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Introduction
Lassa fever is an infectious disease and a zoonotic viral illness which is also called Lassa 
hemorrhagic fever. It is instigated by the Lassa virus, a single-stranded RNA virus from 
the Arenaviridae family [1, 2]. The main host of this virus is the mastomys natalensis, 
also known as a multimammate rat. It is known in Sub-Saharan African as one of the 
most common rodent species [3–5]. Although Lassa fever (LF) was first described in 
the 1950s, the viral particle responsible for its cause was first identified in 1969 in the 
northern region of Nigeria. This disease was named after Lassa, a town in Borno state 
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Nigeria where it was first identified. However, it has become endemic and a health chal-
lenge in Western African. According to the Centers for Disease Control and Prevention 
(CDC) and World Health Organization (WHO), the yearly estimated incidence in West 
Africa ranges from a hundred to three hundred thousand cases with nearly five thou-
sand deaths [6–8]. The eastern and western regions of West Africa have been identi-
fied as the high-risk area for Lassa fever with the regular widespread outbreak from the 
Lassa belt. The countries in the Lassa belt include Liberia, Guinea, Sierra Leone, and 
Nigeria [6, 9–11]. Many outbreaks have been reported from these regions over the years, 
among these is the largest epidemic reported in Nigeria, the country we take as a case 
study in this work. In 2018, Nigeria recorded an outbreak of Lassa fever which swept 
through eighteen out of the thirty-six states of the country. Over 400 confirmed cases 
were reported, and this was recorded as the largest outbreak [12]. However, following 
this incidence, Lassa fever cases have been increasing with an upsurge in both confirmed 
cases and deaths. Using the reported cases obtained through Nigeria Centre for Disease 
Control (NCDC) database [13], we depict the trend of confirmed cases and deaths from 
2018 to 2020 for Nigeria in Fig. 1. Although the prevalence of this disease is associated 
with an increase in the host reservoir, which is mainly driven by the ecological climate 
factor rainfall, various factors such as insufficient health facilities, polluted environment, 
and poor personal hygiene have contributed largely to the increase of cases yearly. Since 

Fig. 1  Number of reported cases a Confirmed cases; b Confirmed death. Reported cases are obtained from 
NCDC database [13], from 2018 to 2020
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the mastomys rodents migrate from their natural habitation to the human environment 
during the rainy season, a decrease in the prevalence of Lassa fever is dependent on 
human efforts in reducing the transmission probability of this disease [3, 14].

The Lassa virus is primarily spread to humans through human contact with food or 
substances that are contaminated by the urine or feces of an infected rodent [9], while 
secondary infection from human-to-human and laboratory transmissions are likewise 
possible [10, 15]. Lassa fever has an incubation period between 6 and 21 days, hence, fol-
lowing this exposure period, infected humans are expected to start showing symptoms 
of the disease. Although about eighty percent of infected humans have only slight symp-
toms such as headaches, cough, muscle pain, sore throat, weakness, and fever. However, 
in severe cases, an infected human can develop more complications such as facial swell-
ing, bleeding from the nose, respiratory distress, and low blood pressure [2, 11, 16]. In a 
more critical situation, this disease can lead to death within fourteen days after the first 
appearance of the symptoms, due to neurological problems [2, 16].

Due to the absence of a vaccine against Lassa fever, prevention against infection has 
an important role in controlling the transmission of this disease in the population. Cur-
rently, since the eradication of mastomys rodent population is unrealistic, the present 
ways of avoiding the spread of this infection include the facilitation of good personal 
hygiene to avoid contact with infected rodents’ secretions or excretions, and imple-
mentation of standard health facilities for effective testing, diagnosing and treatment of 
patients [10]. In addition, ribavirin is an antiviral drug that has been declared as an effec-
tive treatment for Lassa fever patients, if administered at the premature period of the 
infection [7, 9].

Over the decade, mathematical models have become vital tools in studying the dynam-
ics of diseases in a given population. The recent development of the use of mathematical 
models has covered many fields, using different methods. Among them includes the use of 
fractional calculus on modeling and analysis of applied problems which includes infectious 
diseases field. For examples of these recent studies, see [17–21] and the references therein. 
Many models such as [2, 22–33], has been developed for numerous diseases, to answer 
specific questions in an attempt to contribute to the understanding of the epidemiology of 
such disease under study. More specifically, studies have been carried out to further provide 
information on the transmission dynamics of Lassa fever (see [3, 7–9, 14, 16, 34–36]). A few 
researchers have investigated the transmission dynamics of Lassa fever in Nigeria, using 
a different mathematical modeling approach. Among them is the work of Salihu [9]. The 
authors employed a mechanistic modeling approach to study the large-scale Lassa fever 
epidemics in Nigeria from the year 2016 to 2019. To understand the transmission dynamics 
of Lassa fever epidemics in Nigeria, the model describes the interaction among rodent and 
human populations by integrating isolation, quarantine, and also hospitalization compart-
ment. Their results suggest that an increase in quarantine and isolation of infected people 
will decrease the transmission of Lassa fever from human to human. In [3], Zhao studied 
the large-scale of Lassa fever outbreak in different parts of Nigeria. The authors investigated 
some epidemiological features of the epidemic by measuring the correlation between the 
reproduction number of the disease and local rainfall, using the three-parameter logistic, 
Richards growth model, Gompertz, and Weibull growth model. They further fit the respec-
tive growth models to the surveillance data to evaluate the reproduction number with the 
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respective epidemic turning points. The results from this study show that rainfall has an 
enormous influence on the transmission of Lassa fever in Nigeria.

In this study, we present a six compartmental deterministic model, using a system of 
ordinary differential equations to gain insight into the transmission dynamics of Lassa 
fever within humans and rodents population. One of the uniqueness of this work is that 
we parameterize the model with the real data (reported cases from Nigeria), from the first 
week of January 2020 to the eleventh week of 2021. This will make model predictions more 
meaningful and, as a result, provide a better understanding of the dynamics of Lassa fever 
in Nigeria. The rest of the paper is structured as follows. The model formulation is pre-
sented in “Section Model formulation”, while the basic properties of the model, such as pos-
itivity of solutions, and invariant region are presented in Section “Basic properties of the 
model”. In “Section Mathematical analysis of the model”, the existence and stability of the 
Lassa fever model are investigated. This includes local and global stability of the Lassa fever-
free equilibrium, the existence, and stability of the endemic equilibria, and the condition for 
the existence of the bifurcation phenomenon. Parameter estimation and data fitting were 
carried out in “Section Parameter estimation and data fitting”. This includes the sensitivity 
analysis of each reproduction number parameter. We present the numerical simulations, 
discussion, and conclusions of the results in “Section Results and discussion”.

Methods
Model formulation

To achieve the main aim of this study, we develop, analyze, parameterize and simulate an 
epidemic model that describes the transmission dynamics of Lassa fever in Nigeria. Since 
the transmission of Lassa fever requires an interaction between two-interacting popu-
lations [6], we derived our model by classifying the host population into the human and 
rodent populations. Furthermore, according to human disease status, the total human pop-
ulation at continuous-time t denoted by Nh(t) is stratified into mutually-exclusive compart-
ments. Precisely, the total human population Nh(t) is grouped into the sub-populations of 
individuals who are susceptible Sh(t) , exposed Eh(t) , infectious Ih(t) , and recovered Rh(t) . 
Thus, the total human population Nh(t) is given as

Similarly, the total rodent population at continuous-time t denoted by Nr(t) is divided 
into two compartments, namely: susceptible rodents Sr(t) and infectious rodents Ir(t) . 
Hence, the total rodent population Nr(t) is given as

The susceptible human population is generated through recruitment by birth or immi-
gration at a rate πh . In addition, since reinfection with Lassa virus is possible [5, 37], 
we assume that the susceptible populace is additionally increased by immunity loss of 
recovered individuals at a rate ξh . Since all living beings are subjected to death, all sub-
populations are liable to be reduced by the natural death (death not due to the disease), 
hence the susceptible human population is depopulated by a natural death at the rate µh . 
Furthermore, this population is reduced after infection with the Lassa fever virus due to 
effective contact with an infectious human or infectious rodent at the rate

Nh(t) = Sh(t)+ Eh(t)+ Ih(t)+ Rh(t)

Nr(t) = Sr(t)+ Ir(t)
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The parameter βrh represents the effective transmission probability from rodent-to-
human, which could be through direct contact with contaminated food by the urine or 
excretes of an infectious rodent, while βh represents the effective transmission probabil-
ity from human-to-human through dust particles via the mucous membranes or skin 
breaks of human, or through sharing of medical equipment with infectious individu-
als without adequate sterilization [7, 9]. Thus, the susceptible human population at any 
given time t is

The exposed human population is derived from an infection occurring from the suscep-
tible population. This populace is reduced by natural death µh and the disease progres-
sion to the infectious population at the rate σh . It is imperative to note that, exposed 
individuals are infected with the Lassa fever virus but are not showing symptoms yet. 
Following the disease incubation period which is between 6− 21 days [2, 11], such indi-
viduals progress to infectious population. This is the stage whereby they start showing 
symptoms of the disease. Thus, the exposed human population at any time t is given as

The infectious human compartment is populated as a result of the progression rate from 
the exposed human population. The population is reduced by the recovery rate due to 
treatment at rate τh , natural death µh , and disease-induced death (death caused by Lassa 
fever) at the rate δh . The infectious human population is given as

Following early treatment of individuals diagnosed of Lassa fever disease, such individu-
als recover and progress to increase the recovered human population. However, since 
recovered individuals can be re-infected of the disease [5, 37], the recovered human pop-
ulace is reduced by loss of immunity at rate ξh and natural death at the rate µh . Hence, 
the recovered human population is given as

The susceptible rodents population is generated by the recruitment of rodent through 
birth at a rate πr . This sub-population is reduced by natural death with the rate µr , and 
is further decreased following infection with Lassa virus due to effective contact with an 
infectious human or rodent at the rate

�h = βrhIr

Nh
+ βhIh

Nh

dSh

dt
= πh + ξhRh − �hSh − µhSh

dEh

dt
= �hSh − (σh + µh)Eh

dIh

dt
= σhEh − (τh + µh + δh)Ih

dRh

dt
= τhIh − (µh + ξh)Rh

�r =
βhrIh

Nh
+ βr Ir

Nr
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The parameters βhr represents the effective transmission probability from human-to-
rodent, while βr represents the effective transmission probability from rodent-to-rodent. 
Thus, the susceptible rodent population at any time t is given as

The infectious rodent population is derived from infection occurring from the suscep-
tible rodent population, while depopulated by natural death of rodents at rate µr . Thus, 
the infectious rodent population is given as

Hence, based on the overall process explained above, we present below a six compart-
mental deterministic systems of nonlinear ordinary differential equations, tostudy 
thetransmission dynamics of Lassa fever in Nigeria:

The model variables and parameters are presented in Table 1 and the flow diagram is 
depicted in Fig. 2.

Basic properties of the model
The basic properties of the Lassa fever model presented will be examined in this sec-
tion. Since the mathematical model presented in the system of equations (1) describes 
the rate of change of different compartments of human and rodent populations, it will 
be epidemiologically meaningful if all its state variables are non-negative for all time t. 
In other words, the solutions of the model (1) with positive initial data will remain posi-
tive for all time t > 0 . It must be noted that, since the model presented describes the 
interaction between human and rodent populations, all the parameters of the model are 
assumed non-negative. Hence, we establish the following result.

Positivity and boundedness of solutions

Lemma 1  Let the initial data for the Lassa fever model (1) be 
Sh(0) > 0,Eh(0) ≥ 0, Ih(0) ≥ 0,Rh ≥ 0, Sr(0) > 0, Ir(0) ≥ 0 . Then the solutions 

dSr

dt
= πr − �rSr − µrSr

dIr

dt
= �rSr − µr Ir

(1)

dSh

dt
= πh + ξhRh − �hSh − µhSh

dEh

dt
= �hSh − (σh + µh)Eh

dIh

dt
= σhEh − (τh + µh + δh)Ih

dRh

dt
= τhIh − (µh + ξh)Rh

dSr

dt
= πr − �rSr − µrSr

dIr

dt
= �rSr − µr Ir
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Fig. 2  Flow diagram of the Lassa fever model (1)

Table 1  Description of the variables and parameters of the Lassa fever model (1)

Variable Description

Sh Population of susceptible humans

Eh Population of exposed humans

Ih Population of infectious humans

Rh Population of recovered humans

Sr Population of susceptible rodents

Ir Population of infectious rodents

 Parameter Description

πh Recruitment rate of humans through birth or immigration

ξh Immunity waning rate of humans

σh Disease progression rate from exposed to infectious human

τh Recovery rate of infectious humans

µh Natural death rate of humans

δh Disease induced death rate for humans

βh Transmission probability from human-to-human

βrh Transmission probability from rodent-to-human

βhr Transmission probability from human-to-rodent

βr Transmission probability from rodent-to-rodent

πr Recruitment rate of rodents through birth

µr Natural death rate of rodents
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(Sh(t),Eh(t), Ih(t),Rh(t), Sr(t), Ir(t)) of the model with positive initial data, will remain 
positive for all time t > 0.

Proof  Let tf = sup{t > 0 : Sh(t) > 0,Eh(t) > 0, Ih(t) > 0,Rh(t) > 0, Sr(t) > 0, Ir(t) > 0 ∈ [0, t]} . 
Hence, tf > 0 . It follows from the first equation of the model system (1), that

By employing the integrating factor method, equation (2) can be expressed as:

Hence,

so that,

In the same way, the remaining state variables Eh(t) ≥ 0 , Ih(t) ≥ 0 , Rh(t) ≥ 0 , Sr(t) > 0 , 
and Ir(t) ≥ 0 for all time t > 0 . Hence, all the solutions of model (1) remain positive for 
all non-negative initial conditions. �

Invariant region

Here, we show the invariant regions for the given Lassa fever model (1). Consider the 
biologically feasible region consisting of D = Dh ×Dr ∈ R

4
+ ×R

2
+ with

and

It can be shown that the set D is a positively invariant set of the model system (1). This 
implies that all the solution trajectories initiated at any point of the non-negative region 
R

6
+ will enter the feasible region D and remain there for all time t. The result is summa-

rized in the following Lemma.

(2)
dSh

dt
= πh + ξhRh − �hSh − µhSh ≥ πh − �hSh − µhSh

d

dt

(

Sh(t)exp

[

µht +
∫ t

0

�h(ω)dω

])

≥ πhexp

[

µht +
∫ t

0

�h(ω)dω

]

Sh(tf )exp

[

µhtf +
∫ tf

0

�h(ω)dω

]

− Sh(0) ≥
∫ tf

0

πh

(

exp

[

µhθ +
∫ θ

0

�h(ω)dω

])

dθ

Sh(tf ) ≥ Sh(0)exp

[

−µhtf −
∫ tf

0

�h(ω)dω

]

+ exp

[

−µhtf −
∫ tf

0

�h(ω)dω

]

×
∫ tf

0

πh

(

exp

[

µhθ +
∫ θ

0

�h(ω)dω

])

dθ > 0.

Dh =
{

Sh,Eh, Ih,Rh ∈ R
4
+ : Nh ≤ πh

µh

}

Dr =
{

Sr , Ir ∈ R
2
+ : Nr ≤

πr

µr

}
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Lemma 2  The biological feasible region D = Dh ∪Dr ⊂ R
4
+ ×R

2
+ of the Lassa fever 

model (1) is positively invariant with non-negative initial conditions in R6
+.

Proof  The summation of the human and rodent populations Nh and Nr of the Lassa 
fever model (1) result to

Thus,

Solving the above yields Nh(t) ≤ Nh(0)e
−µht + πh

µh

(

1− e−µht
)

 and 
Nr(t) = Nr(0)e

−µr t + πr
µr

(

1− e−µr t
)

 . It follows that Nh(t) → πh
µh

 and Nr(t) → πr
µr

 as 
t → ∞ . In particular, Nh(t) ≤ πh

µh
 if the total human population at the initial time 

Nh(0) ≤ πh
µh

 . Similarly, Nr(t) ≤ πr
µr

 if the total rodent population at the initial time 
Nr(0) ≤ πr

µr
 . Thus, the region D is positively invariant. �

Hence, it is suitable to study the transmission dynamics of Lassa fever using model (1) 
in the biological feasible region D , for which the model is said to be epidemiologically and 
mathematically well-posed [38, 39].

Mathematical analysis of the model
In this section, we critically analyze model (1) by determining the existence of the steady-
state solutions. This includes the existence of the disease-free equilibrium (henceforth 
called Lassa fever-free equilibrium) and the endemic equilibrium. We further investigate 
the local and global stability of the equilibria. Furthermore, we investigate the nature of 
bifurcation the model exhibit.

Existence and stability of Lassa fever‑free equilibrium

Lassa fever-free equilibrium points are the steady-state solution in the absence of Lassa 
fever infection. Thus, the Lassa fever-free equilibrium point for model (1) implies that 
Eh = Ih = Ir = 0 . Hence, by solving the systems of equations simultaneously (1), the Lassa 
fever-free equilibrium denoted by E0 , is obtained as

To investigate the local stability of the Lassa fever-free equilibrium, we compute the 
basic reproduction number R0 by using the next generation operator method on the 
model system (1). Following the approach in [22, 40], the Jacobian matrices F and V, for 
the new infection terms and the remaining transfer terms are given by

dNh(t)

dt
= πh − µhNh(t)− δhIh(t)

dNr(t)

dt
= πr − µrNr(t)

(3)
dNh(t)

dt
≤ πh − µhNh(t), and

dNr(t)

dt
= πr − µrNr(t)

(4)E0 = (S∗h ,E
∗
h , I

∗
h ,R

∗
h, S

∗
r , I

∗
r ) =

(

πh

µh
, 0, 0, 0,

πr

µr
, 0

)
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where k1 = σh + µh , and k2 = τh + µh + δh . The next generation matrix (NGM) with 
large domain KL is given below as

It can be seen from the model that, among the three infected states, there are only two 
that are states-at-infection. This can also be seen by looking at matrix F and observing 
that the entire second row contains zeros. Hence, the NGM K for the small domain is 
therefore two-dimensional. Thus, using the approach of [41] with an auxiliary matrix E, 
the NGM K is obtained as

Thus, the characteristic polynomial of the matrix K is obtained as

where

It follows that the basic reproduction number for the model (1), which is the spectral 
radius of K given by R0 = ρ(K ) , is obtained as

Further simplification of (8) result to

where Rh , Rr , and R� =
√
RhrRrh are the reproduction numbers for human-to-

human, rodent-to-rodent transmission and vectorial transmission respectively.
The basic reproduction number is a threshold quantity that measures the spread 

potential of disease in a given population. Epidemiologically, it measures the average 

F =













0 βh βrh

0 0 0

0
βhrS

∗
r

S∗h
βr













and V =











k1 0 0

−σh k2 0

0 0 µr











(5)KL = FV−1 =















βhσh
k1k2

βh
k2

βrh
µr

0 0 0

βhrS
∗
r σh

S∗hk1k2
βhrS

∗
r

S∗hk2
βr
µr















(6)K = ETKLE = ETFV−1E =







βhσh
k1k2

βrh
µr

βhrS
∗
r σh

S∗hk1k2
βr
µr






=





Rh Rrh

Rhr Rr





(7)�
2 − (Rh +Rr)�+ (RhRr −RhrRrh) = 0

Rh = βhσh

k1k2
, Rr =

βr

µr
, Rhr =

βhrS
∗
r σh

S∗hk1k2
, Rrh = βrh

µr
.

(8)R0 =
1

2

{

(Rh +Rr)+
√

(Rh +Rr)2 − 4(RhRr −RhrRrh)

}

(9)R0 =
1

2

{

(Rh +Rr)+
√

(Rh −Rr)2 + 4R2
�

}
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number of secondary infections a single infected individual can generate in a popula-
tion that is completely susceptible. In other words, the threshold quantity R0 given in 
(9) measures the average number of Lassa fever infections that a Lassa fever infected 
individual can generate in an entirely susceptible population. It is imperative to mention 
that, the reproduction number for the model (1) is a composition of the reproduction 
number of human-to-human transmission Rh , rodent-to-rodent transmission Rr , and 
vectorial transmission Rhr ,Rrh because the model includes the biological possibilities of 
infection transfer between the two interacting host. Hence, epidemiologically, Rh meas-
ure the average number of secondary infections a single infectious human can produce 
during an infectious period. Similarly, Rr measure the average number of secondary 
infections a single infectious rodent can generate during an infectious period. Since βhr , 
and βrh are the transmission probability from human-to-rodent, and rodent-to-human 
respectively, then Rhr measure the average number of secondary infection of rodents a 
single infectious human can generate over its infectious period, while Rrh measure the 
average number of secondary infection of humans a single infectious rodent can gener-
ate during the infection period. In general, an increase in any of the reproduction num-
ber can upsurge the risk of Lassa fever occurrence in the human population, since the 
growth of any of the infectious host (either humans or rodents) can increase the spread 
of infection in the human populace if adequate and effective control mechanism is not 
utilized by the population. Next, we shall investigate the stability of the Lassa fever-free 
equilibrium E0.

Local stability of Lassa fever‑free equilibrium

We analyze the local stability of Lassa fever-free equilibrium of the model system (1) by 
using the basic reproduction number R0 in the following theorem as described in [38]. 
The proof is provided in “Appendix Proof of Theorem 1”.

Theorem 1  The Lassa fever-free equilibrium E0 , of the model (1) is locally asymptoti-
cally stable in the biological feasible region D if R0 < 1 and unstable if R0 > 1.

Global stability of Lassa fever‑free equilibrium

Here, we further investigate the global stability of the Lassa fever-free equilibrium E0 of 
the model system (1), by using the technique implemented in [42]. Firstly, we re-write 
the Lassa fever model (1) in the form

where X = (Sh,Rh, Sr) is the uninfected population, and Z = (Eh, Ih, Ir) is the infected 
population with the component of (X ,Z) ∈ R

3 . The Lassa fever-free equilibrium is 
obtained as

(10)

dX

dt
= F(X ,Z)

dZ

dt
= G(X ,Z), G(X , 0) = 0
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For the point E∗
0 = (X∗, 0) to be globally asymptotically stable, the following conditions 

must be satisfied

(C1) :  For dX
dt

= F(X , 0) , X∗ is globally asymptotically stable (GAS),
(C2) :  G(X ,Z) = QZ − Ĝ(X ,Z) with Ĝ(X ,Z) ≥ 0 for (X ,Z) ∈ D

where Q = BZG(X∗, 0) is an M-matrix (the off-diagonal elements of B are non-nega-
tive) and D is the feasible region where the model makes biological sense. If the model 
system (1) satisfies the conditions given above, then the following result holds. The 
proof is provided in “Appendix Proof of Theorem 2”.

Theorem 2  The fixed point E∗
0 = (X∗, 0) is globally asymptotically stable (GAS) equi-

librium of model system (1), if R0 < 1 (locally asymptotically stable) and the conditions 
(C1) and (C2) are satisfied.

The above result infers that, regardless of the initial sizes of the sub-populations of 
the system, Lassa fever eradication is possible whenever the reproduction number is 
less than unity. We illustrate this theorem numerically in Fig. 10.

Existence and stability of endemic equilibria

Here, we investigate the existence and stability of the endemic equilibrium for 
the model (1). Lassa fever endemic equilibrium points are the steady-state solu-
tion where there is presence of Lassa fever infection in the population. We let 
E1 = (S∗∗h ,E∗∗

h , I∗∗h ,R∗∗
h , S∗∗r , I∗∗r ) represents the Lassa fever-present equilibrium. Set-

ting the right-hand sides of the systems of equations in (1) to zero and solving simul-
taneously in terms of the associated form of infection yields

where the force of infection are given as

(11)E
∗
0 = (X∗, 0) =

(

πh

µh
, 0,

πr

µr

)

(12)

S∗∗h = πhk1k2k3

k1k2k3�
∗∗
h + k1k2k3µh − �

∗∗
h σhτhξh

E∗∗
h =

�
∗∗
h πhk2k3

k1k2k3�
∗∗
h + k1k2k3µh − �

∗∗
h σhτhξh

I∗∗h =
�
∗∗
h πhσhk3

k1k2k3�
∗∗
h + k1k2k3µh − �

∗∗
h σhτhξh

R∗∗
h =

�
∗∗
h πhσhτh

k1k2k3�
∗∗
h + k1k2k3µh − �

∗∗
h σhτhξh

S∗∗r = πr

�∗∗r + µr
, I∗∗r = �

∗∗
r πr

µr(�∗∗r + µr)
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Substituting the expression (12) into the force of infection (13) at steady state yields the 
following polynomial

The coefficients ai , for i = 1 . . . , 5 of the polynomial are given in “Appendix  Coeffi-
cients of polynomial (14)”. Clearly, �∗∗h = 0 is a solution. The coefficient a1 is positive 
while the sign of a5 depends on the values of respective reproduction number, such that 
if {Rh,Rr ,Rhr ,Rhr ∈ R0 > 1} , then a5 > 0 such that there is at least one sign change 
in the sequence of coefficients a1, . . . a5 . Thus, by Descartes rule of signs, there exists 
at least one positive real root for (14) aside from the root �∗∗h = 0 , whenever R0 > 1 . 
Therefore, the following result is established.

Theorem  3  The model system (1) has at least one endemic equilibrium whenever 
R0 > 1.

Bifurcation analysis

Following Theorem 1, it is imperative to re-state that, whenever the reproduction num-
ber of the model (1) is greater than unity R0 > 1 , the asymptotic local stability of the 
Lassa fever-free equilibrium will undergo a trade-off with the asymptomatic local sta-
bility of the endemic equilibrium. Hence, in this section, we will investigate the criteria 
for the trade-off between the asymptomatic local stability of the Lassa fever-free equi-
librium and asymptomatic local stability of the endemic equilibrium, as the threshold 
quantity crosses unity. In other words, we will show the conditions under which model 
(1) undergo supercritical or subcritical (forward or backward) bifurcation. By employing 
the Center Manifold Theory of bifurcation analysis described in [27], we write the Lassa 
fever model (1) in the vector form

where X = (x1, x2, x3, x4, x5, x6)
T and F =

(

f1, f2, f3, f4, f5, f6
)T . We further modify the 

variables be setting

such that the total human and rodent populations are respectively given as

Hence, following the above transformation, the transformed model (1) is given as

(13)�
∗∗
h = βrhI

∗∗
r

N ∗∗
h

+
βhI

∗∗
h

N ∗∗
h

, and �
∗∗
r =

βhrI
∗∗
h

N ∗∗
h

+ βr I
∗∗
r

N ∗∗
r

(14)�
∗∗
h

{

a1(�
∗∗
h )4 + a2(�

∗∗
h )3 + a3(�

∗∗
h )2 + a4�

∗∗
h − a5

}

= 0

(15)
dX

dt
= F(X)

Sh = x1, Eh = x2, Ih = x3, Rh = x4, Sr = x5, Ir = x6

Nh = x1 + x2 + x3 + x4, and Nr = x5 + x6
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with the associated force of infection given as

Suppose that β∗
rh is chosen as the bifurcation parameter, solving (8) at R0 = 1 , the 

parameter βrh = β∗
rh is obtained as

The Jacobian of system (16), evaluated at Lassa fever-free (E
�

0 = x∗1, 0, 0, 0, x
∗
5, 0) with 

βrh = β∗
rh denoted by J (E

�

0 ,β∗
rh) is given by

The Jacobian matrix (18) has a right eigenvector (associated with the zero eigenvalues) 
given by w = (w1,w2,w3,w4,w5,w6)

T , where

Similarly, the Jacobian matrix (18) has a left eigenvector (associated with the zero eigen-
values) given by v = (v1, v2, v3, v4, v5, v6)

T , where

(16)

dx1

dt
= f1 = πh + ξhx4 − �hx1 − µhx1

dx2

dt
= f2 = �hx1 − (σh + µh)x2

dx3

dt
= f3 = σhx2 − (τh + µh + δh)x3

dx4

dt
= f4 = τhx3 − (µh + ξh)x4

dx5

dt
= f5 = πr − �rx5 − µrx5

dx6

dt
= f6 = �rx5 − µrx6

�h = βrhx6 + βhx3

x1 + x2 + x3 + x4
, �r =

βhrx3

x1 + x2 + x3 + x4
+ βrx6

x5 + x6

(17)βrh := β∗
rh =

πhµr

{

µrk1k2 − (βhσhµr + βrβhσh + βrk1k2)
}

βhrπrσhµh

(18)J (E
�

0 ,β∗
rh) =





































−µh 0 −βh ξh 0 −β∗
rh

0 −k1 βh 0 0 β∗
rh

0 σh −k2 0 0 0

0 0 τh −k3 0 0

0 0 − x∗5βhr
x∗1

0 −µr −βr

0 0
x∗5βhr
x∗1

0 0 −µr + βr





































w1 =
(

x∗1µr(1−Rr)(τhξh − βhk3)− x∗5βhr
x∗1µrµhk3(1−Rr)

)

w3; w2 =
w3k2

σh
; w3 = w3 > 0;

w4 = w3τh

k3
; w5 = − w3x

∗
5

x∗1µr(1−Rr)
; w6 =

w3x
∗
5βhr

x∗1µr(1−Rr)
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Computation of bifurcation coefficient a and b
The direction of the bifurcation at R0 = 1 is determined by the signs of bifurcation 

coefficients a and b, obtained by computing the associated non-zero partial derivative of 
F(X) (evaluated at the disease free equilibrium E

�

0  ). Thus, the coefficient of a is given as

where

Similarly, the bifurcation coefficient b is obtained as follows

Since all the parameters of model (1) are non-negative and v1 = 0 , it can be shown that 
the inequality (20) holds if Rr < 1 . It follows from Theorem 4.1 in [27] that the Lassa 
fever model (1) will exhibit a subcritical (backward) bifurcation if the coefficient a given 
by (19) is positive. This implies that m1 > m2 must be satisfied. Hence, the following 
result will be established.

Theorem 4  The Lassa fever model (1) undergoes a subcritical (backward) bifurcation as 
R0 crosses unity, whenever the coefficient a > 0 and b > 0.

Backward bifurcation (BB) occurs when a small positive unstable equilibrium appears 
while the disease-free equilibrium (DFE) and a larger positive equilibrium are locally 
asymptotically stable when the threshold quantity R0 is less than unity. In other words, 
BB occurs when a stable DFE and a stable endemic equilibrium coexist under some given 
values for which R0 is less than unity. The backward bifurcation phenomenon suggests 
that the epidemiological condition of having the reproduction number less than unity to 
eliminate a disease although necessary is no longer enough for the effective control of 
the disease in the population. Hence, the effective control of Lassa fever in the popula-
tion is difficult, since disease control when R0 < 1 is dependent on the initial sizes of the 
sub-populations. We further explore the condition for which system (1) undergo super-
critical bifurcation. It must be noted that the Lassa fever model (1) will exhibit a forward 
bifurcation if the coefficient a given by (19) is negative. This implies that m1 < m2 must 
be satisfied. Thus, the following result will be established.

v1 = 0; v2 =
v3σh

k1
; v3 = v3 > 0; v4 = 0; v5 = 0; v6 =

v3β
∗
rhσh

k1µr(1−Rr)

(19)

a =
6

∑

k ,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0)

= 2(m1 −m2)

x∗21 x∗5

m1 = x∗1x
∗
5

{

m3(βhw3v1 + β∗
rhv1w6)+ βhrw3w5v6

}

+ βhrv5w3x
∗2
5 (w1 +m3)+ βrx

∗2
1 v5w

2
6

m2 = x∗1x
∗
5

{

m3(βhw3v2 + β∗
rhv2w6)+ βhrw3w5v5

}

+ βhrv6w3x
∗2
5 (w1 +m3)+ βrx

∗2
1 v6w

2
6

m3 = w2 + w3 + w4

(20)
b =

6
∑

k ,i=1

vkwi
∂2fk

∂xi∂β
∗
rh

(0, 0)

= w6(v2 − v1) > 0
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Theorem 5  The Lassa fever model (1) undergoes a supercritical (forward) bifurcation 
as R0 crosses unity, whenever the coefficient a < 0 and b > 0.

A system exhibits a forward bifurcation when the disease-free equilibrium losses its 
stability due to an introduction of a small positive asymptomatically stable equilibrium. 
Epidemiologically, the result above implies that a small inflow of individuals with Lassa 
fever infection into an entirely susceptible population will lead to a continuance of Lassa 
fever in the populace, whenever the reproduction number is less than unity. In other 
words, the exchange of the local asymptotic stability of the equilibria depends on the ini-
tial number of Lassa fever infectious individuals in the population. It must be noted that 
the transfer of the local asymptotic stability of the equilibria is independent of the initial 
sizes of the sub-populations. This can be proved by establishing the global asymptomatic 
stability of the disease-free equilibrium (see “section Global stability of Lassa fever-free 
equilibrium”).

Parameter estimation and data fitting
Estimating parameter values is very vital for precise prediction in an epidemiological 
study. To make the prediction of model results meaningful, it is more valuable to vali-
date the formulated model with real-life data. This can be achieved by fitting the pro-
posed model with the real data, to inform the population of the degree of precision 
and validation of the model’s ability on predicting a realistic outcome. In this section, 
we parameterized model (1) by using the Lassa fever reported cases from Nigeria. We 
used the data for a period from the first week in January 2020 through the eleventh 
week in 2021, obtained through the Nigeria Centre for Disease Control (NCDC) data-
base [13]. The number of cumulative confirmed cases for this period is depicted in 
Fig. 3. The blue box captioned the trend of the cumulative confirmed cases from the 
beginning of the year 2021. It should be noted that the confirmed cases of Lassa fever 
are increasing as the week progresses. Thus, it is important to provide adequate con-
trol strategies to curtail the spread of Lassa fever in the population. We obtained our 
parameter values through two different strategies. The Lassa fever model presented 

Fig. 3  Weekly reported number of confirmed Lassa fever cases in Nigeria from first week January 2020 to 
eleventh week in 2021, obtained from NCDC database [13]
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in this work contains twelve parameters and six of the parameters are estimated as 
follows; the natural death rate of human µh is a demographic parameter estimated by

where µ0 is the average life expectancy of humans. The average life expectancy of 
humans in Nigeria as presented in [43] is 60.45 years. In addition, the total human popu-
lation (Nh) of Nigerians is recorded as 214, 028, 302 [43], hence since we assumed by the 
invariant region that Nh = πh

µh
 , we estimated the recruitment rate by Nh × µh . Similarly, 

the natural death of rodent µr is estimated by µr = 1
µ0

 , where µ0 = 1 year is the average 
life expectancy of natal multimammate rat [2, 10]. Furthermore, we assume the total 
population of rodents to be Nr = 30, 000 , so that the recruitment rate of rodents is 
obtained by Nr × µr . According to [44], the incubation period of Lassa fever ranges 
between 6− 21 days, thus we estimate the disease progression rate from exposed human 
to infectious human σh as 0.5185 per week. Lastly, using the reported death cases due to 
Lassa fever and reported confirmed cases denoted as (D, I) respectively, the Lassa fever-
induced death rate δh is obtained by

where t = 1, 2, . . . , n is the time measured in weeks and n = 64 is the total number of 
weeks reported in the used data. All parameter value units are provided in per-week. 
To obtain the remaining six parameter values, we fit the Lassa fever model (1) to the 
obtained cumulative number of cases reported in [13]. The model fitting was imple-
mented by using the standard nonlinear least square method in MATLAB-R2017b. All 
the parameter values estimated and fitted are tabulated in Table 2, while Fig. 4 depicts 
the data fitting of the observed cumulative confirmed cases. Using the parameter val-
ues, the reproduction number given in (9) is estimated as R0 = 1.32 . We further use 
the parameter values to perform the sensitivity analysis and to simulate the different 

µh = 1

µ0

δh =
∑n

t=1 Dt
∑n

t=1 It

Fig. 4  Data fitting of the Lassa fever model (1) using cumulative confirmed cases data for Nigeria, from first 
week January 2020 to eleventh week in 2021. Reported cases are obtained from NCDC database [13]
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scenarios of Lassa fever dynamics in the population, to provide precise predictions or 
recommendations for health care practitioners.

Sensitivity analysis

The goal of mathematical modeling of infectious diseases is to provide insight into 
the epidemiology of the disease in the population. According to [45], it can be used to 
understand how infectious agents such as viruses, or bacteria spread in a population. 
Hence, the model results need to be able to provide insight into the dynamics of the 
disease. One of the techniques in providing such valuable insight is sensitivity analysis 
(SA). In this section, we carried out a SA to assess the relationship between the model 
parameters. This will inform us of the impact of each parameter on the threshold quan-
tity (reproduction number), and hence enlighten the public health and policymakers to 
put priority on the intervention strategy for preventing and controlling the spread of the 
disease. Using the approach in [46, 47], the normalized forward sensitivity index ZR0

p  on 
the reproduction number R0 for each of the parameters p, is defined as

Employing the formula given by (21), with the parameter values provided in Table 2, the 
respective sensitivity indices values are presented in Table 3. We present a bar plot in 
Fig. 5 to further represent the numerical result of the sensitivity indices. It must be noted 
that an increase in any positive index from SA will directly increase the threshold quan-
tity of the disease and vice versa, while an increase in the negative index will decrease the 
threshold quantity and vice versa. From Table 3, increase in the spread of Lassa fever is 
associated to an increase in the positive values of the parameters, µh,βr ,βrh,βhr ,βh , and 
πr . Notable among the positive values are the transmission probabilities and the recruit-
ment rate of rodents. In addition, increase in the spread of Lassa fever is associated to 
the decrease in the negative values of the parameters, πh, δh, τh , and µr . The natural 
death rate of rodents is noted as the highest negative value of the sensitivity index. The 

(21)ZR0
p = ∂R0

∂p
× p

R0

Table 2  Parameter values for the Lassa fever model (1)

Parameter Description Value Source

πh Recruitment rate of humans through birth or immigration 68,088 Estimated

σh Disease progression rate from exposed to infectious human 0.5185 Estimated

µh Natural death rate of humans 0.0003 Estimated

δh Disease induced death rate for humans 0.1323 Estimated

ξh Immunity waning rate of humans 0.3278 Fitted

τh Recovery rate of infectious humans 0.0027 Fitted

βh Transmission probability from human-to-human 0.1250 Fitted

βrh Transmission probability from rodent-to-human 0.0509 Fitted

βhr Transmission probability from human-to-rodent 0.0137 Fitted

βr Transmission probability from rodent-to-rodent 0.0254 Fitted

πr Recruitment rate of rodents through birth 577 Estimated

µr Natural death rate of rodents 0.0192 Estimated
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results enlighten us of the control strategies that are suitable in mitigating the spread of 
Lassa fever in the population. For example, the positive index +0.3333 of the transmis-
sion probability from rodent-to-rodent βr implies that increase (or decrease) by 1% of the 
value of βr will cause a corresponding increase (or decrease) in the reproduction number 
by 1% . Also, the negative index −0.3333 of the natural death of rodents µr implies that 
an increase (or decrease) by 1% of the value of µr will cause a corresponding decrease (or 
increase) in the reproduction number by 1%.

In summary, the Lassa fever sensitivity analysis carried out suggests that any con-
trol strategies that reduce the transmission probabilities and the recruitment rate of 
rodents in the population will effectively curtail the spread of Lassa fever in the popu-
lace. An example of such a control mechanism is promoting good environmental and 
personal hygiene, which can be encouraged through educational campaigns, to avoid 
contamination of human foods by rodents. In addition, any control strategies that 
increase the death of rodents, such as the use of rodent traps or pesticides for fumi-
gating the environment, will help in reducing the spread of Lassa fever.

Fig. 5  Sensitivity indicies of the Lassa fever reproduction number R0 8

Table 3  Normalized sensitivity index of the reproduction number (9) parameters

Parameter Description Sensitivity Index Sign

πh Recruitment rate of humans through birth or immigration − 0.0263 −ve

σh Disease progression rate from exposed to infectious human − 0.0011 −ve

µh Natural death rate of humans + 0.0261 +ve

δh Disease induced death rate for humans − 0.0883 −ve

τh Recovery rate of infectious humans − 0.0180 −ve

βh Transmission probability from human-to-human + 0.0645 +ve

βrh Transmission probability from rodent-to-human + 0.0263 +ve

βhr Transmission probability from human-to-rodent + 0.0263 +ve

βr Transmission probability from rodent-to-rodent + 0.3333 +ve

πr Recruitment rate of rodents through birth + 0.0263 +ve

µr Natural death rate of rodents − 0.3333 −ve

R0 Reproduction number 1.32
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Results and discussion
To establish our theoretical findings, we present the numerical simulation results of the 
model in this section. Following the result from the sensitivity analysis, we investigate 
the effect of the most sensitive parameters on the reproduction number. In addition, we 
examine the dynamical behavior of infected human and rodent populations under dif-
ferent scenarios to predict the eradication of Lassa fever in Nigeria. It must be noted 
that, since Lassa fever exposed humans can transmit the infection, we defined the total 
infected human population as the sum of both exposed human and infectious human 
(Eh + Ih) . We developed a program code written and implemented on MATLAB ODE45 
solvers, a six-stage fifth-order Runge–Kutta method, to simulate the model system (1). 
All the parameter values used are provided in Table 2, except otherwise stated. These 
values were obtained by fitting the real data reported by NCDC to the model (1), as 
presented in Section  . Since these real data are reported cases specifically from Nige-
ria, the prediction of the numerical simulation results will be suitable for the descrip-
tion of the transmission dynamics of Lassa fever in Nigeria. The selection of our initial 
conditions is based on the reported real data and the demographic data of Nigeria. We 
assume the initial exposed human population as the first reported case of Lassa fever 
given as Eh(0) = 98 ; the initial infectious human population is assumed to be the first 
confirmed case of Lassa fever given as Ih(0) = 18 ; and the initial recovered human 
population is assumed as Rh(0) = 0 . Since the total human population of Nigeria is 
reported as Nh(0) = 214, 028, 302 , thus we estimate the initial susceptible population as 
Sh(0) = Nh(0)− (Eh(0)+ Ih(0)+ Rh(0)).

Since the reproduction number is the threshold quantity that determines the control 
or spread of disease in the population (except for cases where the bifurcation phenome-
non occurs), we investigate the effect of some parameters (based on the results from the 
sensitivity analysis), on the reproduction number R0 in Fig. 6. The effect of the transmis-
sion probability from rodent-to-rodent βr on the reproduction number is presented in 
Fig. 6a. It is obvious from the figure that an increase in the transmission probability from 
rodent-to-rodent directly increases the reproduction number. Similarly, as presented in 
Fig. 6c, an increase in the transmission probability from human-to-human βh increases 
the reproduction number of the disease. These results are expected since the transmis-
sion of the infection increases the spread of Lassa fever in a population. Thus, an upsurge 
in the abundance of infected rodents or humans will result in an increase in the spread 
of Lassa fever in the population where prevention or control measures are not effective 
in use. Hence, an effort towards the reduction of disease transmission probabilities such 
as βh and βr , will reduce the spread of Lassa fever in the population.

The effect of the natural death of rodents on the reproduction number is presented 
in Fig. 6b. An increase in the natural death of rodents reduces the reproduction num-
ber. However, it must be noted that after the fixed point µr = 0.01 , the reproduction 
number remains stable regardless of a further increase in the death of rodents. This 
dynamic invalidates the expectation that continuous reduction of infected rodents 
should continually reduce the reproduction number. However, since a decrease in the 
R0 is not dependent on only the death of rodents, a combination of multiple control 
mechanisms can help to further reduce the reproduction number of the disease. A 
more interesting result is that of the effect of the recovery rate of human τh on the 
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reproduction number depicted in Fig. 6d. An increase in the recovery rate of infected 
humans insignificantly decreases the reproduction number. The recovery rate of 
a human is as a function of increase in treatment of infected individuals, thus it is 
expected to see such insignificant decrease in the reproduction number, as treatment 
without any control measure that accounts for prevention of the disease will insignifi-
cantly or not reduce the burden of the disease, especially in a scenario where there are 
possibilities for loss of immunity as presented in our model.

Figure 6e, f respectively depict the effect of transmission probability from rodent-
to-human, and human-to-rodent on the reproduction number. An increase in the 
respective transmission probabilities increases the reproduction number. However, 

Fig. 6  Reproduction number R0 of Lassa fever model (1), with respect to model parameters. Parameter 
values used are as given in Table 2
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the changes in the reproduction number estimate are very insignificant. Although 
this is not expected because an increase in the transmission of infection is expected 
to increase the disease burden in the population. Thus, we employ a 2-D contour 
plot to further illustrate the dynamics of the reproduction number, by varying two 
parameters simultaneously in Fig. 7. In Fig. 7a, we demonstrate the dynamics of the 
reproduction number by varying the recovery rate of human τh , with respect to the 
transmission probability from human-to-human βh . The result shows that simultane-
ous decrease of the transmission probability from human-to-human below 0.4 and 
continuous increase in the recovery rate of infected humans will keep the reproduc-
tion number below unity. A similar result is presented in Fig. 7b. The figure depicts 
the effect of varying the recovery rate of humans with respect to the transmission 
probability from rodent-to-rodent on the reproduction number. Keeping βr below 0.1 
and simultaneously increasing the recovery rate of humans will alleviate the repro-
duction number below unity. Thus, it can be suggested that to stabilize the R0 below 
unity, a control strategy that reduces the transmission of Lassa fever between humans 
βh , and rodents βr , with control measure that enables an increase in recovery rate 
of infected humans should be sufficient to curtail the disease. The outcome of the 
transmission probability from human-to-human βh with respect to the transmission 

Fig. 7  2-D Contour plot of the reproduction number R0 of Lassa fever model (1), a varying recovery rate 
of humans with respect to transmission probability from human-to-human. b varying recovery rate of 
humans with respect to transmission probability from rodent-to-rodent. c transmission probability from 
rodent-to-rodent with respect to transmission probability from human-to-human. d natural death of rodents 
with respect to transmission probability from rodent-to-rodent. The parameter values used are as given in 
Table 2 except for δh = 0.2911 and µr = 0.3840 , so that R0 = 0.43 < 1
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probability from rodent-to-rodent βr on the reproduction number is presented 
in Fig. 7c. An increase in any of the two parameters leads to an increase in R0 . For 
instance, increasing βr while we fix βh = 0 leads to an increase in the reproduction 
number. Likewise, increasing βh while we fix βr = 0 leads to an increase in the repro-
duction number. To maintain the reproduction number of Lassa fever below unity, 
the values of the transmission probability from human-to-human and the trans-
mission probability from rodent-to-rodent must be concurrently reduced below 
(βh < 0.3,βr < 0.4) . Hence, this result recommends that to decrease the reproduc-
tion number of Lassa fever below unity, it is not enough to only reduce one of the 
transmission probabilities, but any control strategies that facilitate the reduction in 
the transmission probability from human-to-human together with the transmission 
probability from rodent-to-rodent will help in reducing R0 , thus leading to a reduc-
tion in the spread of Lassa fever in the populace. Figure 7d depicts the effect of the 
transmission probability from human-to-human βh with respect to the natural death 
of rodents on the reproduction number. The result shows that increase in βh increases 
R0 , while an increase in the death of rodents has no impact on the reproduction num-
ber. This correspond to the result from Fig. 6b (see discussion on Fig. 6b).

As stated in “Section  Bifurcation analysis”, the BB phenomenon suggests that the 
epidemiological condition of having the reproduction number less than unity to 
eliminate a disease although necessary is no longer enough for the effective control 
of the disease in the population. Hence, even though some parameters have no sig-
nificant effect on the reproduction number as shown in Fig.  6b, d, e, f, it is impor-
tant to further investigate the impact of parameters on the population, rather than on 
the reproduction number, since the model considered here exhibit the possibilities of 
bifurcation phenomenon.

It is important to mention that in Fig. 8, we simulate the effect of the most sensitive 
parameters (as suggested from the SA result), on the total infected human population. 
We aim to use the results from this simulation to predict and make recommendations 
for effective control measures that can facilitate the eradication of Lassa fever in Nigeria. 
To achieve this, we regulate (henceforth referred to as “control”) the baseline param-
eter values by reducing the transmission probabilities βh,βr ,βhr and βrh by 50% such 
that, βh = 0.063,βr = 0.013,βhr = 0.007 and βrh = 0.026 . In addition, we increase the 
recovery rate of human and natural death of rodents by 50% such that, τh = 0.005 , and 
µr = 0.038 . Thus, we use the controlled parameters to simulate the dynamics of Lassa 
fever on the total infected human population. We depict the effect of each controlled 
parameter and the combination of different controlled parameters on the total infected 
human population in Fig.  8. Figure  8a illustrate the effect of βr , ( βr and µr ) and ( βr , 
µr , and βh ), on the infected human population. The result shows that using the three 
controlled parameters, the total infected human population declined faster compared 
to the effect of a single or double controlled parameter. Thus, simultaneous reduction 
of the transmission of Lassa fever from rodent-to-rodent βr , the transmission of Lassa 
fever from human-to-human βh , and increase in the death of rodents µr , will decrease 
the burden of Lassa fever in the population. A similar result are presented in Fig. 8b–
f. In general, the results show that combined controlled parameters decrease the total 
infected human population quicker than using a single controlled parameter.
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Following the result presented in Fig.  8, we present a simulation for the dynam-
ics of the total infected human population under two different scenarios, in Fig. 9. 
The first scenario is with the baseline value of the parameters, characterized as “No-
controls”, while the second scenario is the combination of all controlled parameters 
based on the result from Fig.  8. Using the baseline parameter values, it is obvious 
that Lassa fever will persist in the population due to an increase in the infected 
human individuals. This is expected from the value of the reproduction number 
(R0 = 1.32 > 1) according to Theorem  1. On the other hand, combining all con-
trolled parameters, the result shows that the existence of Lassa fever in the popula-
tion extremely declined. The value of the reproduction number, using the value of 

Fig. 8  Simulations of the Lassa fever model (1) showing the effects of controlled parameters on the 
total infected human population (Eh + Ih) . The parameter values used are as given in Table 2 except for 
βh = 0.063 , βr = 0.013 , βhr = 0.007 , βrh = 0.026 , τh = 0.005 , and µr = 0.038
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the controlled parameter is estimated as (R0 = 0.45 < 1) . Epidemiologically, the dis-
ease can be controlled in the population if the reproduction number of the disease 
is below unity. Thus, Lassa fever can be eradicated in Nigeria if there is an increase 
in efforts towards effective control measures that reduce the reproduction number 
of Lassa fever in Nigeria. Since the combination of all the controlled parameters 
reduces the burden of Lassa fever in the population (such that R0 = 0.45 < 1 ), we 
recommend control strategies that best describe the effect of these parameters. For 
example, βh,βr ,βhr and βrh are transmission probabilities, thus any control strategy 
that will curtail the transmission of the disease such as; an educational campaign to 
enlighten the population about personal hygiene and also precaution by health prac-
titioners taking care of infected patients; the use of a condom to prevent second-
ary transmission from human-to-human, will help in reducing the transmission of 
Lassa fever in Nigeria. In addition, for the controlled parameters µr and τh , any con-
trol strategy that increases the death of rodents such as the use of pesticides, rodent 
traps and early treatment of infected individuals will help in reducing the burden of 
Lassa fever in Nigeria.

To investigate the stability behavior of the total infected human and rodent popu-
lation, we use the different initial sizes of the population to depict the convergence 
of solution trajectories in Fig. 10. This validates the global stability result of Theo-
rem  2. Figure  10a, b illustrate the convergence to the Lassa fever-free equilibrium 
irrespective of the initial sizes of the infected human and rodent in the population, 
while Fig. 10c, d illustrate the convergence to the Lassa fever endemic equilibrium 
regardless of the initial sizes of the infected human and rodent population. This 
result implies that, regardless of any perturbation or change in the initial size of the 
population, the infected human and rodent population equilibrium will remain the 
same.

Fig. 9  Simulation of the dynamic of Lassa fever model (1), using parameter values as given in 
Table 2 such that R0 = 1.32 > 1 (No-controls) and parameter values as given in Table 2, except for 
βh = 0.063,βr = 0.013,βhr = 0.007 , βrh = 0.026 , τh = 0.005 , and µr = 0.038 such that R0 = 0.45 < 1 
(All-controls)
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Conclusions
In this study, we developed, analyzed, and simulated a deterministic model to 
describe the transmission dynamics of Lassa fever in Nigeria. Transmission of Lassa 
fever requires interaction between two-interacting hosts (namely human and rodent 
population), thus we sub-divided the human population into susceptible, exposed, 
infectious, and recovered humans, while the rodent population was subdivided into 
a susceptible and infectious rodents. We showed that the model is mathematically 
and epidemiologically meaningful by investigating the invariant region, the positiv-
ity of solutions, and boundedness. The local and global stability of the model was 
investigated using the reproduction number which was obtained by using the next-
generation matrix. The result shows that the Lassa fever-free equilibrium E0 is locally 
and globally asymptotically stable if R0 < 1 and unstable otherwise. Furthermore, the 
endemic state of Lassa fever E1 exists for R0 > 1.

To best describe the dynamics of Lassa fever in Nigeria, we parameterized the for-
mulated model (1) by using the cumulative reported cases data obtained from the 
Nigeria Centre for Disease and Control database. Reported cases used are from the 
first week of January 2020 through the eleventh week in 2021. Using these param-
eters obtained, we carried out a sensitivity analysis of the model parameters on the 
reproduction number to determine the impact of each parameter on the transmission 

Fig. 10  Convergence of solution trajectories for total infected humans and rodents. a, b The parameter 
values as given in Table 2 except for βh = 0.063 , and µr = 0.038 such that R0 = 0.67 < 1 . c, d The parameter 
values as given in Table 2 except for βr = 0.051 , such that R0 = 2.65 > 1
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of Lassa fever in Nigeria. Overall, the result shows that increase in the transmis-
sion of Lassa fever is associated to an increase in the transmission probabilities 
(βh,βr ,βhr ,βrh) and increase in the number of rodents πr in the population. In addi-
tion, an increase in the death of rodents is associated with a decrease in the trans-
mission of Lassa fever. Numerical simulations were carried out with parameterized 
data to describe the dynamics of Lassa fever in the population. We explored the effect 
of controlled parameters on the total infected human population. Results show that 
combined controlled parameters reduce the burden of Lassa fever faster in the popu-
lation. Based on the result of the controlled parameters, we recommend control strat-
egies that best describe the effects of these parameters. For example, βh,βr ,βhr and 
βrh are transmission probabilities, thus any control strategy that will limit the trans-
mission of the disease such as; an educational campaign to enlighten the popula-
tion about personal hygiene and also precaution by health practitioners taking care 
of infected patients; the use of a condom to prevent secondary transmission from 
human-to-human, will help in reducing the transmission of Lassa fever in Nigeria. In 
addition, for the controlled parameters µr and τh , any control strategy that increases 
the death of rodents such as the use of pesticides, rodent traps and early treatment of 
infected individuals will help in reducing the burden of Lassa fever in Nigeria.

Conclusively, to mitigate the burden of Lassa fever in each region of Africa where it 
is endemic, it will be beneficial to investigate the impact of using multiple control strat-
egies in eradicating the disease. For the future direction of this study, we shall extend 
the model considered here by including the optimal control problem, using Pontryagin’s 
maximum principle. Since eliminating any form of the disease in a large and underdevel-
oped population can be severe and expensive, we will investigate the most cost-effective 
strategy appropriate to use among several combinations of control measures using cost-
effectiveness analysis.

Appendix
Proof of Theorem 1

Proof  To prove the Theorem 1, we obtain the Jacobian matrix by evaluating the model 
(1) at Lassa fever-free equilibrium E0 as

where: k1 = σh + µh , k2 = τh + µh + δh , and k3 = µh + ξh . From (22), it is sufficient to 
show that all the eigenvalues of J (E0) are negative. We obtain the first three eigenvalues 

(22)J (E0) =





































−µh 0 −βh ξh 0 −βrh

0 −k1 βh 0 0 βrh

0 σh −k2 0 0 0

0 0 τh −k3 0 0

0 0 − S∗r βhr
S∗h

0 −µr −βr

0 0
S∗r βhr
S∗h

0 0 −µr + βr




































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as, −µr , −µh , and −k3 . The remaining eigenvalues can be obtained from the sub-matrix 
J1(E0) , which is written as

The remaining three eigenvalues with negative real parts can be obtained through the 
characteristics polynomial of J1(E0) , given as

where

It is obvious that the coefficient ω1 is positive, while ωi for i = 2, . . . , 4 can be positive or 
negative depending on the values of respective reproduction number Rh and Rr . For the 
disease free equilibrium case, the condition Rh < 1 and Rr < 1 must be satisfied, so that 
the coefficient ωi for i = 2, . . . , 4 will be positive. In addition, for the coefficient ω4 to be 
positive, the condition RhrRrh

(1−Rh)(1−Rr )
< 1 must be satisfied.

Now, applying the Routh-Hurwitz stability criterion for the third-order polynomial [48, 
49], equation (24) will have roots with negative real parts if and only if the coefficients ωi 
are positive for i = 2, . . . , 4 and ω2ω3 > ω4 . Hence, the conditions of the Routh-Hurwitz 
criterion established the local asymptomatic stability of the Lassa fever model given by 
(1) at the disease-free equilibrium E0 . �

Proof of Theorem 2

Proof  From the Lassa fever model (1), we can obtain F(X, Z), and G(X, Z) as

�

where k1 = (σh + µh) , k2 = (τh + µh + δh) , and k3 = (µh + ξh) . From (25), we obtain 
the reduced system below:

(23)J1(E0) =













−k1 βh βrh

σh −k2 0

0
S∗r βhr
S∗h

−(µr − βr)













(24)ω1�
3 + ω2�

2 + ω3�+ ω4 = 0

ω1 = 1

ω2 = (k1 + k2)+ µr(1−Rr)

ω3 = µr(k1 + k2)(1−Rr)+ k1k2(1−Rh)

ω4 = µrk1k2(1−Rr)(1−Rh)

{

1− RhrRrh

(1−Rh)(1−Rr)

}

(25)

dX

dt
= F(X ,Z) =











πh + ξhRh − �hSh − µhSh

τhIh − k3Rh

πr − �rSr − µrSr











,
dZ

dt
= G(X ,Z) =











�hSh − k1Eh

σhEh − k2Ih

�rSr − µr Ir










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From equation (26), it is obvious that E∗
0 =

(

πh
µh

, 0, πr
µr

)

 is the GAS equilibrium point for 

the reduced system (26). This is trivia by solving dSh
dt

= πh − µhSh to obtain 
Sh(t) = πh

µh
+

(

Sh(0)− πh
µh

)

exp−µht , which implies that Sh → πh
µh

 as t → ∞ . Similarly, it 

can be shown that Sr → πr
µr

 as t → ∞ . Hence, the convergence of solutions is global in 
the region D . Let,

Then, we verify the second condition (C2):

Hence, since 0 ≤ Sh and 0 ≤ Sr , it is clear that Ĝ(X ,Z) ≥ 0 . Thus, the Lassa fever-free 
with the fixed point E∗

0 = (X∗, 0) is globally asymptotically stable when R0 < 1.

Coefficients of polynomial (14)

where: φ1 = βhrπhσhk3 , φ2 = πhk1k2k3 , φ3 = βrhπr , φ4 = µhk1k2k3 , φ5 = µrβhπhσhk3 , 
J = πh(k2k3 + k3σh + σhτh) and Q = k1k2k3 − σhτhξh.

(26)
dX

dt

�

�

�

Z=0
= F(X , 0) =











πh − µhSh

0

πr − µrSr











(27)Q = BZG(X∗, 0) =













−k1 βh βrh

σh −k2 0

0
S∗r βhr
S∗h

−(µr − βr)













(28)Ĝ(X ,Z) =













Ĝ1(X ,Z)

Ĝ2(X ,Z)

Ĝ3(X ,Z)













=















(βhIh + βrhIr)
�

1− Sh
Nh

�

0

βhr IhS
∗
r

S∗h

�

1− SrS
∗
h

S∗r Nh

�

+ βr Ir

�

1− Sr
Nr

�















a1 = βrµ
2
r

{

πh(k2k3 + k3σh + σhτh)
}3

a2 = Jµr(JQµrφ3 + 3Jβrµrφ2 + Qφ1φ3)− J2βrµr(Qφ3 + 2φ5)

a3 = Jµr

(

Jµrφ3φ4 + 2Qφ2φ3µr + 3βrµrφ
2
2 + φ1φ3φ4

)

+ Qφ3(Jβrφ5 + µrφ1φ2)+ Jβrφ
2
5

− {Jµr(Jβrφ3φ4 + 2Qβrφ2φ3 + Qφ3φ5 + 4βrφ2φ5)+ Qφ1φ3(Qφ3 + φ5)}

a4 = µrφ2

(

2Jµrφ3φ4 + Qµrφ2φ3 + βrµrφ
2
2 + φ1φ3φ4

)

+ βrφ2φ5(Qφ3 + φ5)+ Jβrφ3φ4φ5

− {µrφ2(2Jφ3φ4βr + Qβrφ2φ3 + Qφ3φ5 + 2βrφ2φ5)+ φ3φ4(Jµrφ5 + 2Qφ1φ3 + φ1φ5)}

a5 = (1−Rh)+RhRr

(

1− 1

k1k2Rh

)

−RhrRrh
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