acid (HA-SH)/type I collagen (Col I) hydrogel. C Gross morphology and representative sagittal images of condylar defects after 
the implantation of the hybrid scaffold. D Micro-CT analysis of condylar osteochondral regeneration. Reproduced with permission from [25]



Page 11 of 20Zhang et al. Collagen and Leather            (2023) 5:14  

were reported to promote collagen mineralization [103, 
106–108]. Polymer NCP analogs, such as poly(amido 
amine) (PAMAM) dendrimers and polydopamine, have 
also been extensively studied to induce amorphous cal-
cium phosphate formation and collagen remineraliza-
tion in dentin [109]. PAMAM could be modified by 
different terminal functional groups, such as –COOH, 
–PO3H2, –NH2, to enhance in  situ remineralization of 
dentin through attracting calcium and phosphate ions 
through electrostatic forces and chelation, and stabilizing 
amorphous calcium phosphate [110–112]. In addition 
to peptides and polymers, some small molecules could 
also promote collagen remineralization. For instance, 
methacryloyloxydecyl dihydrogen phosphate (MDP) in 
the collagen-bound state could form a huge collagen-
ous phosphoprotein (HCPP), expanding the intrafibril-
lar space and trapping calcium phosphate precursors by 
electrostatic attraction [113]. Succinic acid could also 
interact with collagen via a hydrogen bond and facilitate 
the attraction of calcium ions, thereby accelerating colla-
gen intrafibrillar mineralization [114].

Collagen stabilization remains a hurdle to the clini-
cal application of remineralization templates. There-
fore, some researchers focused on strategies to stabilize 
the dentin collagen matrix to improve dentin reminer-
alization. Tao et  al. took advantage of natural NCPs in 
maintaining structural integrity and stability of the col-
lagen matrix, and fabricated multifunctional particles by 
modifying PAMAM with natural NCPs and galardin. The 
particles combined the properties of promoting amor-
phous calcium phosphate formation and intrafibrillar 
mineralization (PAMAM). They also facilitated colla-
gen crosslinking and stabilization (NCPs), and inhibited 
protease to preserve collage structure and NCP function 
(galardin) [115]. The multifunctional particles success-
fully induced dentin remineralization in the presence of 
collagenase and demonstrated anti-dentin caries func-
tion in vivo (Fig. 5A–C). Peptide  P11-4 was also reported 
to stabilize the dentin collagen matrix [116]. In addition 
to peptides, tannic acid was also reported to mediate 
crosslinking of dentin collagen, thereby enhancing colla-
gen resilience to collagenase degradation tissue [117].

3.4.2  Regeneration of pulp–dentin complex
Vital pulp therapy (VPT) is a biologic-based treatment 
option in endodontic treatments to preserve the vitality 

of pulp tissue and promote regeneration of the pulp–den-
tin complex in immature teeth [118]. The therapeutic 
outcomes depend on the clinical situation of pulp inflam-
mation and pulp capping materials. Current available 
clinical materials, such as Biodentine and mineral triox-
ide aggregate (MTA), are mostly based on calcium sili-
cate, which has numerous drawbacks, including limited 
pulp regeneration capacity, slow rate of dentin repair, and 
discoloration of tooth. Recently, bioactive tissue ECM 
has emerged as a substitute biomaterial for pulp–dentin 
complex regeneration.

The treated dentin matrix (TDM) from demineralized, 
sterilized, and atelopeptidized natural dentin is a type of 
porous native collagen scaffold with the physical charac-
teristics of dentin [119]. TDM can serve as a reservoir of 
multiple growth factors and NCPs to induce pulp–den-
tin complex regeneration. Demineralized TDM particles/
sheets with or without atelopeptidization were reported 
to promote dentin-pulp tissue regeneration when they 
were loaded with dental pulp stem cells or dental folli-
cle cells [120, 121]. TDM particles could also be mixed 
with sodium alginate solution to form a hydrogel, which 
could promote dentin regeneration as a direct pulp cap-
ping material [122]. Chen et al. developed a kind of TDM 
paste by mixing demineralized TDM powder with aque-
ous TDM extracts. The paste promoted the proliferation 
and odontogenesis of dental pulp stem cells and induced 
continuous reparative dentin bridge in the caries model 
[123]. Jiao et al. reported that cryopreservation treatment 
could preserve the activity of dentinogenesis-related pro-
teins in TDM [124]. Loaded with dental follicle cells, the 
cryopreserved TDM could form new biomimetic dentin-
pulp-like tissues with dentinal tubules, dentin, collagen 
fibers, nerves, and blood vessels in vivo [124]. Biological 
modifications by peptides and liposomes could further 
improve the regenerative capacity of TDM [125, 126].

The ECM of the dental pulp is another candidate for 
the regeneration of the pulp–dentin complex. Song et al. 
reported that the collagen-abundant pulp ECM could 
support the growth and differentiation of stem cells of the 
apical papilla, serving as collagenous scaffolds for pulp–
dentin complex regeneration [127]. An in vivo study also 
suggested that the pulp ECM scaffold could enhance the 
regeneration of the pulp–dentin complex in root canals 
[128]. In addition, decellularize pulp ECM could be 
freeze-dried, crosslinked, and fabricated into hydrogels, 

(See figure on next page.)
Fig. 5 Applications in repair of pulp–dentin complex. A Scheme of the preparation of PAMAM-NGV@galardin (PNG) and the mechanisms for dual 
effects on collagen stabilization and remineralization. Reproduced with permission from [115]. B Transmission electron microscopy images of 
collagen fibers. Addition of PAMAM-NGV (PN) increased the diameter of collagen fiber compared with the negative control group. Reproduced with 
permission from [115]. C Transverse-section scanning electron microscopy images of intrafibrillar remineralization of dentin promoted by PAMAM 
and PNG. Reproduced with permission from [115]. D The preparation procedure and histological features of decellularized pulp ECM. Reproduced 
with permission from [129]
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Fig. 5 (See legend on previous page.)
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which could promote the expression of DMP-1 and col-
lagen-I in bone marrow mesenchymal stem cells [129] 
(Fig. 5D).

3.5  Intraoral soft tissues
3.5.1  Oral mucosa
Oral mucosa functions as the barrier against the exoge-
nous stimulus and pathogen invasion [130]. Though oral 
mucosa wound usually heals faster than the skin, some 
large oral mucosa defects will turn into chronic wounds 
due to the bacteria-laden environment and constant 
mechanical abrasion in the oral cavity [131] (Fig.  6A). 
The gold standard treatment for oral mucosa defects 
is the transplantation of autologous mucosal or skin 
grafts, which is frequently confronted with the trauma 
of healthy tissues, the shortage of oral mucosa, and the 
infection of skin grafts. Using biomaterial-based tis-
sue reconstruction to promote oral mucosa healing has 
gained increasing support in recent years [131]. Colla-
gen-based biomaterials for oral mucosa reconstruction 
are required to have high tensile strength for surgical 
operation, enough stability to support new tissue forma-
tion, and optimal biodegradation rate to avoid secondary 
surgical removal and early exposure of the biomaterials. 
In terms of biological properties, the abilities to promote 
both cell proliferation and epithelialization to form the 
full-thickness regeneration of oral mucosa are required.

The repair of keratinized gingiva is the focus of oral 
mucosa reconstruction due to the high prevalence of 
gingival recession. Multiple types of collagen-based 
scaffolds have been examined in the regeneration of 
keratinized gingiva and the augmentation of soft tissue 
volume. Decellularized ECM from human dermis is a 
clinical choice for gingiva tissue augmentation at tooth 
or implant sites. Clinical data have reported promising 
results in both horizontal and vertical gingiva augmen-
tation by acellular dermal matrix [132, 133]. However, 
a long-term observation reported a significant relapse 
of the gingival recession in patients treated with ADM 
[134], which might be due to the lack of keratinization 
of the regenerated gingiva [135]. Xenogeneic collagen 
matrices are other choices for gingival recession and 
soft tissue augmentation. A non-crosslinked bilayered 
xenogeneic collagen matrix has been widely applied in 
clinical settings. The layer of collagen fibers in a com-
pact arrangement can facilitate suturing and graft 
protection, while the thick porous spongy layer sup-
ports blood clot maintenance and tissue formation 
[136]. Clinical grafting of the bilayer collagen matrix 
can increase the width of keratinized gingiva with 
favorable aesthetic outcomes and reduced surgical and 
recovery time [137–139]. Another kind of crosslinked 
volume-stable collagen matrix presented a promising 

ability to maintain gingiva volume stability in clinical 
settings [140, 141]. In addition, xenogeneic collagen 
matrices from small intestine submucosa or dermal tis-
sue can also promote gingiva regeneration [39]. How-
ever, repaired gingiva based on the xenogeneic collagen 
matrices is still thinner than free mucosa grafts [142].

The collagen-based repair of oral mucosa also attracts 
the construction of in  vitro models as artificial sub-
stitutes for physical and pathological studies. Natu-
ral collagen gel or its combination with other natural 
polymers has been widely used for the three-dimen-
sional culture of keratinocytes and fibroblasts to form 
mucosal epithelial and subcutaneous connective tis-
sue in  vitro [143, 144]. It is reported that the non-
crosslinked membrane based on types I and III collagen 
(Bio-Gide®) showed the best ability for oral mucosa 
reconstruction in  vitro among other commercial col-
lagen membranes collagen [145]. However, natural col-
lage gel contracts over time of culture, and the majority 
of 3D oral mucosa models based on collagen matrix 
are non-keratinized tissues [146–148]. Recently, engi-
neered keratinized oral mucosa was generated based 
on crosslinked electrospun collagen scaffold. The 3D 
keratinized mucosa model even presented favorable 
attachment to dental implants in vitro [149].

3.5.2  Tongue
Apart from serving as the barrier, dorsal tongue mucosa 
is responsible for taste detection with taste buds 
located in the epithelium. Therefore, functional repair 
of tongue mucosa should also consider the possibility 
of taste bud reconstruction. Tissue ECM from porcine 
small intestinal submucosa could provide a scaffold for 
functional taste bud regeneration and reinnervation 
layer [150]. Decellularized tongue ECM is another can-
didate for taste recovery (Fig.  6B). Lee et  al. reported 
that 2D coating of tongue ECM could maintain func-
tional phenotypes of taste cells and achieve signal 
transmission between the taste cells and neurons [151]. 
Meanwhile, the 3D hydrogel of tongue ECM could form 
a stable structure with collagenous nanofibrils and ena-
ble the functional reconstruction of taste buds in vitro 
[151] (Fig. 6C–E).

Injuries can penetrate tongue mucosa and cause 
trauma in the muscle layer, that seems to have an infe-
rior ability to regenerate to limb and trunk muscles [152]. 
Collagen gel could support myofibroblasts to form mus-
cle-like tissues in the hemiglossectomy model [153, 154]. 
ECM of porcine small intestinal submucosa loaded with 
MSCs could also promote tongue muscle regeneration 
with reduced contraction and fibrosis in critical-sized 
myomucosal defect models [155].
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4  Discussion
Collagen-based biomaterials are versatile due to their 
practical applications and present great promise for 
tissue regeneration in the oral and craniofacial region. 

Despite the plethora of literature on the potential 
applications of collagen-based biomaterials in oral and 
craniofacial tissue regeneration, only a limited number 
of reported materials were recommended for clinical 
use. This striking contrast between academic research 

Fig. 6 Applications of collagen-based biomaterials in oral mucosa repair. A Schematic illustration of the timeline of oral wound healing and 
mucosa remodeling. Reproduced with permission from [131]. B Characterization of tongue tissue matrix before and after decellularization. 
Reproduced with permission from [151]. C Images of gross view and histologic staining of decellularized tongue tissue. Reproduced with 
permission from [151]. D Immunostaining images showing the upregulated expression of taste cell-specific markers gustducin and PLC-β2 in 
taste cells after culture in the microfluidic device with tongue extracellular matrix-coated microchannels. Reproduced with permission from [151]. 
E. Fluo-4-mediated visualization of taste cell function presented by cytosolic  Ca2+ influx before and after tastant treatments. Reproduced with 
permission from [151]
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and clinical outcomes requires further refinements and 
optimizations on collagen-based biomaterials.

In terms of improvements in mechanical properties 
and biostabilities, the pre-tanning process in leather 
manufacturing might inspire the re-engineering of 
collagen-based biomaterials. During the pre-tanning 
process, metal–polyphenol-mediated crosslinking is 
applied to improve the collagen resistance to heat and 
microbial-related enzymatic degradation and enhance 
the mechanical strength and flexibility of the leather. 
The tanning process shares similarities with the opti-
mization of collagen-based biomaterials by crosslinking 
to improve mechanical properties and biodegradation 
rates. Indeed, several types of polyphenols, such as 
EGCG, proanthocyanidin, and quercetin, have gained 
significant interest in crosslinking of dentin collagen 
and stabilization of decellularized xenografts [156, 157]. 
Further studies are required to explore the potential of 
polyphenol-mediated optimization of collagen-based 
materials in oral and craniofacial tissue regeneration.

There remains a gap between preclinical experiments 
and clinical applications of collagen-based biomate-
rials in oral and craniofacial region. This might result 
from the difficulties in the balance of the mechani-
cal strength and biocompatibility during crosslink-
ing or other modification processes. The crosslinking 
processes will inevitably impair biocompatibility of 
collagen-based biomaterials, leading to enhanced host 
immune reaction. In addition, the inability to achieve 
tissue functional repair also leads to unsatisfactory 
clinical outcomes. The tissue diversity strongly requires 
multi-tissue regeneration to achieve long-term func-
tional repair of the oral and craniofacial complex. 
In most studies today, only one type of tissue can be 
regenerated. From a biomimetic standpoint, future 
collage-based biomaterials are tailored to possess the 
anisotropic mechanical and biological properties for 
multi-tissue repair. Furthermore, collagen can be com-
bined with different polymers to mimic the spatial gra-
dient of matrix composition and topography similar to 
the natural interface structure. The “bottom-up” layer-
by-layer biomaterial strategy is effective to simulate 
the complex architecture of native tissues. Recently, 
3D bioprinting technologies provided rapid and robust 
approaches to multi-tissue regeneration and inter-
face reconstruction. It is strongly desirable to bioprint 
anisotropic collagen-based scaffolds with optimized 
mechanical properties, adequate structural fidelity, tun-
able biodegradation, and ideal porosity for functional 
multi-tissue regeneration. 3D bioprinting can also 
assist in the making of scaffolds with precisely custom-
ized shapes for the regeneration of tissues with irregu-
lar morphology, such as the TMJ and the periodontium.

Apart from the complex structures, the mechanical 
microenvironment in the oral and craniofacial region 
should also be considered. Different bodily movements, 
such as chewing and talking, will produce continued 
exogenous mechanical signals to oral and craniofacial 
tissues. In addition to exogenous stress, mechanical and 
physical properties of the ECM, mainly including sub-
strate stiffness and topography, are the origins of endog-
enous stress of oral and craniofacial tissues. Therefore, 
future collagen-based biomaterials with biomimetic 
mechanical and topographic features are expected to 
transduce mechanical loading and enhance multi-tissue 
repair with matched stiffness.

Despite the low immunogenicity, the collagen 
can induce material-dependent inflammation once 
implanted, which hinders tissue repair and subsequently 
leads to failures of implant surgeries [27]. Therefore, 
novel collagen-based biomaterials are expected to reduce 
the resulting inflammation and enhance the pro-resolving 
biological outcomes to accelerate oral and craniofacial 
tissue regeneration. The incorporation of anti-inflamma-
tory cytokines and antioxidant components is a potential 
strategy for rebalancing tissue inflammation and repair. 
Moreover, the exact biological mechanisms of inflam-
matory responses caused by collagen-based biomaterials 
remain to be investigated to guide future modifications of 
biomaterials.

The biological attributes and the customizable nature 
of collagen fit the demand for regenerative medicine 
in the oral and craniofacial region. Even though the 
mechanical and biological properties of collagen-based 
biomaterials remain a significant challenge in the clini-
cal setting, innovations based on nature-derived struc-
tures and microenvironments of oral and craniofacial 
tissues can revolutionize the future of collagen-mediated 
therapeutics.

5  Conclusion
Extensive studies have been devoted to demonstrating 
the promising prospects of collagen-based biomaterials 
in oral and craniofacial tissue regeneration. However, a 
comprehensive review of this particular clinical sector is 
absent, while the challenges of collagen-based biomateri-
als usage remain. This review contributes to the research 
of collagen-based biomaterials focusing efforts on oral 
and craniofacial tissue regeneration. In this review, we 
introduced the recent collaborative efforts in the applica-
tions of collagen-based materials for hard and soft tissue 
reconstruction in the oral and craniofacial region. We 
also discussed the future directions for re-engineering 
collagen-based materials to achieve structural and func-
tional repair in the specific region. Despite a promising 
outlook, collagen-based materials will undoubtedly face 
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numerous scientific and engineering challenges in future 
development and implementation. This review can pro-
vide integrated knowledge and interesting perspectives 
on the development of artificial materials for oral and 
craniofacial tissue regeneration.
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