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Highly selective and sensitive colorimetric
chemosensor based on tricarboyanine for
detection of Ag+ in industrial wastewater
Xiaolong Zeng1,2, Xuezhao Li1 and Wen Sun1*

Abstract

An efficient fluorescent probe 1 based on tricarbocyanine derivative was designed and synthesized, which can
detect Ag+ in real industrial wastewater. UV-Vis absorption and fluorescent emission spectra of probe 1 were
carried out and indicated this probe can bind Ag+ via complexation reaction, then leading to a remarkable color
change from blue to light red. Furthermore, probe 1 showed high sensitive performance and excellent selectivity
toward Ag+ over other common metal ions in neutral pH. The sensing mechanism was proposed and further
confirmed by 1H NMR, which demonstrate analyte-induced destruction of the π-electron system could be shorten
by the disruption of the pull-push π-conjugation system in probe 1. Moreover, a test strip was prepared by filter
paper immersing in probe 1 solution, which further provide its potential application for trace Ag+ detection in real
industrial wastewater.
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1 Introduction
Ag element and its derivative are extensively used in
photography industry, electrical industry as well as
pharmaceutical industry [1–3]. On the other hand,
owing to the excellent antimicrobial activity, nowadays
silver nanoparticles are also of great significance using in
consumer product like leather goods. In recent years, re-
searchers proposed a method for designing an antibac-
terial coating of leather, which first prevent from
bacterial adhesion and subsequently kill and remove the
attached bacterial from the coating surface of leather [4].
The green and in situ synthetic techinique of coating sil-
ver nanoparticles on leather was also well investigated
[5]. Although Ag ion hold superior antibacterial effect, it
may also cause toxicity towards mammalian cells [6].
The released Ag ion form industrial or laboratory waste-
water to the environment has been estimated more than

2500 t every year, of which most of them ran into waste-
water treatment plants. However, there is still 80 t Ag
ion released into surface waters [2]. Although the tox-
icity of Ag ion ranges from several orders of magnitude,
strongly depend upon the type of compound and the
medium in which it is found [7, 8]. Long term exposure
of Ag ion could still cause severe toxicity to animals and
human beings [9–11]. Therefore, the development of Ag
ion detection method in wastewater is emergently
required.
There are several types of technologies to detect Ag

ion [12–16]. Inductively coupled plasma atomic emission
spectrometry (ICP-AES), inductively coupled plasma
mass spectrometry (ICP-MS) [17], atomic absorption
spectrometry (AAS) [18] etc. are easily available to de-
tect Ag ion, but they are high-cost and time-consuming
[19]. Therefore, a simple and rapid technology for de-
tecting Ag ion is required. Recently, various molecules
including metal–organic frameworks (MOFs), quantum
dots (QDs) have been used to detect metal ions [20–23].
QDs receive considerable interest for sensing due to
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their high fluorescent quantum yield, good anti-
photobleaching. MOFs are also promising materials
since the unique host matrices with diverse functional
species. However, QDs suffer limitations from the batch-
to-batch variation. It is also difficult to control the size
and fluorescence performance of QDs, which may be the
bottleneck to mass production. In addition, the practical
use of MOFs has also been restricted because of their
low selectivity, high construction cost and difficulty in
reformation [24]. Therefore, it is necessary to exploit
new chemical sensors with a controllable manner and
good regeneration ability. Lately, fluorescent chemosen-
sors can achieve these advantages and also provide real-
time detection of various heavy metal ions like Cu2+

[25–27], Cd2+ [28–30], Fe3+ [31, 32], Cr3+ [33–35], Pb2+

[36] and Zn2+ [37–39]. On the basis of ion-induced
change of fluorescence, fluorescent chemosensors have
been widely developed owing to their simplicity and high
detection limit [40]. Most of fluorogenic ion chemosen-
sor are composed of an ion recognition component
which decorated with a signal fluorophore. When ana-
lyte interacts with fluorophore, the change of fluores-
cence signal of fluorophore could be observed with the
appearance of quenching, enhancement or shift in the
fluorescence maxima [41].
Chemosensors derived from rosamine [42], pyrene [43,

44], porphyrin [45] and carboyanine [46] have been made
for Ag+ detection. However, the excitation and emission
wavelength of these chemosensors locate in the short wave-
length region, most of them were lack of high selectivity or
show no color changes [47]. Thus, it is also extremely valu-
able to develop novel Ag+ fluorescent chemosensor.
Among the various fluorophore chemosensors, hepta-

methine cyanine (Cy7) dyes have attracted great interest
because of their favorable optical properties. Cy7 dyes
also feature high absorption coefficient and high fluores-
cence quantum yield [46, 48]. What’s more, the excita-
tion and emission wavelength of Cy7 dyes locate in red
or near infrared region, which is the key point for de-
creasing background emissions, reducing scattering and
also meaningful for metal ion detection [41].
In this study, we reported a new Cy7 derivative probe

1 bearing an alkynyl piperazine unit as an Ag ion cap-
ture. Probe 1 exhibits strong fluorescence due to Cy7
fluorophore. Among the different kind of examined
metal ion, probe 1 exhibits a selective and unique color
change with Ag ion at different pH, owing to the coord-
ination mechanism between silver ion and nitrogen
atoms as well as alkynyl group.

2 Experimental methods
2.1 Materials and reagents
Phosphorus oxychloride (99%), cyclohexanone (> 99%),
2,3,3-trimethylindolenine (98%), iodoethane (99%), 3-

bromopropyne (80% in toluene) were purchased from
Aladdin Industrial Corporation (Shanghai, China). 1-
(tert butyloxycarbonyl) piperazine (> 98%) was pur-
chased from J&K Scientific Ltd. TLC was carried out on
silica gel coating with aluminum sheets equipped with
F254 indicator. Particle size of silica gel using for col-
umn separation was 0.063–0.200 mm. All other chemi-
cals and solvents were of analytic reagent grade. Milli-Q
water with a resistivity of 18.2 MΩ·cm was used
throughout all experiments.

2.2 Instrumentations
Nuclear magnetic resonance (NMR) spectrum were re-
corded on a Bruker AV250 NMR spectrometer in
Fourier transform mode. High performance liquid chro-
matography (HPLC) analysis was carried out on an Agi-
lent HPLC systems with a 1100 Series Quaternary
pump, a 1200 Series Diode detector and a Merck Chro-
molich Performance RP18e 100–3mm HPLC column.
Methanol and acetonitrile was used as the mobile phase.
UV-Vis absorption spectrum were recorded on a
Lambda 900 spectrometer (Perkin Elmer). Fluorescence
spectra were measured on a TIDAS II spectrometer
(J&M). The pH measurements were carried out on a
Mettler-Toledo Delta 320 pH meter.

2.3 Synthesis
2.3.1 Synthesis of 1-(prop-2-yn-1-yl) piperazine (a2, Fig. 1)
It was synthesized according to the reported literature
[49]. Typically, 1-(tert butyloxycarbonyl) piperazine (3.7
g, 20 mmol), 3-bromopropyne (1.9 mL, 22 mmol) and
K2CO3 (4.1 g, 30 mmol) were dissolved in CH3CN (60
mL). After then the solution was stirred at 60 °C for 8 h.
When cooling down to room temperature (R.T.), the
solution was evaporated under reduced pressure. The
obtained residue was re-dissovled in dichloromethane
(DCM), followed by washing with water twice. The
crude product was then purified through silica column
chromatography to obtain tert-butyl 4-(prop-2-yn-1-
yl)piperazine-1-carboxylate (a1). a1 was then dissolved
in DCM/TFA (v:v = 1:1) and the solution was stirred at
R.T. for 2 h. The solution was removed under a stream
of compressed air. The residue was dissolved in ethyl
acetate (EtOAc) and washed with NaHCO3 solution. a2
was afforded as a yellow, hygroscopic solid (actual
yield = 0.98 g; theoretical yield = 2.51 g; yield% = 39%).

2.3.2 Synthesis of 2-chloro-3-(hydroxymethylene)cyclohex-1-
enecarbaldehyde (b1, Fig. 1)
It was synthesized according to the reported literature
[50]. Specifically, Fresh distilled dimethylformamide
(DMF) (10 mL, 135mmol) was added into a 100 mL
two-neck round flask under argon atmosphere. After
that, DCM (10mL) containing phosphorus oxychloride
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(10 mL, 65 mmol) was added dropwise within 30 min at
0 °C. The solution was stirred at R.T. for 30 min,
followed by slowly adding cyclohexanone (2.5 g, 25
mmol) via a syringe. The resulting solution was reflux
for 3 h. When cooling down to R.T., the mixture was
poured into cold water then stood in refrigerator over-
night. b1 was filtered and washed with water, followed
by drying in vacuum as yellow solid (actual yield = 3.10
g; theoretical yield = 4.55 g; yield% = 68%).

2.3.3 Synthesis of 1-ethyl-2,3,3-trimethyl-3H-indol-1-ium
iodide (b2, Fig. 1)
It was synthesized according to the reported literature
[50]. Typically, 2,3,3-trimethylindolenine (3.18 g, 20
mmol) was dissolved in toluene (5 mL), iodoethane
(3.12 g, 20 mmol) was then added dropwise at R.T.. The
solution was kept at 80 °C for 12 h, cooling down to
room temperature and filtered. b2 was obtained as a
pink solid (actual yield = 5.62 g; theoretical yield = 6.30 g;
yield% = 89%).

2.3.4 Synthesis of 2-[2-[2-Chloro-3-[(1,3-dihydro-3,3-
dimethyl-1-ethyl-2H-indol-2-ylidene)ethylidene]-1-
cyclohexen-1-yl]ethenyl]-3,3-dimethyl-1-ethylindolium iodide
(CyCl, Fig. 1)
It was synthesized according to the reported literature
[50]. Typically, b2 (1.83 g, 5.8 mmol), sodium acetate
(0.48 g, 18 mmol) and the intermediate compound b1
(0.5 g, 2.9 mmol) were dissolved in 8 mL acetic anhydride
under argon atmosphere. The mixture was stirred at
130 °C for 3 h. When cooling down to R.T., the mixture
was poured into diethyl ether. The precipitate was
washed through diethyl ether and aqueous potassium
iodide solution. The crude product was then purified
through column chromatography with MeOH/DCM (v:
v = 1:10) as eluent to afford a metallic green solid (actual
yield = 1.80 g; theoretical yield = 1.97 g; yield% = 91%).

2.3.5 Synthesis of 3H-indolium, 1-ethyl-2-[2-[3-[2-(1-ethyl-
1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)ethylidene]-2-[1-
(prop-2-yn-1-yl)piperazinyl]-1-cyclohexen-1-yl]ethenyl]-3,3-
dimethyl-, iodide (probe 1, Fig. 1)
CyCl (319 mg, 0.5 mmol) and a2 (310 mg, 2.5 mmol)
were dissolved in dry DMF (10 mL). The solution was
stirred at R.T. overnight. The solution was then removed
under high reduced pressure, and the crude product was
purified through column chromatography with MeOH/
DCM (v:v = 1:20) as eluent to obtain a blue solid (actual
yield = 276 mg; theoretical yield = 363 mg; yield% = 76%).

2.4 Measurement method
The fluorescence measurement were performed with ex-
citation wavelength fixed at 510 nm. A water/ethanol 9/
1(v/v) mixture solvent was used to ensure probe 1 were
completely dissolved. A 0.5 mM stock solution of probe
1 was prepared in above solution. A 1mM stock solu-
tion of Ag+ was also prepared by dissolving AgNO3 in
Milli-Q water. Then a serious of probe 1 and Ag+ com-
plex solution were prepared by adding each probe 1
stock solution to 100 mL volumetric flasks containing
Ag+ stock solution and diluted with HEPES buffer. The
obtained solution was water/ethanol = 90:1 (v/v).

3 Result and discussion
3.1 Construction and characterization of intermediate and
probe 1
In order to obtain a specific fluorescent probe for Ag ion
detection, an alkynyl piperazine unit as Ag ion capture
was first synthesized. As shown in Fig. 1, 1-boc-piperazine
as starting material was conjugated with 3-bromopropyne
via substitution reaction, and subsequently deprotect the
boc group using trifluoroacetic acid. The Ag recognition
unit a2 could be post-synthetically to further functionalize
to the signal fluorophore. The chemical structure of a2
was confirmed by 1H NMR (Figure S1, Supporting
information).

Fig. 1 Synthetic route for probe 1
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To synthesize probe 1, first, the fluorophore CyCl was
synthesized via the condensation of the synthesized aro-
matic quaternary ammonium salt b2 with the condens-
ing agent b1. Then the obtained fluorophore was
decorated with the Ag ion capture to get a blue solid
probe 1. All the intermediate and probe 1 were obtained
in a high yield and fully characterized by 1H NMR
(Figures S2, S3, S4 and S5, Supporting information). Fur-
thermore, to better understand the purity of the final
probe 1, HPLC analysis was also performed (Figure S6,
Supporting information). The main peak appeared in
12.87 min showed the peak of probe 1 with the integra-
tion of 94.5%, which guarantee the high purity of probe
1 for further investigation.

3.2 Fluorescence and UV-Vis spectral response of probe 1
to Ag+

The fluorescence response of probe 1 was then studied
by fluorescence spectrometer. Figure 2 shows probe 1
(1.0 μM) displayed a strong emission of Cy7 fluorophore
with 510 nm excitation and emission wavelength ranging
from 540 nm to 860 nm in HEPES buffer (water/etha-
nol = 90:1, v/v). However, upon gradual addition of Ag+

solution, the 781 nm emission maxima decreased dra-
matically. When the Ag+ concentration reach up to
1.0 μM, the maximum fluorescent intensity was
quenched till 80% and subsequently extend the limit to
95% decreasing at 4.0 μM Ag+ concentration.

Meanwhile, the insert figure shows there is also a new
peak appeared at 558 nm. The linear relationship be-
tween the fluorescent intensity at 781 nm and the add-
itional Ag+ concentration was calculated (Figure S7,
Supporting information). The plotted curve has an ex-
tremely low Adj. R-Square with the value of 0.512, which
mean the data points cannot fit well with the linear line.
As a contrast, Fig. 3 shows the ratio of emission inten-
sity, I558/I781, gradually increased upon Ag+ addition, fit-
ting well with the plotted curve with the intercept (σ) of
0.005 and slope (S) of 0.702 as well as the Adj. R-Square
value of 0.992, which could be further used for deter-
mining the concentration of Ag+. The linear range of
probe 1 for detection Ag+ was found to be 5.0 × 10− 8 M
to 4.0 × 10− 6 M, which is comparable with other
methods based on chemosensor for metal ion detection
[51]. Moreover, the limit of detection (LOD) was calcu-
lated according to the formula: LOD = 3.3σ/S. The limit
of quantification was expressed according to the for-
mula: LOQ = 10σ/S. Therefore, the LOD was calculated
to be 2.3 × 10− 8 M and LOQ to be 7.1 × 10− 8 M.
UV-Vis spectrum of probe 1 was also carried out for

better understanding the variation of fluorescence
spectrum. Figure 4 shows free probe 1 exhibits the only
absorption peak at 670 nm. When gradually adding Ag+

into the solution, the peak intensity at 670 nm decreases,
while a new peak at 310 nm arises. The obvious blue-
shift is accordance with the observed color change of

Fig. 2 Fluorescence spectrum of probe 1 (1.0 μM) upon adding of Ag+ (0, 0.05, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0 μM) in HEPES buffer solution (pH 8.0). The
insert figure shows the enlarged spectrum between 540 nm and 650 nm
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Fig. 3 The curve is plotted with the fluorescence intensity ratio (I558/I781) versus Ag
+ concentration

Fig. 4 UV-Vis spectrum of probe 1 upon adding of Ag+ (0, 0.05, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0 μM) in HEPES buffer solution (pH 8.0)
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solution varying from blue to light red, which allows the
“naked-eye” detection of Ag+ shown in Fig. 5.

3.3 The selectivity to various metal ion as well as
common anion and pH effect of probe 1
In order to explore whether other metal ion or common
anions make a potential interference to probe 1, fluores-
cence titration experiments were carried out to evaluate
other 12 types of metal ion and common anions which
are usually found in wastewater samples under the same
conditions. As shown in Fig. 6, no observation of

fluorescent spectral changes for 1 μM probe 1 when
treating with most of these ions (0.5 μM) at pH 8. Only
adding Cr3+ caused a slight decreasing of fluorescent in-
tensity of probe 1. However, the overwhelming decreas-
ing fluorescent intensity at 781 nm upon addition of Ag+

indicates a highly selectivity for Ag+ over other tested
metal ion. Mg2+, Al3+, NO3

− and SO4− were further
chosen to investigate whether concentrations may affect
the anti-interference experiment. As shown in Fig. 7,
upon addition of these ions with different concentration
(0.5 μM, 1 μM and 2 μM), the fluorescent ratio showed

Fig. 5 Color changes observed upon addition of different concentration (μM) of Ag+ to the solution of probe 1 in HEPES buffer solution (pH 8.0)

Fig. 6 Fluorescence intensity of probe 1 in HEPES buffer solution with various metal ions and anions
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almost no change even when the concentration of
each ion reached 2 μM. All these results confirmed
that probe 1 could be used as a selective chemosen-
sor for detecting Ag+ in the presence of other com-
mon competing ions which can be found in
wastewater wastewater.

The performance of the fluorescent probe usually de-
pends on the pH value in real wastewater and causes a
significant effect on the testing metal ion. This is owing
to the protonation of probe dye in the acidic environ-
ment or the hydrolysis of metal ion in the basic environ-
ment. Therefore, whether pH influence the fluorescence

Fig. 7 Fluorescence intensity ratio (I558/I781) of probe 1 in HEPES buffer solution with different concentrations of ions and anions

Fig. 8 Effect of pH on the fluorescence intensity ratio (I558/I781) of probe 1 (black line) and 1 + Ag+ (red line)
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intensity ratio (I558/I781) of probe 1 in the presence of
Ag+ was further studied. These experiments were exe-
cuted at a varying pH from 2.0 to 12.0, with fixing probe
1 concentration of 1.0 μM and Ag+ of 2.0 μM. Figure 8
shows the intensity ratio of free probe 1 has no remark-
able change at different pH. However, when pH ranging
from 5.0 to 11.0, the fluorescent intensity ratio of 1-Ag+

complex strongly depend on the pH value. The response
behavior of complex exhibits largest I558/I781 ratio at pH
8, while dramatically decreases below pH = 5.0 or above
pH = 11.0 region. This is because protonation may hin-
der probe 1 binding to Ag+ when in strong acidic condi-
tion. While in strong basic condition, the Ag ion may
form AgOH precipitation which reduce the real Ag con-
centration, therefore cause the decreasing of fluorescent
intensity at 558 nm and further reducing the I558/I781 ra-
tio. Thus, the neutral pH ranging from 6.0 to 8.0 could
be chosen for further investigation and applications.

3.4 Investigation of binding mechanism
It is meaningful to modulate the π-electron system of
Cy7 fluorophore and to propose new method to develop
Cy7-based fluorescent probe [41]. Based on the 1:1 stoi-
chiometric ratio of probe 1 and Ag+ obtained by fluores-
cence spectrum, a coordination mechanism between Ag
ion and probe 1 was established in Fig. 9. In this model,
the two nitrogen atoms in the piperazine unit and the

terminal alkynyl group coordinate with the silver ion,
which promotes the large hypsochromic shifts in both
UV-Vis spectra and fluorescent spectra of probe 1. Via
the disruption of the π-electron system caused by Ag+,
the tunable absorption/fluorescence performances could
be shorten by destruction of the pull-push π-conjugation
system of Cy7 structure. The mechanism is also similar
to other cyanine-based chemosensors reported by Zhu
and coworkers [47]. They also proposed and synthesized
a ratiometric probe for Ag ion detection. Compared with
their work, the Ag capture unit of our work contains
one more alkynyl unit, which has superior alkynophili-
city because of the π-coordination between the Ag ion
and alkynyl group. The d10 of electronic configuration of
Ag ion contributes to the activation of alkyne, favoring
interactions with the π-bond of alkynes, leading to the
formation of a silver-π complex [52]. This makes probe
1 a higher sensitive and selective to Ag ion. Further
insight of the binding mechanism was proved by 1H
NMR (Figure S8, Supporting information). The H pro-
ton signals of piperazine unit and alkynyl group in free
probe 1 were located at δ 3.73, 3.79 and 2.85 ppm, re-
spectively. However, upon adding of Ag+ (1.0 equiv.),
these three signal shift to lower δ value (3.77 and 3.85
for piperazine proton, and 2.99 for terminal alkynyl
group). These result strongly demonstrated the complex-
ation reaction of probe 1 with Ag+ occurred at nitrogen

Fig. 9 Proposed binding mechanism of probe 1 in the presence of Ag+

Fig. 10 Photographs showing the color changes of probe 1 upon immersing in different concentration of Ag+ in HEPES solution (from left to
right: 0.00, 0.05, 0.10, 0.50, 1.00 μM)
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and alkynyl position, and thereby leading to the obvious
absorption/fluorescence change.

3.5 Preliminary application for preparing test strips and
applicability for real wastewater samples
Analytic test strips for metal ion provide easy and con-
venient ways for real-time analysis and indicating ion in
industrial wastewater without costly instruments [53,
54]. Noting that the obvious color change when adding
Ag+, the test strips were obtained when the filter paper
immersed into a saturated probe 1 ethanol solution,
followed by shaking for 4 h. Then, these strips dried in
air and subsequently treated with Ag+ solution ranging
from 0 μM to 4 μM in HEPES buffer solution. Figure 10
shows the colors were clearly turned from dark blue to
light red, demonstrating the Ag+ were simply and suc-
cessfully detected by the test strips, and realizing the
cost-effective strategy for naked-eye detection of Ag+.
In order to estimate the potential application for these

test strips, real wastewater samples and from a photog-
raphy company and a leather research laboratory were
also collected for Ag+ detection. The wastewater sample
from leather research laboratory was diluted to meet the
linear range of the test strips. These test strips exhibit
comparable responses to Ag ion. Table 1 summarized
the values from the chemosensor were comparable to
those calculated by the AAS method with a relative error
of less than 5%, which demonstrating these as-fabricated
could be potentially applied in real wastewater samples.

4 Conclusion
In summary, a colorimetric chemosensor probe 1 based
on tricarbocyanine derivative for Ag+ detection was suc-
cessfully developed. Upon adding Ag+ to probe 1 solu-
tion, the fluorescent spectrum and UV-Vis spectrum
show hypsochromic shifts which reflect silver-induced
destruction of the π-electron system in Cy7 structure.
The obvious absorption and emission shifts make
naked-eye detection possible. Probe 1 also exhibits high
sensitive performance and excellent selectivity toward
Ag+ over other normally used metal ions in neutral pH.
As a proof-of-concept application, a test strip for Ag ion
detection was developed in this work. The fabricated test
strip can be used to trace amounts of hazardous Ag+ in
real industrial wastewater, with a good accuracy and pre-
cision for the analysis of Ag+.

5 Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s42825-020-00031-2.

Additional file 1: Figure S1. 1H NMR of a2 (250 MHz, CD2Cl2). δ 3.27 (d,
J = 2.5 Hz, 2H), 2.88 (t, J = 4.9 Hz, 4H), 2.49 (t, J = 4.8 Hz, 4H), 2.31 (d, J = 2.6
Hz, 1H). Figure S2. 1H NMR of b1 (250 MHz, DMSO-d6). δ 10.72 (s, 1H),
7.70 (s, 1H), 2.36 (t, J = 6.2 Hz, 6H), 1.58 (p, J = 6.2 Hz, 3H). Figure S3. 1H
NMR of b2 (250 MHz, DMSO-d6). δ 7.98 (m, 1H), 7.85 (m, 1H), 7.64 (q, J =
4.9, 4.3 Hz, 2H), 4.50 (q, J = 7.3 Hz, 2H), 2.84 (s, 3H), 1.54 (s, 6H), 1.45 (t, J =
7.3 Hz, 3H). Figure S4. 1H NMR of CyCl (250 MHz, DMSO-d6). δ 8.27 (d,
J = 14.1 Hz, 2H), 7.64 (d, J = 7.4 Hz, 2H), 7.45 (m, 4H), 7.30 (m, 2H), 6.33 (d,
J = 14.1 Hz, 2H), 4.27 (q, J = 7.1 Hz, 4H), 2.73 (t, J = 6.0 Hz, 4H), 1.86 (t, J =
5.8 Hz, 2H), 1.67 (d, J = 4.4 Hz, 12H), 1.32 (t, J = 7.0 Hz, 6H). Figure S5. 1H
NMR of probe 1 (250 MHz, Methanol-d4). δ 8.48 (d, J = 14.1 Hz, 1H), 7.84
(d, J = 13.4 Hz, 1H), 7.55 (d, J = 7.4 Hz, 1H), 7.47 (d, J = 7.3 Hz, 2H), 7.35 (m,
3H), 7.19 (dd, J = 7.9, 4.5 Hz, 3H), 6.32 (d, J = 14.1 Hz, 1H), 6.02 (d, J = 13.5
Hz, 1H), 4.25 (q, J = 7.2 Hz, 2H), 4.10 (q, J = 7.2 Hz, 3H), 3.81 (t, J = 4.8 Hz,
3H), 3.62 (d, J = 2.4 Hz, 1H), 2.95 (t, J = 4.7 Hz, 4H), 2.77 (t, J = 6.1 Hz, 2H),
2.57 (t, J = 6.5 Hz, 3H), 1.87 (t, J = 6.5 Hz, 2H), 1.74 (d, J = 8.4 Hz, 12H), 1.41
(m, 6H). Figure S6. HPLC trace of probe 1. Figure S7. The curve is
plotted with the fluorescence intensity at 781 nm versus Ag+

concentration. Figure S8. 1H NMR of probe 1 in the absence of Ag+ and
in the presence of Ag+.
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