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Abstract 

Mismanagement of various wastes especially waste water produced by tanning processes has caused serious 
environmental problems and ultimately impaired human health. Constant efforts have been making to alleviate the 
pollution of tannery wastewater (TWW), yet terminal treatment still takes dominance. In this review, research on TWW 
treatment from 2000 to 2021 was summarized, and main methods such as coagulation and flocculation, adsorption, 
biological treatment, membrane filtration, advanced oxidation process were briefly discussed. More detailed introduc-
tion was given to the method of electrochemical treatment since it has excellent performance such as environmental 
friendliness and high efficiency, hence attracting more and more research attention in recent years. In view of the 
harsh physi-chemical conditions of TWW, integrated or combined treatment methods are accordingly recommended 
with better performance and multi-function, however comprehensive studies on optimization of methods combina-
tion and cost-effectiveness are needed. The certain issues that the residue Cr in treatment sludge and high salinity in 
effluent still remain were put forward in this work and potential solutions were provided. Moreover, this review pro-
posed the perspective that realizing multi-function, recycling, and intensification should be the developing direction 
for future TWW treatment. This review is expected to provide a general guide for researchers who aspire to ameliorate 
TWW pollution problems and understand various methods utilized in this field.
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1 Introduction
Tannery industry plays important roles in many countries 
including China, Italy, India, Brazil, etc., where relatively 

complete tannery industry chains have been developed, 
and has been contributing the important parts for the 
economic growth and employment. However, the inap-
propriate management of waste produced in tannery 
industry also brings challenges to the environment, and 
increasing attention has been raised on alleviating the 
pollution from tannery industry.

Tannery industry is particularly known as the high-
water consumption industry with large discharge of 
wastewater. The wastewater from tannery industry usu-
ally contains hairs, proteins, acids, alkalis, chromium 
salts, sulphides, chlorides, tannins, solvents, dyes, aux-
iliaries, and many others compounds coming from the 
incomplete chemical immobilization into leather prod-
ucts in the multi-step tanning process that converts raw 
hide/skin of animals to commercial commodities [1]. 
Studies aiming at evaluations of toxicity, genotoxicity 
and environmental risk of tannery effluent were carried 
out by many researchers, and the negative impact of tan-
nery wastewater (TWW) without proper treatment dis-
charged to the environment has been confirmed [2–5]. 

Graphical abstract

Fig. 1 Proportion of various methods utilized in TWW treatment 
(summarized from related literatures in the past two decades)
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Therefore, TWW usually charactered with severe physio-
chemical conditions is detrimental to environment as 
well as human bodies, and effective decontamination 
is urgently required. With the increasingly stringent 
requirements for environmental protection, many efforts 

for reducing the pollution in wastewater from tannery 
industry have been conducted [6]. In spite of the inves-
tigations concerning the recycling and reusing of tan-
ning agent [7], alternative carrier medium [8], enzymatic 
unhairing process [9], efficient management [10], and 

Fig. 2 Schematic of leather processing and pollution profile of main processing steps (not all processes are included due to diverse product 
standards, and the unit of pollution load is denoted as kg per ton hide)

Table 1 Direct discharge standard of treated TWW in different countries [28–31]

Parameters (mg/L−1) Countries

China The United States India Italy Bangladesh Vietnam Ethiopia Pakistan

TSS  ≤ 50  ≤ 50  ≤ 100  ≤ 80  ≤ 100  ≤ 50 – –

COD  ≤ 100  ≤ 250  ≤ 250  ≤ 160  ≤ 250  ≤ 50  ≤ 500  ≤ 150

BOD  ≤ 30  ≤ 50  ≤ 30  ≤ 40  ≤ 30  ≤ 20  ≤ 200  ≤ 80

Total Cr  ≤ 1.5  ≤ 0.5  ≤ 2  ≤ 2  ≤ 2 -  ≤ 2  ≤ 1

NH4
+–N  ≤ 25  ≤ 10 –  ≤ 15 -  ≤ 60  ≤ 30  ≤ 40

Chlorides  ≤ 3000  ≤ 1000  ≤ 1000  ≤ 1200 - -  ≤ 1000  ≤ 1000

Sulphides  ≤ 0.5  ≤ 2  ≤ 1  ≤ 1 -  ≤ 2  ≤ 1 –
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other cleaner production methods are booming [11–14], 
the terminal treatments of TWW still cannot be avoided 
for most areas in the present situation [15].

In this paper, we analyzed the articles related to the 
terminal treatment of TWW from year 2000 to 2021, 
focusing more on the last decade, and summarized the 
comprehensive methods for TWW treatment, in the 
hope that the work would provide researchers with a 
quick understanding of current progresses in this field. 
Term words “tannery”, “leather”, “wastewater” and “treat-
ment” were adopted via searching Web of Science core 
collection v5.35 (http:// apps. webof knowl edge. com/) to 
find the related studies. Second or tertiary treatments 
for TWW decontamination were identified and dis-
cussed, including adsorption, flocculation and coagula-
tion, biological treatment, membrane filtration, advanced 
oxidation processes found in literatures, especially the 
promising electrochemical treatments of increasing 
concern (Fig.  1). It should be noted that some methods 
such as alkaline precipitation [16], wet air oxidation [17], 
bioleaching [18], solar evaporation [19], ion exchange 
[20] etc. were also reported for TWW treatment, but 
were not included in our studies, due to the limited ref-
erences. Possible problems behind the present TWW 
treatment methods were proposed with promising solu-
tions provided. Moreover, we also introduced our points 

of view that what should TWW treatment in the future 
focus on.

2  Characteristics of tannery wastewater
The entire leather manufacturing processes can be basi-
cally divided into three parts: beamhouse stage, tanning 
stage, and post-tanning and finishing stage illustrated in 
Fig. 2 [1]. Figure 2 also demonstrates the pollution profile 
of main leather processing steps, and the conventional 
wet-end processes usually accounts for nearly 90% of the 
total pollution load in a tannery [21].

As a large quantity of chemicals (e.g., acids, alka-
lis, chromium salts, tannins, sulfates, phenolics, sur-
factants, dyes, auxiliaries, sulphonated oils and biocide 
etc.) used in the tanning processes to convert the semi-
soluble protein “collagen” presenting in raw hide/skins 
into highly durable commercial leather products are 
usually incompletely immobilized by the hide/skins, the 
massive effluent or wastewater of tanning processes is 
featured with serious physio-chemical conditions, i.e., 
a basic dark brown colored waste with high contents of 
COD, BOD, TDS, chromium, phenolics, high pH and 
pungent odor [15, 22]. Most tanneries have their own 
TWW treatment plants or deliver TWW to a sewage 
treatment plant nearby through sewerage pipes, how-
ever, high concentration of BOD, COD, TDS, sulfate 

Fig. 3 Brief flow chart of biological treatment of Tannery Wastewater

http://apps.webofknowledge.com/
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and phenolics are detected above the prescribed limits 
due to the limited effective treatment methods [23]. The 
direct discharge standards of effluent from TWW treat-
ment plant in different countries were listed in Table  1, 
from which we can see that the required quality param-
eters of treated water are not so high that most treatment 
plants could not meet. However, treated effluent char-
acterized with high pollutants content in several studies 
were still reported. For examples, TSS content ranging 
from 250 to 35,200  mg/L, BOD content ranging from 
250 to 2960 mg/L, total Cr content ranging from 4.5 to 
15  mg/L were still detected in some TWW treatments 
[24–27]. The fact should be highly noticed that there still 
exist some plants without enough safety or efficiency in 
handling TWW, leading to the urgent need for advanced 
technologies with better performance worldwide.

3  Treatment for tannery wastewater
3.1  Flocculation and coagulation
Flocculation and coagulation are generally utilized as 
pre or post methods for TWW treatment. Conventional 
inorganic flocculants or coagulants such as aluminium, 
silicon, calcium, iron-based compounds were widely 
adopted to reduce COD, TSS, colority and the concentra-
tion of many pollutants before further TWW treatment 
[32–35]. Organic compounds such as proteins, polymers 
were also developed for coagulation or flocculation [36, 
37]. It is noteworthy that electrocoagulation (EC) process 
has been raising interest for TWW treatment, in which 
aluminium and iron electrodes were most extensively 
selected [38–40]. The mechanism for EC includes the 
anode dissolution and water splitting, contributing the 
formation of hydroxide coagulants under an applied elec-
tric filed [41, 42]. When ion exchange membranes were 
installed, electrodialysis (ED) could be induced to pre-
cipitate and segregate ions such as  NH4

+,  SO4
2−, Cr (III), 

etc. from TWW towards anodic and cathodic zones [43]. 
Combination of EC and ED for treatment of TWW with 
better performance would be expected [44]. Though it 
looks facile and have the effect of removing both organic 
and inorganic pollutants, flocculation and coagulation is 
not suitable to serve as the main process for TWW treat-
ment. The reason is clear: the harsh quality of TWW 
usually requires massive addition of flocculants or coagu-
lants to obtain a relatively satisfactory decontamination 
performance, however this would make the treatment 
cost increase a lot. Furthermore, the treatment sludge is 
supposed to characterized with high concentration and 
high toxicity, and might cause pollution transfer without 
proper disposal methods.

3.2  Biological treatment
Bio-degradation of contaminants is the most widely used 
method for wastewater treatment nowadays. One typical 
biological treatment for TWW could be seen in Fig.  3. 
Mechanism of biological treatment by diverse microbes 
is complicated, including but not limited to adsorption, 
degradation, coagulation and detoxification of pollutants 
in wastewater. The bio-processes such as active sludge, 
biofilm, anaerobic hydrolysis acidification, biological fil-
ter etc. have been extensively applied in TWW treatment 
plants, since these biological treatment processes not 
only cost-effective but also featured with desirable func-
tions such as denitrification and dephosphorization.

Due to high salinity with toxic substances presented, 
TWW often has adverse effects on growth and physi-
ological activity of common micro-organisms, eventu-
ally impeding the efficiency of biological treatments 
[45, 46]. For this reason, researchers identified and cul-
tured microbes featured with high tolerance for salin-
ity and heavy metals. Some qualified active bacteria, 
archaea, fungi were elucidated in studies [47–51]. Exam-
ples of microbial species’ isolation from high salinity 
and heavy metal conditions to their inoculation in real 
wastewater treatment practice were not scarce, and the 
paper that reviewed some progresses in decontamina-
tion by halophilic microorganisms in saline wastewater 
could be referenced [52]. In TWW treatment, research 
mostly concentrated on the overall detoxification effi-
ciency of diverse microbes. A study compared detoxi-
fication efficiency of four fungal strains immobilized on 
nylon mesh, and after 120 h, removal performance with 
82.52% COD, 86.19% color, 99.92% Total Cr, 95.91% Total 
Pb were observed [53]. Other studies with similar com-
parisons potentially offered more options of effective 
micro-organisms for TWW biological treatment [54–57]. 
Some investigations demonstrated that COD, Total Cr, 
color could be largely removed together with reduced 

Fig. 4 Simple schematic diagram of membrane filtration process
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biotoxicity in aeration lagoons of common effluent treat-
ment plants (CETPs) during the treatment of industrial 
TWW, providing the ability to address harsh wastewa-
ter [26, 51]. With the purpose of decrement of microbe’s 
acclimation time in CETPs, the special active sludge or 
bio-film dedicated for treating TWW were cultured so 
that the quality of effluent got considerable improvement 
[58–62]. Since TWW often contains abundant nutrient 
substance, anaerobic digestion became an alternative way 
for pollutant removal together with bio-gas production. 
Technologies such as up-flow anaerobic sludge blanket 
reactors (UASBs), membrane bioreactors, non-aerated 
biofilm, and packed bed reactor were thereby exploited 
for denitrification, dephosphorization, anammox, detoxi-
fication, and bio-gas production through cultivation of 
tolerant microbial species, despite the fact that TWW 
generally has an inhibition effect on enzymatic reac-
tions for anaerobic digestion [63–68]. Combined oxic-
anoxic biological treatments or facultative ponds were 
also developed for a better and multi-target pollutants 
removal, where the optimization of oxic-anoxic treat-
ment process’s configuration played an important role for 
full scale application [60, 69–71].

Another biological treatment widely utilized for TWW 
treatment is constructed wetlands (CWs), which is char-
acterized with energy saving, handy operation and envi-
ronmentally sound [72]. CWs are actually some small 
ecosystems consisting of plants, microorganisms, aquatic 
animals, where physical, chemical, biological decon-
tamination processes co-exist [73]. For a certain CW fed 
with TWW, tolerant plants as well as micro-organisms, 
and packing stuffs should be paid the same attention as 
CW’s types such as vertical flow, horizontal subsurface 
flow, surface flow, etc. [74]. A pilot-scale constructed 
wetland planted with specially choosing phragmites in 
Venezuela showed high COD (82%) and  NH4

+-N remov-
als (96%), and almost complete Cr removal in the outflow 
[75]. Hybrid constructed wetland systems, i.e., horizontal 
subsurface flow combined with free water surface flow 
or subsurface vertical flow combined with horizontal 
flow and vertical flow were also under careful inspection, 
which exhibited the excellent properties for denitrifica-
tion, dephosphorization, and detoxification [76, 77]. Var-
ied from the conventional CWs with plants growing on 
gravel, sand, porous soil, etc., a novel floating treatment 
wetlands (FTWs), inoculated with selected bacteria, was 
also designed, to achieve satisfying amelioration of efflu-
ent quality [78]. More studies about designing CWs for 
TWW treatment have been conducted, and all these 
CWs system exhibited promising prospects for multiple 
target contaminants removal [79–83]. Practice experi-
ence such as how to select plants, substrate, operation 
load, etc. was summarized in one substantial work [84].

Biological treatments have been the most extensively 
adopted methods for TWW treatment until now, still the 
problems such as inconvenient isolation and acclimation 
of tolerant species, time consuming, and non-biodegrad-
able pollutants also baffled their applications. In addition, 
the sudden changes in TWW volume are another great 
challenge for the operation of biological treatments. One 
another issue also gradually emerged nowadays: con-
struction of a biological treatment plant that has TWW 
wastewater treatment scale usually requires a certain 
land occupation, however this would be more and more 
difficult because limit of land exploitation in the future 
would become stricter.

3.3  Membrane filtration
Technologies of microfiltration (MF), ultrafiltration (UF), 
nanofiltration (NF), reverse osmosis (RO) have been 
actively developed in the past two decades. A simplified 
membrane process is illustrated in Fig. 4. Polluted water 
permeates membranes under propulsive forces such as 
pressure, flow, concentration gradient, etc. with various 
contaminants rejected simultaneously. Membrane filtra-
tion has been a hot spot domain for TWW treatment.

Ceramic membranes are very commonly used in 
TWW treatment, and efforts to explore cheaper and 
more efficient ceramic membrane materials have been 
taking all the time. Boehmite [85], natural clay [86], 
pozzolan [87], perlite [88, 89] as raw materials for 
manufacturing and utilization of membranes, in TWW 
treatment have been reported. Organic membranes 
were also another kind of materials under inspection. 
Velu et  al. devised the polyethersulfone ultrafiltra-
tion membrane that achieved a 80–90% reduction in 
BOD and COD in TWW treatment [90]. Religa et  al. 

Fig. 5 Classifications of Advanced Oxidation Processes (AOPs) used 
in TWW treatment
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investigated the properties of membranes on Cr recy-
cling as well as pollutants removal, and polyamide/
polysulfone membranes were thus suggested for treat-
ing TWW [91]. Membranes carrying adsorbents for 
pollutants removal showed outstanding performance 
in several studies. One versatile layered double hydrox-
ides (LDHs)/polyacrylonitrile (PAN) membranes were 
smartly weaved, which achieved more than 99% Cr (III) 
removal in synthetic TWW [92]. Researchers also com-
bined nano-filtration and RO processes, where about 
78% permeate recovery with low TDS was achieved 
in one pilot plant, and the water recovered from the 
membrane system was successfully reused for tannery 
process [93]. Higher selectivity and lower operating 
pressure are ideal characteristics for membrane fab-
rication, a review briefly introduced the novel “loose 
nanofiltration” appearing to satisfy this. This kind of 
membrane is supposed to possess high permeation 
of salts and small organic molecules, which therefore 
could be used for resource separation / recovery and 
may be potential for highly saline TWW treatment and 
valuable substances recycling [94]. Membrane process 
integrated in some steps of tanning cycle instead of 
together treatment of mixed TWW was put forward, 
especially when valuable resources needed to be recy-
cled and the quality of effluent in each tanning step was 
under strict control [95]. As we can see, fouling is really 
troublesome for membrane filtration especially when 
TWW with aggressive conditions being treated. There-
fore, methods for alleviating the foulants on membrane 
have been considered for years. For examples, TWW 
pretreatment via coagulation [96], electrocoagulation 
[97], and other approaches before filtration were stud-
ied. Membrane bioreactor (MBR) basically consisted 
of membranes and active sludge, where treatment 
performance could be augmented through additional 
microbial activities, has also been applied to TWW 
treatment [64, 98, 99].

Those encouraging studies on membrane filtration 
for TWW treatment really fascinate researchers, while 
limitation of membrane processes cannot be recklessly 
ignored. The membrane fouling as well as aging problem 
aside, the processes for preparing membranes are always 
complicated in order to obtain homogeneous, stable and 
functional properties. What’s more, the capital cost spent 
on equipment to provide sufficient propulsive forces also 
was concerned. Given this, exploitation of membrane 
filtration to ameliorate huge amounts water and sustain 
high pollutants removal efficiency coupled with high per-
meate flux in one TWW treatment plant seems to be dif-
ficult. Accordingly, combination with other methods or 
employment of membrane filtration as tertiary process 
seem to be more practical.

3.4  Advanced oxidation processes
Advanced oxidation processes (AOPs) have been an 
active research hotspot in recent years due to their excel-
lent capability for the removal of reluctant pollutants, 
under the stricter discharge standards of waste efflu-
ents. Basically, this kind of method usually utilizes vari-
ous ways to produce much strong oxidant species such as 
 O3, peroxy radical, hydroxyl radical, sulfate radical, etc. 
to attack recalcitrant organic pollutants in wastewater so 
that the effluents after treatment could meet the required 
quality. Due to the feature of tannery, many persistent 
contaminants in the TWW such as tanning agents, poly-
cyclic compounds, and metal complexes, are hard to be 
totally degraded by conventional methods without AOPs 
adopted [100].

Generally, in the light of the specific ways to produce 
reactive oxidant species (ROS), AOPs used in wastewa-
ter treatment could be categorized (Fig.  5) to  O3-based 
AOPs (single  O3,  O3/H2O2 and  O3/catalysis), UV-based 
AOPs (UV/H2O2, UV/PDS or PMS and UV/Cl2), electro-
chemical AOPs (introduced in the later section), catalytic 
AOPs (Fenton reactions, photo-Fenton and photo-TiO2), 
and physical AOPs (ultrasound or micro-wave excitation 
and plasma) [101]. Among all these techniques, Fenton 
[102–104],  O3 [105–107], and photo (or UV) catalytic 
AOPs [108–110] were found to be utilized for TWW ter-
tiary treatment and obtained pretty good performance 
in some studies. Exploration for simultaneous degrada-
tion of refractory pollutants and segregation of Cr seems 
more promising when AOPs as methods to address 
TWW. In one UV-based AOP research, enhanced chro-
mium fixation with high COD removal was achieved at 
the same time, due to  H2O photoionization-generated 
electrons as well as hydroxide ions helping the forma-
tion of more hydroxyl radicals and occurrence of co-pre-
cipitation effect [111]. Many laboratory studies showed 
strong evidence that AOPs could efficiently degrade 
some refractory, non-biodegradable, and toxic organic 
pollutants, and effectively improve the water quality of 
effluent compared to conventional biological treatment. 
Nevertheless, some issues and disputes did arise in prac-
tice or scale-up utilization of AOPs. For example, a study 
compared different AOPs treatment  (TiO2/UV,  O3, Fen-
ton and  H2O2/UV) for enhancing biodegradability of real 
TWW, however, the related results showed the failure of 
these selected AOPs for pre-treatment of TWW [112].

When choose AOPs for practical TWW treatment, 
some important factors should be carefully considered. 
 O3, Fenton, and other catalytic AOPs usually need the 
extra reagent cost, and the favorable reaction conditions 
for AOPs in TWW need to be extra regulated in advance 
to obtain desirable performance, which will further 
increase the treatment cost. Besides, ROS produced via 
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AOPs treatment are supposed to be quenched in a very 
short time, while mass transfer between contaminants 
and ROS are always limited especially when reactions 
occurred in large reactors. Furthermore, some heavy 
metal like Cr might be oxidized to higher valence, and 
not all recalcitrant organic pollutants could be trans-
formed to non-hazardous forms, which may make the 
conventional AOPs unreliable. In the view of the above 
reasons, AOPs may not be one preferable solution for 
some large CETPs especially their throughput is always 
huge. Nevertheless, some small plants special for TWW 
treatment built nearby tanneries could consider this kind 
of method as pre or post treatment processes.

3.5  Electrochemical treatment
Electrochemical treatment of wastewater has been an 
active research spot in recent years due to its prominent 
performance in removal of a range of organic and inor-
ganic contaminants. In fact, electrochemical treatment 
of wastewater has already been used as pre or post treat-
ment process, however the high energy consuming and 
facilities cost inhibited its scale-up application. Given 
that TWW usually contains high salinity and much metal 
ions that could improve the conductivity of the waste-
water to be treated, further promotion of electrochemi-
cal treatment is to be expected. In this section, technique 
of electro-oxidation, cathode reduction, microbial fuel 
cell for TWW treatment will be discussed, and detailed 
introduction of electro-oxidation are given.

3.5.1  Electro‑oxidation
Organic contaminants are usually removed via electro-
oxidation (EO) during electrochemical treatment pro-
cesses of wastewater. EO could be basically classified to 
three categories [113]: (1) One is direct electron transfer 
(DET) of organic pollutants adsorbed on anodes. The 
DET process could occur in most EO systems, but gener-
ally could not serve as the final mineralization approach 
hence considered negligible impact on pollutants’ degra-
dation. Nevertheless, some special contaminants such as 
perfluorinated compounds were proved to be efficiently 
decomposed only when DET as the trigger step [114, 
115]. (2) Mediated oxidation (MO), which depends on 
anodic reactive oxidant species (ROS) catalytic forma-
tion to decompose contaminants. The process can be 
described via several reactions under electric field:

It is worth noting that the generated ROS include not 
only  common.OH, HClO, but also some other reac-
tive substances such as carbonate radical, phosphate 
radical, superoxide radical, hydrogen peroxide, etc., and 
even PMS/PDS were also found in electro-oxidation 
system [116]. However, most electrochemical studies in 
TWW treatment nowadays concentrate more interest 
 on.OH, HClO,  H2O2. (3) The last one is Electro-Fenton 
(EF), photo-electro-Fenton (PEF) or another combined 
electro-Fenton, e.g., ultrasound-electro-Fenton. Differ-
entiated from conventional Fenton process, EF, PEF and 
other combined EF systems can work without the extra 
addition of  H2O2. In one typical EF system,  O2 is diffused 
to a cathode commonly called as gas diffusion cathode 
(GDC, porous films electrodes often utilized) and  H2O2 
is generated through the reaction:

The generated  H2O2 could be activated  for.OH produc-
tion via diverse approaches, e.g., addition of Fe materials, 
photo-catalysis, ultrasonic assistance, etc. A typical elec-
trochemical reactor for wastewater treatment could be 
shown in Fig. 6.

Studies have demonstrated the superior decontamina-
tion performance of EO processes for TWW treatment. 

(1)H2O →. OH + H+ + e−

(2)Cl− − e− → Cl·

(3)2Cl. → Cl2

(4)Cl2 + H2O → HCLO + HCl

(5)SO2−
4 → ·SO−

4 + e−

(6)O2 + 2H+ + 2e− → H2O2

Fig. 6 Schematic of a typical electrochemical reactor. DET direct 
electron transfer, MO mediated oxidation, ROS reactive oxidant 
species, Mn+ metal ions
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Encouraging results that COD, TOC,  NH3-N, color, 
pathogen etc. were efficiently removed mainly via elec-
tro-generated.OH and active chlorine were reported 
[117–120]. With the purpose of boosting ROS formation 
and strengthening EO decontamination performance, 
assisting methods were also carefully used including 
sonar-enhanced [121], UV-enhanced [122]. Typically, 
the effluent quality after EO treatment would obtain sat-
isfying improvement, and its bio-degradability would 
be suitable for natural bio-degradation. The commercial 
scale reuse of TWW after EO treatment was investigated 
by an experiment, and the feasibility of treated TWW for 
leather manufacture was confirmed [123]. Though most 
papers preferred to elaborate the dominant roles  of.OH 
and active chlorine to decompose refractory pollutant 
molecules in TWW, it is noteworthy that sulfate ions 
included in TWW could be also converted to sulfate rad-
icals [124]. Usually sulfate ions are harmful to biological 
treatment processes, while researchers have found that 
electro-generated sulfate radicals originated from the 
high-level sulfate ions contributed to the improved con-
taminants abatement in EO processes [125–127]. Schol-
ars may take a page from these covers when facing the 
treatment requirement of TWW containing high sulfate 
ions.

When applying EO processes for wastewater treat-
ment, the impact of some factors such as pH, electrolyte 
type, reactor configuration, etc. should be considered. 
However, among which current density (or applied volt-
age) and electrode (materials, shape, size, etc.) are the 
most significant factors influencing pollutants abatement 
performance of EO. Higher current density (or applied 
voltage) within specific range generally benefits EO pro-
cess, yet serious consideration of energy cost and elec-
trode service life should be taken into. What’s more, it is 
apparent that water splitting would occur and occupy the 
center stage of various electrochemical reactions under 
higher current density (or applied voltage), which, will 
adversely decreases EO efficiency. Preliminary quantita-
tive analysis of energy consumption in EO processes is 
feasible when indexes such as the mineralization current 
efficiency (MCE) [128], the electrical energy required to 
destruct the target contaminants by one order magnitude 
(EEO) [129], the specific energy cost per unit mass of 
TOC removed  (ECTOC) [130], were introduced to calcu-
late efficiency of current or voltage used in amelioration 
of wastewater:

where F is the Faraday constant (96,487 C  mol−1), V is 
the solution volume, I is the current applied, Δ(TOC) 
is the TOC removal, 4.32 ×  107 is a conversion factor 

(7)MCE (%) =
n · F · V ·�(TOC)

4.32× 107 ·m · I · t

to homogenize units and m is the number of carbon 
atoms of target contaminants. The number of electrons 
exchanged per each contaminant molecule for complete 
mineralization was taken as n.

where U is the voltage, J is the current density, A is the 
electrode surface area, t is the reaction time, V is the 
total volume of the reactor, and  C0 and  Ct are the con-
centrations of pollutants at the beginning and at time t, 
respectively.

The meaning of U, I, t, V, and Δ(TOC) is the same as 
the aforementioned Eqs. (7), (8). When Δ(TOC) is placed 
by Δ(COD), this equation could also calculate  ECCOD.

As ROS formation were commonly anodic catalyzed, 
anodes used in EO processes were categorized into two 
main types, i.e. active electrodes (e.g. Pt,  IrO2,  RuO2, etc.) 
and non-active electrodes (e.g. BDD,  PbO2,  SnO2, etc.) 
[113]. Non-active electrodes were proved to produce 
more ROS instead of side-reaction like oxygen genera-
tion with no contribution to wastewater treatment. This 
was also interpreted as higher overpotential for  O2 evolu-
tion of non-active anodes [116]. The complete underlying 
principles for more ROS generation and better pollut-
ants degradation capacity of non-active anodes are still 
unclear. It was assumed that main oxidant  specie.OH 
produced in anodic zone have a weaker adsorption to 
anode’s surface were to explain this phenomena [131]. A 
study compared removal efficiency of various pollutants 
in TWW using Ti based electrodes with coating mate-
rials, in which the authors believed that EO processes 
could serve as complementary means for ammonia elimi-
nation with lower energy consumption [132]. A team 
investigated the role of electrode materials in raw TWW 
treatment, where DSA® Ti/RuO2, Ti/IrO2 and Ti/BDD 
electrodes were utilized in a continuous flow system, and 
the better performance of non-active electrode Ti/BDD 
was confirmed [133]. The similar results that high pollut-
ant removal efficiency, low energy consumption, and high 
electrode stability of Ti/BDD electrode were again elabo-
rated in one post-treatment experiment of TWW [134]. 
Three dimensional electrodes as well as rotating disk elec-
trodes were utilized recently notwithstanding the inves-
tigation of plate electrodes in EO for TWW treatment 
still dominated. Cylindrical graphite electrodes which are 
less expensive were used as both anode and cathode for 
tannery saline wastewater treatment in an experiment, 
and promising result was obtained that treated effluent 

(8)EEO =
U · J · A · t

V · logC0
Ct

(9)ECTOC =
U · I · t

�(TOC) · V
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reused for pickling process without adverse effect [123]. 
One interesting study was carried out by a team from 
India: a three-phase, three-dimensional fluidized type 
electrochemical reactor was designed with particle elec-
trodes, and a desirable removal of COD and chromium 
from tannery industrial wastewater was observed [135]. 
A novel electrochemical reactor with a rotating stainless-
steel cathode and stationary Ti/TiRuO2 anode rings was 
developed to treat TWW in one 2017’s study, where elec-
trodes are positioned vertically and parallel to each other 
with a gap of 5 mm between them, and up to 91% TOC 
removal was achieved after 2  h [136]. The state of the 
art of electrode design is filter like electrode or reactive 
electrochemical membrane (REM), which could greatly 
improve mass transfer and pollutants removal behaviors. 
This kind of electrode is basically fabricated by conduc-
tive filter membrane, and relevant reports could be found 
in some studies [137–139]. To the best of our knowledge, 
more and more novel and efficient electrodes have been 
developed and adopted for decontaminating noxious 
saline wastewater including landfill leachate, reverse 
osmosis concentrate, etc. [140, 141]. And these studies 
may shed light on the application of these novel elec-
trodes for TWW treatment.

3.5.2  Electrochemical reduction and microbial fuel cells
Aside from anode’s EO process for wastewater treatment, 
reduction reactions on cathode could be utilized for 
metal ions  (Mn+) precipitation and recovery from saline 
water [142]. Under electric field, cations could migrate to 
cathode:

The mechanism could be also adopted for Cr containing 
wastewater treatment. Sheet electrodes of steel, copper, 
and lead materials were investigated in one study for Cr 
cathode deposition, 99% recover of total chromium was 
achieved within 2 h mainly in the form of Cr(OH)3 from 
TWW sample [143]. A cost-effective electrochemical 
system employed with graphite and aluminum as anode 
and cathode was observed with 96.5% removal efficacy 
of total chromium in one real TWW treatment experi-
ment [144]. Since segregation and recovery of chromium 
always has a priority in case of TWW treatment, com-
bination of anode oxidation and cathode reduction may 
provide a new direction for simultaneous removal of 
recalcitrant organic pollutants and Cr (III).

Microbial fuel cells (MFC) were also introduced to 
treat TWW as one novel method by some researchers. In 
one typical MFC system, specific microorganisms living 

(10)Mn+ + ne− → M ↓

(11)Mn+ + nOH− → M(OH)n ↓

in anodic zone and usually forming biofilm on anode, will 
produce electrons by degradation of organic substances, 
then these produced electrons will transfer from anode 
to cathode through external circuit. Accordingly, this 
kind of electrochemical system could decompose organic 
pollutants and generate electric energy. When using 
pretreated TWW as substrate for MFC processes, 90%, 
84% and 96% removal of COD,  BOD5, and sulfate, was 
respectively obtained with a current density of 11.2 A/m2 
[145]. In another study, mineralization of humic acid and 
reduction of ferrocyanide in anodic compartment and 
cathodic compartment, were observed respectively, when 
soak liquor effluent from a tannery was used as substrate 
[146]. There were more studies about MFC employed 
in TWW treatment for both pollutants abatement and 
electric energy generation [147, 148]. However, as men-
tioned in the former section, isolation and acclimation of 
tolerant microbe species is the key factor that may limit 
the scale-up exploitation of this technique. What’s more, 
the biological fitness for microbe growth, and electrodes 
materials employed in MFC are necessary for determina-
tion of MFC performance, distinguished with normal EO 
system which puts more emphasis on current efficiency 
of electrodes.

The main defect of limiting the practical applications 
of electrochemical treatments is the relatively high cost 
of the electrode and the possible risk of harmful byprod-
ucts, i.e. absorbable organic halogen (AOX) generated 
in high chloride content of TWW [149]. In addition, the 
investment on electrochemical supporting equipment 
and power supply should also be balanced when large-
scale industrial application was considered in TWW 
treatment. Despite these above, utilization of electro-
chemical treatment as pre or post treatment method in 
TWW still seems promising due to its environmental 
friendliness, good versatility and high efficiency. Com-
pared to the inhibition effect on conventional biologi-
cal treatment, the high salinity nature of TWW appears 
to be more helpful for electrochemical processes on the 
contrary. The in-situ generated ROS combined DET 
without no or little agents addition in electrochemical 
reactors could quickly decompose most recalcitrant pol-
lutants and impose limited impact on effluent.

3.6  Adsorption
Adsorption has been widely utilized in wastewater treat-
ment due to its comparatively low cost and good flexibil-
ity. As to TWW treatment, utilization as post-method 
after biological or other treatment is more reasonable 
since terrible physicochemical properties of raw TWW 
influent would make most adsorbents ineffective. Acti-
vated carbon is always the most common adsorbent for 
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TWW treatment, and the exploration of low-cost mate-
rials for activated carbon manufacture has been in pro-
cesses. A study recycling waste rubber tires and another 
study utilizing agriculture wastes as raw materials to 
manufacture activated carbon for Cr (III) removal in syn-
thetic TWW are representative examples [150, 151]. Raw 
clay minerals and their modified counterparts served as 
cost-effective and broad-resource adsorbents for pollut-
ants removal have been subjected to investigations in 
some studies, and satisfying results were achieved [152–
154]. Considering that a large quantity of solid waste 
is produced from tannery procedures, recycling these 
wastes for adsorbents have been proposed [155–157]. 
In general, the processes of conversion tannery waste to 
adsorbents were not so complicated, mainly including 
agent leaching, pyrolysis, drying, milling, sieving etc., 
whereas the way to ensure consistent adsorption ability 
remains unsolved. Besides these inorganic materials, bio-
sorbents that made of biomass have attracted much atten-
tion. Processing barks, fruits peelings, reeds, biochar, 
etc. into bio-sorbents have been extensively reported 
[158–162]. Further efforts have been taken to introduce 
some microbes such bacteria, fungi, etc. for removal of 
pollutants in TWW, and these microbes themselves with 
their secretions showed good properties of adsorption in 
many research [163–165]. Utilization of micro-algae for 
wastewater treatment has also been proposed as a prom-
ising method for TWW treatment, recent studies pro-
vided a promising sight into the adsorption of the toxic 
metals and other pollutants in diluted tannery effluent by 
micro-algae [166–168]. More researchers focused on the 
segregation of Cr in TWW, they usually exploited various 
methods, e.g., changing pore size distribution, loading 
active substances, etc., to modify conventional adsor-
bents eventually creating more active sites or surface 
functional groups to enhance adsorption abilities. Gener-
ally, Cr (III) constitutes the vast majority for the total Cr 
in TWW, still Cr (VI) was assumed to possibly emerge 
in some studies, and researchers have made efforts to 
remove the total Cr using adsorption [169, 170].

3.7  Integrated methods
The methods we discussed in Sects. 3.1 to 3.6 have their 
own advantages and disadvantages when utilized for 
TWW treatment, and a brief qualitative comparison of 
all the treatment methods was demonstrated in Table 2. 
Though more efforts have been taking to improve these 
methods’ efficacy by researchers, complete detoxification 
of recalcitrant organic and inorganic pollutants in TWW 
using one single method is presumably expensive and 
unreliable. Based on the pros and cons of each method, 
the appropriate combination of different treatment 
methods could lead to multi-effective performance and 

save cost. Hence, increasing researchers have combined 
diverse techniques for a better performance of TWW 
treatment recently. Selected studies using integrated 
or combined methods to treat real or synthetic TWW, 
from year 2010 to 2021, were therefore summarized 
in Table  3.*In above table: Concentrations are in mg/L 
except pH and color, TWW  tannery wastewater, Cr total 
chromium, TS total solids, TDS total dissolved solids, 
TSS total suspended solids, TN total nitrogen, TP total 
phosphorus, TOC total organic carbon, DOC dissolved 
organic carbon, EC electrocoagulation, MF microfiltra-
tion, NF nanofiltration, RO reverse osmosis, EO elec-
trooxidation, ASP active sludge process, UASB upflow 
anaerobic sludge bed, BAF biological aerated filter, MBR 
membrane bioreactor, MBBR moving bed biofilm reac-
tor, OD oxidation ditch, CW constructed wetland, SBR 
sequential batch reactor, PAC powdered active carbon, 
GAC  granular active carbon,“Unknown” means that orig-
inal data was not found

No doubts that most integrated or combined methods 
for TWW treatment better reduce pollution and greatly 
improve the quality of effluent, however, it is still nec-
essary to carefully consider optimal implementation of 
wastewater treatment alternatives when multiple objec-
tives or criteria and hierarchy processes are required in 
practical running of TWW treatment plants [182]. One 
study used analytical hierarchy process (AHP) and grey 
relation analysis (GRA) for optimal selection of treatment 
alternatives in a full scale tannery effluent treatment 
plant is in progress [183]. More investigations are needed 
in the reality that stricter environmental regulations have 
been implemented for a considerate number of CETPs.

4  Problems to be solved and potential solutions
Even though these treatment methods discussed before 
could greatly ameliorate the quality of effluent from a 
tannery hence greatly reduce its harmful environmental 
impact, there still remains some problems baffling TWW 
treatment plants. The most concerned and controversial 
problems are Cr pollution and high salinity.

The content of Cr in effluent of TWW treatment plants 
is reduced as much as possible, however the real threat 
comes from the treatment by-products through vari-
ous advanced segregation methods. By-products after 
wastewater treatment, including Cr-containing sludge, 
foulants, adsorbents, etc. are extremely hazardous yet 
usually in poor management. To save cost, these by-
products are always transferred to landfill treatment, 
which might cause serious pollution transfer. Compared 
to conventional landfill, recycling or reuse of these by-
products is a rather desirable way as Cr has much value 
for industrial production. Nevertheless, it should be 
acknowledged that the facile and cost-effective recycling 
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or reusing methods seems hard to find, even worse is 
that these methods are highly dependent on the adopted 
methods in TWW treatments. Rather than the labori-
ous trials to eliminate the Cr pollution in wastewater 
treatment processes, we believe that reducing discharge 
at sources is more reasonable and cost-effective. There-
fore, cleaner production strategy in tanning processes 
has been proposed as one more promising way as it could 
reduce even eradicate Cr discharge to effluent so that a 
series of tough problems concerning Cr disposal in sub-
sequent wastewater treatment processes could be solved. 
Cleaner production strategy such as enhancing Cr uptake 
in tanning process or “Cr exhaustion” [184], novel Cr 
tanning agent carriers [185], Cr-free syntans [186], non-
chrome metal tanning agents and chrome free organic 
tanning agents [187–189], etc. are good examples, and 
these low-risk strategies could relieve the pressure from 
Cr segregation in wastewater treatment processes even 
eliminate Cr pollution from root cause.

High salinity is another annoying problem in TWW 
treatment since it not only undermines treatment per-
formance of most methods but also hard to be totally 
removed. Efforts have been conducted to acclimate 
various active halophilic species to biological treat-
ment of TWW, and membrane filtration as well as 

electro-chemical treatment are also promising methods 
to deal with saline wastewater, which have been dis-
cussed in the former sections. However, the fact that the 
treated effluent still contains high salinity shadows the 
effect of these approaches, leading to post-treatment or 
desalination on high agenda. Approaches of desalina-
tion could be basically divided to six domains: distilla-
tion, reverse osmosis, membrane filtration, evaporation, 
electrodialysis, electro-deionization [190]. Though com-
monly high cost, forementioned desalination approaches 
could be considered at present situation since the qual-
ity of treated TWW is not that harsh due to the pretreat-
ment, and total desalination operation cost may not be as 
expensive as expected. An example of TWW post-treat-
ment for desalination is shown in Fig. 7. One investiga-
tion that combined MBR and RO units exhibited another 
good case, in which bio-fouling or scaling of RO process 
as well as salt content of effluent were largely reduced 
[191]. A crucial issue that how to handle saline reject or 
concentrate should be taken into account too, especially 
for widely used membrane filtration and electrodialysis, 
because of their relatively lower cost and facile operation. 
One possible sustainable perspective for future is that 
application of combined processes, i.e. combination of 
desalination system and integrated agricultural systems 

Fig. 7 Simplified diagram of wastewater treatment and desalination chain (biological treatment + RO), adapted from [193]
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using saline reject or concentrate as nutrients [192]. With 
respect to our topic, TWW treatment, combined method 
such as membrane filtration integrated with CWs may 
be one kind of good solution. In that composite system, 
main processes such as biological, membrane, electro-
chemical treatment count for toxic substances removal, 
and the treated effluent is used for feeding livings in 
CWs, where deeper clarification and desalination could 
be simultaneously achieved.

5  TWW treatment for the future
The challenges for TWW treatment nowadays lie not 
only in noxious pollutants removal, but also in balance 
of cost-effectiveness. As mentioned before one sin-
gle method we discussed in former sections could not 
achieve TWW totally decontamination as well as cost 
saving, integrated or combined methods should be care-
fully recommended in wastewater treatment plants. For 
instance, AOPs treatment combined with active sludge 
process could enhance the bio-degradability of waste-
water, which might reduce the operation time and pollu-
tion load in aeration tank therefore increasing treatment 
capacity in one sense. Electrocoagulation combined with 
electrooxidation could simultaneously degrade organic 
pollutants and precipitate inorganic pollutants, which 
might be used for TWW treatment steps simplification. 
In addition, resources recycling would be considered in 
the future TWW treatment plants since the concept of 
“Carbon Neutrality” has become a general trend world-
wide. Specific to wastewater treatment field, not only 
the optimization as well as upgradation of treatment 

processes, but also valuable resources recycling as well 
as reusing are supposed to be extensively advocated. The 
considerable amount of recycled water, salts, metal, etc. 
separated from TWW could bring economic income 
hence contributing to treatment plants’ long-term self-
sustaining operation. What’s more, as the requirement 
of land use intensification prevails in many countries, 
wastewater treatment plant should be constructed as 
compact as possible in the future. This means that step by 
step treatment processes of space division would be less 
and less popular, especially when land use permission 
gets stricter. The physical and chemical treatment meth-
ods such as membrane filtration, electrochemical oxida-
tion, etc. should be therefore well developed and play a 
more important role in the future, since the hourly treat-
ment capacity of these methods could be enough large 
compared to conventional biological treatment so that 
the land occupation of treatment plants could be greatly 
reduced.

To summarize, TWW treatment in the future should 
aim at multi-function, recycling, and intensification. In 
the light of this direction, we herein proposed one pos-
sible future TWW treatment plan as shown in Fig.  8. 
In this plan, treatment flow was simplified to pre-treat-
ment, major treatment, and advanced treatment pro-
cesses, which conforms to the concept of intensive and 
integrated wastewater treatment requirement. The pre-
treatment step is designed for separation of large matter 
or sand from TWW, where some parameters such as pH, 
temperature, etc. could be simultaneously regulated. The 
major treatment step should have an excellent ability to 

Fig. 8 Proposed plan for TWW treatment in the future
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degrade or detoxify pollutants fast as well as safely, and 
valuable resources recycling could be also achieved in 
this step. The advanced treatment step is utilized for deep 
mineralization, disinfection, and sterilization. The whole 
treatment processes put high requirements on the abil-
ity of fast decontamination, therefore more advanced and 
greener chemical or physical treatment methods should 
be applied in the future. The treated effluent is supposed 
to have enough high quality, and it could be reused for 
filling the demand from domestic and industrial water. 
To reduce the impact on the surrounding environ-
ment, underground or semi-underground construction 
of TWW treatment plant is recommended too, at least 
there should be enough green belt covered in the zone of 
treatment plant. This plan is just one ideal case, however 
realizing multi-function, recycling, and intensification in 
future wastewater treatment should always be the target 
of TWW.

6  Conclusions
This work presented an updated review of TWW treat-
ment research from year 2000 to 2021. Main methods for 
TWW treatment could be divided into coagulation and 
flocculation, adsorption, biological treatment, membrane 
filtration, advanced oxidation process, and electrochemi-
cal treatment. These methods summarized from refer-
ences are generally served as second or tertiary treatment 
approaches for TWW. Though higher efficiency has 
been pursuing and some encouraging results have been 
achieved, complete decontamination of TWW via just 
one single method is inefficient and unreliable. Recently, 
research related to integrated or combined methods for 
TWW treatment continues to spring up, which appears 
to be more promising, since the enhanced and multi-
functional performances were constantly observed. 
Based on the harsh nature of TWW, this review rec-
ommends integrated methods for TWW treatment to 
realize desirable decontamination efficacy, however opti-
mization for methods combination and cost effectiveness 
should be further conducted in the future. It is admitted 
that Cr by-products and high salinity might be the huge 
defect of the most presented TWW treatment methods, 
while these issues could be partly resolved by combin-
ing additional treatment processes, and the promising 
cleaner production of Cr tanning processes is shedding 
light on the problems as well. In the future, the TWW 
treatment should focus more on multi-function, recy-
cling, and intensification, the proposed plan that empha-
sizes on forementioned concepts in Sect. 5 might be one 
case. In conclusion, most TWW treatment methods at 
this stage have their own cons and pros, yet they could 
not serve as TWW treatment method independently. We 
believe the combination of various advanced methods 

capable of resources recycling simultaneously for TWW 
treatment would be the promising research direction in 
future.
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