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Abstract

Rice Husks (RHs) are one of the most abundant sources of biomass in the world due to rice consumption.
Lignocellulose and silica are two of the main components of RHs, which allow RHs to be applied in different areas.
Lignocellulose can be partially dissolved in 1-butyl-3-methylimidazolium chloride (BMIMCl), which is a simple way of
competing with the traditional extraction methods that suffer from high chemical consumption. A lignocellulose
freeze gel is obtained via a cyclic liquid nitrogen freeze-thaw (NFT) process. Multi-functional self-assembled
lignocellulose aerogel is obtained after CO2 supercritical drying. Based on the aerogel’s special properties, two
routes are developed for practical applications. On one hand, the aerogel is coated to exhibit a superhydrophobic
property that can be applied as an absorbent for oil spills. On the other hand, a carbon aerogel is synthesized via a
pyrolysis process, resulting in a porous amorphous carbon. The residue after partially dissolving lignocellulose in
BMIMCl is further calcined to obtain amorphous silica nanoparticles, achieving a comprehensive application of RHs.
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1 Introduction
Rice husks (RHs) are one of the most abundant sources
of biomass in the world because of the massive amount
of rice consumed by the human population. There are
two main components in RHs: silica (ca. 15–28 wt.%)
and lignocellulose (LC) (ca. 72–85 wt.%) [1–3]. If iso-
lated, the silica from RHs [4, 5] can be used to prepare
various silicon-based materials, including silicon carbide
[6], silicon nitride [7], silicon tetrachloride [8], silicon
[9], and zeolite [10]. These materials have widespread
applications in semiconductors [10], abrasive materials
[10], pigments [11], catalyst supports [12], biomedicine
[13], luminescence [14–17], etc. LC is a natural polymer,
containing lignin, cellulose, and hemicellulose [18]. LC
can be used to prepare biochemicals, such as bioethanol
and xylitol [19], as well as quantum dots [20]. Of the
three major contents of LC, cellulose is abundantly

available in nature, and has been used by humans for a
wide range of applications for thousands of years [21].
Recently, cellulose has become an attractive sustainable
resource and been applied across several areas, including
cellulose gas barrier films [22], sensors [23], cellulose
nanocrystals [23], and aerogels [24]. However, the ex-
traction process of RH cellulose is very complex and
time consuming [25]. Ionic liquids (ILs) were reported
to be able to effectively dissolve cellulose and lignin [26,
27] because the ions in ILs can serve as the acceptor of
hydrogen bonds, which helps to isolate the lignocellulose
from RHs [28, 29]. As such, ILs are a good working
medium to directly extract LC from RH biomass, and
dissolve those organic components to form a homoge-
neous system.
Aerogels are a group of materials with a 3-D porous

network structure. Their ultra-low density, high surface
area, and large porosity make them attractive for many
applications, including catalyst supports [30], artificial
muscles [31], supercapacitors [32], and absorption mate-
rials [33–37]. Carbon aerogels are particularly promising
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due to their high conductivity [38]. Graphene and car-
bon nanotubes from chemical vapor deposition (CVD),
and resorcinol-formaldehyde aerogels derived from pyr-
olysis are the two main routes to prepare carbon aero-
gels [39, 40]. However, the precursors are very
expensive, and some of the chemicals used are also not
friendly to the environment.
Since ILs are able to effectively dissolve LC from RHs

[18], under a subsequent series of treatments of a liquid
nitrogen freeze-thaw (NFT) process [41, 42], water regen-
eration, and CO2 supercritical drying, self-assembled LC
aerogels can potentially be prepared [41]. In addition to
their practical applications, such as absorption materials
for various chemicals (e.g., oil spill cleanup) thanks to
their high porosity and surface area, such self-assembled
LC aerogels may also help researchers better understand
the mechanism of the self-assembly of LC and collagen fi-
brils, two of the most abundant fibers in nature. How LC
(predominately in plants) and collagen (predominately in
animal bodies) fibrils self-assemble into larger scale struc-
tures in living body still remains a mystery [43].
Carbon aerogels can be further obtained via high

temperature pyrolysis of LC aerogels under an inert at-
mosphere. The porous structure can be maintained and
the entire organic components can be converted into
carbon. Their remarkable chemical and physical proper-
ties make carbon aerogels promising for various applica-
tions, such as supercapacitors [44–46], catalyst supports
[47, 48], and gas storage [48].
Biomass has recently become increasingly attractive be-

cause they are renewable. Both the inorganic and organic
components in biomass can be potentially applied to differ-
ent areas. But the major problem facing biomass utilization
is the trade-off between efficiency and waste. For example, to
extract high purity silica from RHs, traditionally the organic
components are wasted and vice versa. Therefore, a route to
derive both organic and inorganic components from RHs is
highly describable and should be more sustainable.
Herein, we report a comprehensive strategy to prepare

both LC aerogel and amorphous silica nanoparticles
from RHs. The LC aerogel has a high surface area with a
mesoporous structure. By surface modification with a
hydrophobic agent, the aerogel with a hydrophobic sur-
face was prepared. The carbon aerogel was further pre-
pared by pyrolyzing the LC aerogel under an inert
atmosphere. The residue from IL treated RHs was fur-
ther calcined to prepare amorphous silica nanoparticles.
These three processes demonstrate a good example to
convert biomass into value added products, as well as
the promising future of green chemistry.

2 Results & discussion
The entire process for preparing self-assembled LC aero-
gel, carbon aerogel, and silica nanoparticles is shown in

Fig. 1. RHs, which contain a high content of LC, were
partially dissolved in BMIMCl after 4 h of treatment at
85 °C [18, 28]. The LC IL solution was obtained after
centrifugation, and subsequently treated by the NFT
process to induce gelation [22, 42]. First, the IL solution
containing LC was frozen by liquid nitrogen, during
which the IL solvent began to freeze, so that it contained
a frozen and unfrozen liquid micro-phase [42]. After
freezing for 6 h, cellulose, hemicellulose, and lignin were
extruded by the completely frozen IL crystalline. In this
process, the gaps between cellulose macromolecules
shrunk. The molecules were then crosslinked by physic-
ally twisted crosslinking points [42]. Finally, a gel formed
during a slow thawing process due to an increasing
strength of the physical crosslinking with an increasing
temperature. By utilizing CO2 supercritical drying, a
low-density LC aerogel was obtained. As shown in Fig.
1, the self-assembled LC aerogel was light enough to
stand on a dandelion. The density of the LC aerogel was
measured to be 0.129 g/cm3. This approach to prepare
light aerogel is advantageous because of three reasons.
First, the formation process does not use any crosslink-
ing agent, which may cause environmental and health is-
sues. Second, the process is very facile. The self-
assembly thermodynamic process minimizes the
utilization of chemicals. Third, RH biomass, sometime
treated as a biowaste, was used as the staring material.
The cross section of the LC aerogel derived from RHs

was characterized by SEM and the images are presented
in Fig. 2a and b, which show that the LC IL solution
formed a steady network structure with a dense porosity.
The higher resolution SEM image indicates that the LC
fibers interconnected at physical crosslinking points [22,
42]. The result suggests that the cyclic water regener-
ation could effectively remove IL, eliminating the barrier
of the following gelation process. Overall, the NFT
process successfully led to the formation of a hydrogel
from the IL LC solution. With the assistance of CO2

supercritical drying, the hydrogel could maintain its por-
ous network structure to form an aerogel, promising for
a wide variety of applications depending on the porous
structure [42].
Self-assembled LC aerogel is a porous material that

contains an abundance of carbon. Thus, carbon aerogel
could be generated from LC aerogel in an inert atmos-
phere under elevated temperatures. As shown in Fig. 2c
and d, the porous network structure was well maintained
throughout the high temperature pyrolysis, which indi-
cates that the LC aerogel could maintain its structure at
elevated temperatures. The inert atmosphere also con-
tributed to minimizing the damage to the porous struc-
ture. The lignin and hemicellulose wrapped around
cellulose were changed to spheres after pyrolysis and at-
tached to the carbonized cellulose structure [49].
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Fig. 1 Flow chart of the process to prepare LC aerogel, carbon aerogel, and RH silica

Fig. 2 a SEM image of the LC aerogel synthesized after 5 cycles of NFT; b enlarged area of Figure b; c SEM images of the carbon aerogel
prepared via the pyrolysis of LC aerogel under 1000 °C for 2 h; d enlarged area of Figure (c)

Wei et al. Journal of Leather Science and Engineering             (2021) 3:2 Page 3 of 7



Figure 3a shows the XRD patterns of the LC aerogel
and RH cellulose. The results show that RH cellulose
bears the typical cellulose I structure according to the
characteristic diffraction peaks (002), (101), and (040), at
15.5°, 22.1°, and 34.7°, respectively [50]. The LC aerogel
was obtained after water regeneration and CO2 super-
critical drying. It mainly showed one broad hump at ca.
21.1°, indicating that the regenerated LC has a lower de-
gree of crystallinity than the raw cellulose, which is ex-
pected [51]. According to the previous reports [52, 53],
the regenerated cellulose or lignocellulose possess a cel-
lulose II structure with a characteristic peak (002) at
12.1°, which is also shown in the XRD pattern of the LC
aerogel. The lower crystallinity of the regenerated LC is
due to some of the intrinsic inter- and intra-molecular
hydrogen bonds and destruction of crystallized struc-
tures of cellulose in the dissolving process [51]. How-
ever, the intensity of the (002) peak of the LC aerogel is
relatively low as shown in Fig. 3a, due to the fact that
lignin restrained the swelling of cellulose molecules in IL
and limited the solubility of cellulose molecules at rela-
tively low temperatures (85 °C) [42, 53, 54].
As shown in Fig. 3b, the N2 adsorption-desorption

curves of the LC aerogel and carbon aerogel prepared at
1000 °C are of type IV, suggesting that the two types of
aerogels are mesoporous. The curves also indicate that
the LC aerogel formed a mesoporous network structure
after cyclic NFT thermodynamic crosslinking, and the
carbon aerogel maintained a porous structure after pyr-
olysis. Based on the isotherms, the specific surface area
(SSA) and pore property data were calculated and are
summarized in Table 1. The LC aerogel derived from

RHs has a relatively higher total specific surface area
(SSA (total)) of 106.5 m2/g, compared to the literature
data of 80.7 m2/g [22]. The main reason is most likely
because RHs contain a high cellulose content [55], which
could minimize the effect of lignin in the solution, and
assist the formation of a porous network structure. The
LC aerogel also has a high SSA (meso)/SSA (total) ratio,
which is probably due to the low surface tension at the
supercritical CO2/hydrogel interface during CO2 super-
critical drying. After the conversion of LC aerogel to car-
bon aerogel, the SSA (total) of the carbon aerogel sample
reached 217.3 m2/g.
LC is hydrophilic due to the hydroxyl groups present

on the structures of lignin, cellulose, and hemicellulose.
It was reported that a hydrophobic coating could be ap-
plied on a recycled cellulose aerogel to make it oleophi-
lic [33]. One of the main incentives to convert cellulose
aerogels to be hydrophobic is because hydrophobic aero-
gels can repel water and attract oil, making them prom-
ising for applications such as oil spill cleaning [56].
Figure 4a and b shows the water contact angles (WCAs)
of 132.5° and 130.5° on an external and a freshly frac-
tured surface of the coated LC aerogel, respectively. This
result suggests that the hydrophobic modification by
MTMS vapor can reach deep into the LC aerogel, and
the entire 3-D porous structure was converted to be
hydrophobic.
In order to investigate the potential oil absorption

performance of the surface-modified LC aerogel,
pump oil stained by Sudan III dye (to show a high
visibility) was adopted for the demonstration, and the
result is presented in Fig. 4c. The surface modified

Fig. 3 a XRD patterns of the LC aerogel and the cellulose derived from RHs; b N2 adsorption-desorption isotherms of the LC aerogel and
carbon aerogel

Table 1 Surface area of the LC aerogel and carbon aerogel

Sample SSA(total)

[m2/g]
SSA(meso)

[m2/g]
SSA(micro)

[m2/g]
SSA(meso) /SSA(total)

[%]
SSA(micro) /SSA(total)

[%]

LC aerogel 106.5 100.2 6.2 94.1 5.8

Carbon aerogel 217.3 55.5 143.6 25.5 66.1
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LC aerogel can easily and quickly absorb the pump
oil. At the beginning of the test, the stained pump oil
was floating on water surface. Upon direct contact
with the aerogel, the oil was quickly absorbed. After
the completion of the absorption, the oil was com-
pletely removed and no stained oil was visibly de-
tected on the water surface. The result suggests that
the modified LC aerogel could effectively absorb oil
from water surface, offering an environmentally-
friendly alternative option for oil spill cleaning.
RH residue after IL treatment was rinsed by DI water

and dried in an oven. After that, the residue was calcined
at 700 °C for 2 h to synthesize silica [1, 9, 11, 12]. The
XRD patterns shown in Fig. 5a indicate that the silica
derived from the IL treated RH residue (RH-IL-silica)

remained to be amorphous. It exhibits a similar XRD
pattern as the silica derived from HCl treated RHs (RH-
HCl-silica), a widely adopted process to synthesize silica
from RHs [18]. Figure 5b shows the SEM image of RH-
IL-silica, which exhibits as nanoparticles with a diameter
of ca. 40–80 nm. Considering IL treated RH residue is a
byproduct, using this residue to prepare silica contrib-
utes to the comprehensive application strategy of RH
biomass, which improves the utilization efficiency of
RHs and broadens the applications of RH biomass [18].
Due to the amorphous phase and relative high surface
area, the silica derived from RHs can be used as a filler
in plastics, rubbers, and personal care products, and as
the starting material for various silicon-containing mate-
rials [10].

Fig. 4 Water contact angles of the MTMS vapor treated LC aerogel: a on an external surface, and b on a freshly fractured surface. c Pump oil
absorption process by the MTMS vapor treated LC aerogel

Fig. 5 a XRD patterns of the silica samples synthesized from IL treated RH residue and HCl treated raw RHs; b SEM image of the silica
synthesized from IL treated RH residue
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3 Conclusion
In summary, the LC in RHs could be successfully dis-
solved into IL (BMIMCl) to form a homogenous solu-
tion. LC aerogel with a 3-D porous network structure
was prepared by treating the LC IL solution by the NFT
process followed by freeze drying. After the MTMS
vapor treatment, the LC aerogel turned from hydrophilic
to hydrophobic. Such a modified LC aerogel could po-
tentially find uses in absorption applications, such as
cleaning oil spills. The LC aerogel can be easily con-
verted to carbon aerogel with a high surface area
through a facile pyrolysis process. Meanwhile, amorph-
ous silica nanoparticles could be prepared from the IL
treated RH residue, leading to a comprehensive
utilization of RH biomass.

4 Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s42825-020-00044-x.

Additional file 1. The experimental part is available in the supporting
information.
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