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Abstract 

Fatliquor oxidation may give leather unpleasant odor, and excessive amounts of Cr(VI) and volatile organic com-
pounds. The accurate evaluation and improvement of the oxidative stability of fatliquors are of great significance 
to high-quality leather manufacturing. We proposed a set of practical methods for evaluating the oxidative stability 
of fatliquors on the basis of oxidation induction time, change in iodine value (∆ IV), and change in acid value (∆ AV) 
under accelerated oxidation conditions (at 100 °C with 10 L/h of air). Oxidation induction time is a highly sensitive 
marker for quantifying the oxidative stability of fatliquors, and ∆ IV and ∆ AV that are low cost and easy to operate 
are useful in evaluating the oxidative stability of fatliquors when the oxidation induction time is less than 22 h. The 
number of double bonds in fatliquors is an important factor affecting oxidative stability. The sulfation modification 
of fatliquors that greatly reduces double bonds and the addition of antioxidants, especially butylated hydroxyanisole 
and butylated hydroxytoluene, markedly improve oxidative stability of fatliquors.
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1 Introduction
Fatliquors are one type of the most used leather chemi-
cals and act as lubricants to increase the dispersity and 
movability of collagen fibers in leather, playing an impor-
tant role in improving the physical properties, such as 
softness, fullness, strength, and extensibility, of result-
ant leathers [1–3]. Fatliquors are generally divided into 
three types by structure and source: (1) natural vegetable 
oils and animal fats; (2) chemically modified products 
of vegetable oils and animal fats; and (3) synthetic oils/
fatliquors [4, 5]. Natural vegetable oils and animal fats 
and their modified products account for 50%–80% of 
the total amount of fatliquors because they can endow 
leather with excellent softness and grease touch [6]. 
However, fatliquors derived from natural vegetable oils 
and animal fats may give leather unpleasant odor, and 
excessive amounts of Cr(VI) and volatile organic com-
pounds (VOCs) [7, 8]. The main reason is that natural 

vegetable oils and animal fats containing double bonds 
are easily oxidized into unstable hydroperoxides and 
thereby promote the conversion of Cr(III) to Cr(VI) [9] 
and generate small molecular VOCs after decomposition 
[10]. Therefore, the oxidative stability of fatliquors must 
be improved for manufacturing high-quality leathers. 
Currently, the oxidative stability of fatliquors is assessed 
by sensory evaluation of the color and odor changes in 
fatliquors that are stored for a long period. As a result, 
an objective evaluation methodology for evaluating the 
oxidative stability of fatliquors is lacking, and thus a sys-
tematic understanding of factors affecting the oxidative 
stability of fatliquors and rational design of oxidation-
resistant fatliquors is limited.

Oil oxidation has received considerable attention in the 
food industry because it adversely affects the flavor and 
color of food and reduces shelf life [11, 12]. The oxida-
tive stability of oils is usually evaluated by detecting the 
primary and secondary oxidation products of oils [13]. 
As shown in Scheme 1, the active methylene group next 
to the double bonds of oils is prone to oxidation under 
oxygen, light, heat, and other external conditions and 
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generates primary oxidation products, such as hydrop-
eroxide intermediates [14]. Unstable hydroperoxides 
are then further decomposed into secondary oxidation 
products that are small molecular VOCs, such as organic 
acids, ketones, and aldehydes [15]. Hydroperoxides, 
organic acids, and the disappearance of double bonds 
in oils lead to the changes in peroxide, acid, and iodine 
value of oils, respectively. Thus, these parameters are 
conventional indicators for predicting the oxidative sta-
bility of oils used in food [16–18]. Moreover, an ISO 6886 
standard for evaluating the oxidative stability of food oils 
has been established [19], in which conductivity caused 
by the secondary oxidation products of oils is monitored 
during an accelerated oxidation process for the determi-
nation of an oxidation induction time.

Inspired by the above evaluation methods, we investi-
gated whether oxidation induction time and iodine, acid, 
and peroxide values of oils are suitable for evaluating the 
oxidative stability of leather fatliquors. Typical fatliquors 
were first treated in an accelerated oxidation system, and 
then oxidation induction time and changes in iodine 
value (∆ IV), acid value (∆ AV), and peroxide value (∆ 
PV) during oxidation were determined and compared 
for the selection of suitable indicators that can be used 
in evaluating oxidative stability. The preferred indicators 
were subsequently used in investigating the effects of 
modification methods and antioxidants on the oxidative 
stability of fatliquors, formulating effective strategies for 
improving the oxidative stability of fatliquors (Additional 
file  1: Fig. S1), and providing theoretical guidance for 
the development of high-quality and oxidation-resistant 
fatliquors.

2  Materials and methods
2.1  Materials
Fatliquors, namely, synthetic oil (the scientific name 
is phosphate ester, synthesized by the reaction of 

long-chain fatty alcohol and  P2O5), castor oil, freshwater 
fish oil, rape oil, deep sea fish oil, sulfated rape oil, sul-
fonated rape oil, oxidized–sulfited rape oil, and phos-
phated rape oil, were of industrial grade and provided by 
Decision Chemical Co., Ltd (Sichuan, China). Butylated 
hydroxyanisole (BHA), butylated hydroxytoluene (BHT), 
tannic acid (TA), and vitamin C (VC) were of analytical 
grade and purchased from Aladdin Biochemical Tech-
nology Co., Ltd (Shanghai, China). All the other reagents 
were of analytical grade and purchased from Chengdu 
Kelong Chemical Co., Ltd (Chengdu, China).

2.2  Accelerated oxidation tests for fatliquors
2.2.1  Apparatus
A simple experimental apparatus for analyzing the oxi-
dative stability of fatliquors was designed and built 
according to ISO 6886 [19] with some modifications 
to reduce the cost of apparatus. As shown in Fig.  1, air 
pump, gas flow meter, silica gel drying tube, sample bot-
tle, and absorption bottle were connected in sequence 
with a latex tube. A certain amount of fatliquor sample 
was placed in a sample bottle, which was incubated in an 
oil bath at 100 °C. A stream of purified air was pumped 
into the sample at a flow rate of 10 L/h to accelerate 
the oxidation of fatliquor. During oxidation, the sample 
was taken out of the sample bottle for testing, and the 
gases released from the fatliquor, together with air, were 
imported into the absorption bottle containing 50 mL of 
deionized water. The conductivity of the absorption solu-
tion was monitored in real time with a conductivity tester 
(S230 SevenCompact™, Mettler Toledo, Switzerland) for 
the analysis of oxidation induction time.

2.2.2  Determination of oxidation induction time
Synthetic oil, castor oil, freshwater fish oil, rape oil, and 
deep-sea fish oil (20.0  g each) were separately oxidized 
at 100 °C with 10 L/h of air with an apparatus, as shown 

Scheme 1 Possible oxidation pathway of unsaturated oils
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in Fig. 1. The conductivity of the absorption solution was 
recorded every 10 min with a conductivity tester. Then, a 
conductivity curve was plotted over time, and the oxida-
tion induction time (unit: h) of the fatliquor sample was 
obtained using the bitangent method [19].

2.2.3  Determination of ∆ IV, ∆ AV, and ∆ PV
Synthetic oil, castor oil, freshwater fish oil, rape oil, and 
deep-sea fish oil (50.0 g each) were separately oxidized at 
100 °C with 10 L/h of air for 12 h with the apparatus, as 
shown in Fig.  1. Then, a certain amount of an oxidized 
sample was used for determining iodine value accord-
ing to ISO 3961 [20], acid value according to ISO 660 
[21], and peroxide value according to ISO 3960 [22]. The 
iodine, the acid, and peroxide values of the five fatliquors 
before accelerated oxidation were measured as initial val-
ues. Then, the ∆ IV, ∆ AV, and ∆ PV of the fatliquors were 
obtained by calculating the differentials of the three indi-
cators before and after oxidation.

2.3  Attenuated total reflection Fourier transform infrared 
spectrum of modified rape oils

Rape oil, sulfated rape oil, sulfonated rape oil, oxidized–
sulfited rape oil, and phosphated rape oil were placed 
in a freeze dryer (Beta 1–8 LDPlus, Christ, Germany) 
for moisture removal. Then, each fatliquor sample was 
dropped into the center of a sample cell of the infrared 
spectrometer (Nicolet IS10, Thermo Fisher, USA) for the 
collection of infrared spectra within the range of 400–
4000  cm−1 at a resolution of 0.5  cm−1. Cumulative scans 
were performed 32 times [23].

2.4  Accelerated oxidation tests for modified rape oils
Accelerated oxidation tests were separately carried out 
on sulfated rape oil, sulfonated rape oil, oxidized–sulfited 
rape oil, and phosphated rape oil, and their oxidation 
induction time, ∆ IV, ∆ AV, and ∆ PV were determined 
with the apparatus and methods described in Sect. 2.2.

Fig. 1 Experimental apparatus for the acceleration of fatliquor oxidation
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2.5  Accelerated oxidation tests for sulfated rape oil 
with antioxidants

Sulfated rape oil was mixed with 1 wt% (based on the 
weight of sulfated rape oil) BHA, BHT, TA, and VC suc-
cessively. Accelerated oxidation tests were carried out on 
the mixture, and oxidation induction time, ∆ IV, ∆ AV, 
and ∆ PV were determined according to the apparatus 
and method described in Sect. 2.2.

3  Results and discussions
3.1  Establishment of methods for evaluating the oxidative 

stability of fatliquors
One purpose of this work was to propose effective meth-
ods for evaluating the oxidative stability of fatliquors. The 
oxidation induction time, ∆ IV, ∆ AV, and ∆ PV of the five 
typical fatliquors, which have different levels of oxidative 
stability, were first detected, and the relationship between 
each indicator and the oxidative stability of fatliquor was 
analyzed. The suitable indicator for the evaluation of the 
oxidative stability of the fatliquors was determined.

The unsaturated bonds of fatliquors can react with 
halogens in an addition reaction and can thus be esti-
mated with iodine value [20]. The initial iodine values of 
the five fatliquors in Fig. 2 indicated that the natural oils 
followed the order deep sea fish oil > rape oil > freshwa-
ter fish oil > castor oil according to the number of double 
bonds, and the synthetic oil almost had no double bonds. 
Given that the oxidation of natural oils mainly occurs 
in the active methylene groups next to double bonds 
(Scheme 1) [14], a high number of double bonds usually 
results in low oxidative stability [24]. The five fatliquors 
varied in number of double bonds and thus had different 
levels of oxidative stability.

A long time is needed to oxidize fatliquors under ambi-
ent conditions. Thus, the oxidation induction time, ∆ 
IV, ∆ AV, and ∆ PV of the fatliquors in our study were 

determined under an accelerated oxidation condition 
(100 °C and 10 L/h of air). The small molecular organics 
released from the fatliquors during the accelerated oxida-
tion process were purged into water. The procedure led 
to an increase in water conductivity (Fig.  1), which was 
then plotted over time. The oxidation induction time of 
the fatliquors was obtained using the bitangent method, 
as shown in Fig.  3. Here, oxidation induction time rep-
resented the time when the formation of oxidation 
products rapidly begins to increase rapidly. As shown 
in Fig.  3a, there were no sharp rises in the conductiv-
ity–time curve of synthetic oil because synthetic oil has 
no double bonds (Fig.  2; iodine value, 0.8  g/100  g) and 
is difficult to oxidize into small molecular organics even 
at a high temperature and in an oxygen-enriched envi-
ronment. As shown in Fig. 3b–e, the conductivity–time 
curves of the natural oils contained two periods. The first 
period (the slow growth of the conductivity–time curve) 
is known as the induction period, during which the oils 
slowly absorbed oxygen and peroxides formed. The sec-
ond period (the rapid growth of the conductivity–time 
curve) is referred to as the tainted odor and flavor period, 
in which the oils rapidly absorbed oxygen and peroxides 
were dissociated into aldehydes, ketones, and low fatty 
acids [19]. The oxidation induction time of four natural 
oils (Fig. 3f ) obtained from the conductivity–time curves 
in Fig. 3b–e followed the order castor oil (13.0 h) > fresh-
water fish oil (10.2 h) > rape oil (9.3 h) > deep sea fish oil 
(5.3  h). The comparison between Figs.  2 and 3f showed 
that the oxidation induction times of fatliquors were 
negatively correlated with their initial iodine values, indi-
cating that fatliquors with more double bonds required 
shorter times to be oxidized and the fatliquor with a 
high initial iodine value, that is, a large number of dou-
ble bonds, had a low oxidative stability, which is con-
sistent with results of oils obtained in previous studies 
[24]. Thus, the oxidation induction time can be used as a 
quantitative indicator for evaluating the oxidative stabil-
ity of fatliquors.

The oxidation of oils causes changes in their iodine, 
acid, and peroxide values [14, 15]. After accelerated 
oxidation for 12 h, the ∆ IV, ∆ AV, and ∆ PV of the five 
fatliquors were analyzed, and the results are listed in 
Fig.  4. The Δ IV, Δ AV, and Δ PV of synthetic oil were 
close to zero because it had no double bonds and was 
thus difficult to oxidize. The ∆ IV of natural oils followed 
the order deep sea fish oil > rape oil > freshwater fish 
oil > castor oil (Fig. 4a). The ∆ IV of natural oils was posi-
tively correlated with their initial iodine values because 
the oils with more double bonds are easier to be oxidized 
and caused sharper decreases in the number of double 
bonds. The ∆ IV accurately characterized the decrement 
of double bonds and was thus suitable for describing the Fig. 2 Initial iodine value of synthetic and natural oils
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oxidative stability of the fatliquors. The ∆ AV of natural 
oils showed a positive correlation with the initial iodine 
value of the oil (compare Figs. 2 with 4b) because oxida-
tion of the oils with more double bonds proceeded more 
smoothly and more small molecular organic acids were 
generated. Therefore, the ∆ AV is also a simple indicator 
for evaluating the oxidative stability of the fatliquors.

The peroxide values of natural oils increased after 
accelerated oxidation test (Additional file  1: Fig. S2[c]), 
but no clear correlation was found between the ∆ PV 

(Fig. 4c) and initial iodine value. The reason was that per-
oxide is only an intermediate product during oxidation 
and easily decomposed into secondary compounds [25]. 
Thus, although the ∆ PV can indicate the occurrence of 
an oxidation reaction and formation of peroxide interme-
diates, it was unsuitable for evaluating the oxidative sta-
bility of fatliquors.

In summary, the number of double bonds of fatliquors 
that can be characterized using the iodine value is 
an important factor affecting oxidative stability. The 

Fig. 3 Conductivity–time curves of synthetic oil (a), castor oil (b), freshwater fish oil (c), rape oil (d), deep sea fish oil (e), and the oxidation induction 
time of the natural oils (f ), under accelerated oxidation conditions (100 °C, 10 L/h air)

Fig. 4 Changes in iodine value (a), acid value (b), and peroxide value (c) of synthetic and natural oils after accelerated oxidation (100 °C, 10 L/h air, 
12 h)
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fatliquors with more double bonds are easier to be oxi-
dized. Oxidation induction time, ∆ IV, and ∆ AV can be 
used in quantifying the difficulty level of fatliquor oxida-
tion when the oxidation induction time is less than 13 h.

3.2  Effect of modification method on the oxidative 
stability of fatliquors

The water solubility of natural oils that mainly 
exist in the form of triglycerides can be improved, 
and active groups that can react with collagen fib-
ers [26, 27] can be introduced through modification 
using sulfation, sulfonation, oxidation–sulfitation, 

and phosphorylation reactions before the natural 
oils are used as leather fatliquors. These modifica-
tion processes consume the double bonds of oils and 
reduce unsaturation, as shown in Scheme  2, which 
should be helpful in improving the oxidative stabil-
ity of fatliquors. In this section, we investigated the 
effect of modification method on the oxidative sta-
bility of fatliquors by comparing the oxidative induc-
tion time, ∆ IV, and ∆ AV of sulfated, sulfonated, 
oxidized–sulfited, and phosphated rape oils that were 
all produced by modifying the same rape oil. We hope 
to provide a guide for improving the design of the 

Scheme 2 Diagram of modification mechanism of rape oil
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molecular structures of fatliquors and selecting appro-
priate modified fatliquors that do not cause unpleasant 
odor and produce Cr(VI) and VOCs.

Figure  5 shows the ATR-FTIR spectra of rape oil and 
modified rape oils. Compared with rape oil, sulfated 
rape oil had a new absorption peak at 1198  cm−1, which 
was attributed to the sulfate ester group [28]. Sulfonated 
and oxidized-sulfurized rape oils showed a new absorp-
tion peak at 1042   cm−1, which was assigned to the sul-
fonic group [29, 30]. Phosphated rape oil showed a new 
absorption peak at 1068  cm−1, which was ascribed to the 
phosphate ester group [31]. The above results indicated 
that the target active groups were successfully intro-
duced into the rape oil. Moreover, the iodine value of 
rape oil (111.5 g/100 g, Fig. 2) was reduced to less than 
98.0  g/100  g after modification (Additional file  1: Fig. 
S4[a]), indicating that these modifications did consume 
the double bonds of the oil.

As shown in Fig. 6a and Additional file 1: Fig. S3, the 
oxidation induction times of the modified rape oils 
were longer than that of the rape oil, indicating that the 

modifications that decreased the double bonds of the 
rape oil improved the oxidative stability of the fatliquors. 
The order of oxidation induction time was sulfation > sul-
fonation > oxidation–sulfitation > phosphorylation, which 
was consistent with the ∆ IV and ∆ AV results in Fig. 6b 
and c. These results showed that the improvement of the 
oxidative stability of rape oils by modification followed 
the order: sulfation > sulfonation > oxidation–sulfita-
tion > phosphorylation. Sulfation modification changed 
most of the double bonds of rape oil to sulfate ester 
bonds through an addition reaction [28]. Sulfonation and 
oxidation–sulfitation modifications partially consumed 
the double bonds of rape oil [29, 30]. Phosphorylation 
modification basically reserved the double bonds of rape 
oil because the esterification reaction occurred between 
 P2O5 and the hydroxyl group of rape oil [31]. Therefore, 
the sulfated rape oil had the lowest iodine value and high-
est oxidative stability among the four modified rape oils, 
whereas the phosphated rape oil had the highest iodine 
value and lowest oxidative stability. Notably, the ∆ AV 
of the phosphated rape oil was similar to that of rape oil 

Fig. 5 ATR-FTIR spectra of rape oil (a), sulfated rape oil (b), sulfonated rape oil (c), oxidized–sulfited rape oil (d), and phosphated rape oil (e)

Fig. 6 Effect of modification of rape oil on its oxidation induction time (a), ∆ IV (b), and ∆ AV (c)
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(Fig. 6c). This result was inconsistent with the results of 
oxidation induction time (Fig. 6a) and ∆ IV (Fig. 6b). This 
phenomenon suggested that the sensitivity of ∆ AV in 
evaluating the oxidative stability of fatliquors was lower 
than that of oxidation induction time or ∆ IV.

3.3  Effect of antioxidant on the oxidative stability 
of fatliquors

Adding antioxidants is regarded as one of the most 
effective and convenient methods for improving the 
oxidative stability of natural oils used in food and phar-
maceutical fields [32, 33]. In this section, the effects 
of typical synthetic antioxidants (BHA and BHT) [34] 
and natural antioxidants (TA and VC) [35] on the oxi-
dative stability of fatliquors were investigated by ana-
lyzing changes in the oxidative induction time, ∆ IV, 
and ∆ AV of sulfated rape oil. Figure 7a and Additional 
file  1: Fig. S5 provide the oxidation induction time of 
sulfated rape oil after the addition of various antioxi-
dants, which clearly showed that the introduction of 
antioxidants greatly improved the oxidative stability of 
the fatliquor, and synthetic antioxidants exhibited bet-
ter antioxidant effects than natural antioxidants. The 
reason for this phenomenon should be the fact that the 
solubility, the thermal stability, and the purity of syn-
thetic antioxidants were higher than those of natural 
antioxidants [36].

The ∆ IV and the ∆ AV of sulfated rape oil after the 
addition of various antioxidants did not show significant 
differences (Fig. 7b and c, and Additional file 1: Fig. S6) 
possibly because the antioxidants significantly improved 
the oxidative stability of sulfated rape oil, making the 
iodine and acid values of fatliquor nearly unchanged 
after oxidation. The results also indicated that ∆ IV and 
∆ AV did not accurately reflect difference in the oxida-
tive stability of fatliquors when the oxidation induction 
time of the fatliquor was more than 22 h. Therefore, the 

sensitivity of ∆ IV or ∆ AV for the evaluation of oxidative 
stability was inferior to that of oxidation induction time.

4  Conclusions
Oxidation induction time, ∆ IV, and ∆ AV can be used 
for evaluating the oxidative stability of leather fatliquors. 
Oxidation induction time has the highest sensitivity and 
widest scope of application. The evaluation of the oxida-
tive stability of fatliquors with ∆ IV and ∆ AV has low 
cost and easy operation, but ∆ IV and ∆ AV are unsuit-
able for distinguishing difference of the fatliquors with 
relatively high oxidative stability. Modification processes 
that can reduce the double bonds of natural oils, espe-
cially sulfation modification, improve the oxidative stabil-
ity of fatliquors. Moreover, the addition of antioxidants 
is a convenient method for improving oxidative stability, 
and synthetic antioxidants BHA and BHT showed excel-
lent effects.
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