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Leather, made from animal hide or skin, is mainly com-
posed of collagen. Collagen is a type of fibrous protein. 
The basic amino acid residues (lysine, arginine and histi-
dine) and acidic amino acid residues (glutamic acid and 
aspartic acid) of the protein confer zwitterionic character 
to collagen, making the protein positively or negatively 
charged at different pH values. The pH at which the net 
charge of collagen becomes zero is defined as isoelectric 
point (IEP, the value is labeled as pI).

The IEP is an essential parameter for skin/leather, 
since it can represent the charged state of skin/leather 
at any given pH. A variety of chemicals are used to treat 
skin/leather in leather making. Electrostatic interaction 
between the chemicals and skin/leather deeply affects 
the mass transfer and binding of these chemicals in skin/
leather. Therefore, clarifying the pI change of skin/leather 
during leather processing is crucial for exploring the 
mechanisms of tanning and regulating the whole process 
of leather manufacture.

The first barrier is how to determine the pI of leather 
in the solid state precisely and rapidly. Collagen solution 
was commonly used as the test object in early studies. 
The conventional zeta potential analyzer which is suit-
able for solution and colloid was used as the instrument 
for pI simulation of leather. However, the pI of skin/
leather matrix in various processes is quite different from 
that of collagen solution. Wang et  al. [1] drew on tech-
niques from paper industry and established a method 
for determining zeta potential of leather fibers. Thus, we 
can conveniently obtain the real pI values of solid-state 

skin/leather. This tool enables leather chemists to further 
investigate the mechanisms of various chemical and bio-
chemical treatments on skin/leather.

Beamhouse aims to remove all the useless substances 
from raw hide/skin and prepare the pelt for tanning. The 
pI of raw hide or skin is around 7.7–7.9. Figure 1 shows 
that soaking, the process of rehydration, hardly changes 
the pI of hide. Subsequently, the pI of limed pelt declines 
to 7.6 mainly because of the hydrolysis of glutamine and 
asparagine under strongly basic condition. Bating with 
protease and pickling with acid further break peptide 
bonds and reduce the pI to 6.8 and 5.6, respectively. As 
a result, the pI of hide/skin decreases step by step as the 
beamhouse proceeds. The variation of pI during beam-
house did not attract much attention in the previous 
studies. In fact, the mass transfer and reaction of some 
leather chemicals, such as deliming agent [2], salt-free 
pickling auxiliary [3] and enzyme [4], is closely related 
to the pI and charged state of the hide/skin. In particular, 
enzyme is also a category of amphoteric biomacromol-
ecule. The uniform penetration and satisfactory catalysis 
of an enzyme are largely influenced by its electrostatic 
interaction with skin [4, 5]. Skin/leather is known as a 3D 
hierarchical fiber network with a thickness of 1–8  mm. 
The mass transfer of enzyme in skin/leather is compli-
cated. Uneven distribution and reaction of enzyme in 
the network will inevitably damage the grain surface and 
lead to leather defects. Therefore, much attention should 
be paid to the surface charge regulation of both enzyme 
and skin/leather in unhairing, bating and acid bating pro-
cesses to promote the penetration and performance of 
the enzyme.

As for tanning, which is the core of leather process-
ing, the pI of leather is highly variable for two reasons. 
The first one is the introduction of tanning agents with 
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Fig. 1 Flow chart of leather processing and corresponding isoelectric points of skin/leather
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charged groups. The second one is the consumption 
of carboxyl or amino groups on the side chains of col-
lagen via tanning reactions. Conventional chrome tan-
ning raises the pI of pickled pelt from 5.6 to 7–8 (Fig. 1) 
because of the use of positive charged Cr(III) salts and the 
consumption of collagen carboxyl through coordination 
with Cr complexes. Other mineral tannages involving Al, 
Zr, and Ti salts show similar results [1]. Organic tannages 
by using aldehyde, cyanuric chloride derivatives, veg-
etable tannin or other synthetic tanning agents generally 
form covalent crosslinking between amino groups of col-
lagen, or form salt links between sulfonic groups of tan-
ning agents and amino groups of collagen. Thus, the pI 
of organic tanned leather often decreases below 5.0 [1]. 
Notably, the relatively low pI of tanned leather will have a 
detrimental effect on the fixation of post-tanning chemi-
cals that are mostly negatively charged. Zwitterionic 
aldehyde tanning agent (TWS) introduces extra amino 
groups into leather and results in higher pI (5.1) than 
the other organic tanned leathers (Fig. 1), which benefits 
the following post-tanning performance. Along with the 
emergence of chrome-free tanning [6, 7], we should focus 
on the pI control of chrome-free leather when developing 
novel tanning technologies.

Post-tanning processes that follow the tanning stage 
show the diversity and artistry of leather processing. 
Electrostatic reactions dominate the binding reactions 
between post-tanning chemicals (retanning agents, dyes 
and fatliquors) and tanned leather. Conventional wet blue 
(Cr tanned) leather with high pI of 7–8 exhibits strongly 
positive charged surface in the late stage of post-tanning 
(pH < 4), thereby achieving firm fixation of the anionic 
chemicals and excellent properties of crust leather. Thus, 
the pI of leather shows gradual decline through the post-
tanning. This system is also suitable for non-chrome 
mineral tanned leathers [8]. However, the post-tanning 
system for organic tanned leathers should be redesigned 
since the pIs of organic tanned leathers are much lower 
than that of chrome tanned leather. The use of ampho-
teric chemicals can enhance the pI of leather during post-
tanning (Fig. 1) and sheds new light on the construction 
of the post-tanning system of organic chrome-free 
tanned leather. Future work should focus on the adjust-
ment and balance of the pI of both chemicals and leather 
[9].

In summary, the pI of skin/leather plays an important 
role in leather manufacture. Accurate determination and 
ingenious regulation of the pI provide a scientific guide 
for the design and implementation of leather processes, 
especially for the challenging enzymatic treatments and 
chrome-free tanning process.
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