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Introduction
Models for predicting how epidemics are spread in a certain community are not only 
numerous but also dating from the early twentieth century. They are of two kinds: the 
first is statistical in nature; i.e. like fitting data to a curve and then extrapolating from 
there. The second are the mechanistic models simulating future transmission scenarios 
under a list of assumptions. The first type is usually used for short-term forecasts using 
machine learning or regression allowing for quick projections that are useful for policy 
makers. The famous model presented by the Institute for Health Metrics and Evaluation 
(IHME) falls into this category [1]. These models are generally not suited for long-term 
predictions; to the least anticipating the date of the pandemic peak. On the contrary, 
mechanistic models are well suited for epidemiological dynamics like when the peak will 
occur or whether a revival will happen. They can also deal better with large populations. 
They also allow for nonlinear feedback; like the more persons are infected the faster the 
pandemic spreads. Therefore, they are well-fitted for inference about intervention effi-
cacy. The model we applied is a logistic growth model which falls into this category.
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Of the early mechanistic models is the SIR; short for Susceptible–Infected–Recovered, 
which was designed by Kermack and McKendrick [2]. In this model, the authors consid-
ered a fixed population by modeling three variables: the susceptible, the infected and the 
recovered. They are called compartments because people may progress between them. 
The order of the label denotes the flow pattern from left to right. Like it is understood, 
the first group is not yet infected; yet it can be at any time, the second group comprises 
those already infected and can therefore transmit the disease to others, while the last 
group although at one time contracted the disease but are now recovered. The model 
goes on describing the rules upon which the flow proceeds between these three cate-
gories. In fact, the SIR model paved the way for future research with some alterations 
or say assumptions; e.g. the SEIR model (Susceptible–Exposed–Infectious–Recovered) 
or SEIRS (susceptible–exposed–infectious–recovered–susceptible) types, depending 
on whether the acquired immunity is permanent or not. In other words, a distinction is 
made between those models describing diseases that grant lifelong immunity and those 
which do not. The first case leads to the so-called SIR type models, the second to the SIS 
type models. Some models further added extensive complexities like a nonlinear trans-
mission rate leading to some chaotic and hyper-chaotic dynamical behaviors [3]. Some 
investigated the uncertainty of the parameters fed into the model [4, 5]; e.g. health care 
management, the natural history of the disease, possible survey biases, the transmission 
behavioral factors, the sampling or measurement errors, etc.… Determining the sensi-
tivities to changes in these parameter values will help identify those key parameters that 
can help the decision makers explore various policies [6]. In general, not that modeling 
needs a laborious effort on the part of the modeler, but demands also a substantial team 
of specialists, whether in virology, medicine, epidemiology, ecology, public health, policy 
makers, statistics, computer simulation experts, etc.… and sponsored by large institu-
tions [7]. That is due to the many assumptions and parameters involved in the study. The 
latter usually lasts several months in order to test conceptual results such as thresholds, 
the transmission characteristics of the disease, how can the basic reproduction number 
be monitored regularly, assessing quantitative conjectures, whether the model applies 
with/without therapy intervention, what/how crucial data are collected. Again, whether 
the incubation period varies from one person to another, what is the average recovery 
period, how and when antibodies develop and whether the person remains contagious 
for a while, etc.… A simple review to the literature reveals the rapid growth of epidemi-
ology modeling by researchers and how diverse is the list of acronyms in describing the 
flow patterns between the different compartments. A few examples only of those acro-
nyms are the SIR, SIS, SEI, SEIS, SIRS, SEIR, SEIRS models and so on….

Models also make different assumptions about the properties of each specific pan-
demic. For the novel corona-virus, how infectious it is, or what is the rate at which peo-
ple die as a result of acquiring the infection. Again, the way the disease is transferred 
from one person to another which varies according to preventive measures and social 
distancing, the probability of being infectious, what if a proportion of the population 
is immunized at birth by vaccination, etc.… All these are incorporated in some dimen-
sionless parameter  Ro called the basic reproductive number. It represents the average 
number of people that a single infectious person will infect over the course of his/her 
infection; a parameter which takes an arduous effort for its calculation [8]. If β represents 
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the average infection-producing contacts per unit time, with a mean infectious period of 
1/γ , then Ro = β/γ . For example COVID-19 (Corona Virus Disease 2019) has an Ro of 
approximately 4, so, on average a person who has COVID-19 will pass it on to 4 other 
people.

The proposed model will be used to forecast the growth of the number of cumulative 
cases N (t) of infected persons in Egypt; being our case-study. In other words, we target 
the total number of persons—during the whole course of the disease—who are already 
infected on a daily basis in addition to those recovered or died since they contracted the 
disease at some previous time. We also used the model to predict both the timing of the 
peak tm as well as the final epidemic size P. For our model to be sound, N (t) must match 
the data advertised by the WHO (World Health Organization) site [9] appearing in the 
first column of its table under the heading of total cases. So a number like 3,617,408 
published on 7–15-2020 in the first column for the USA denotes the cumulative total 
number of individuals who contracted the disease whether now or before; i.e. during its 
whole course so far.

To isolate the set of infected persons I from the recovered set R is unimportant in our 
view; while one group is at present contracting the disease; the other did already con-
tract it at some previous instant of time; so it is only a matter of time span between both 
groups. This explains why the total number of infected cases N announced in the first 
column in [9] carrying the sum of both figures is the dominant data which any country 
declares. Besides, not only that the recovered persons are a proper subset of N, but it will 
also become the most obvious source of uncertainty affecting not only this model but all 
models in that we don’t know how many persons are, or have been infected. In our view, 
the ratio of the recovered to the infectives is relevant only to the policy makers so that 
they are informed prematurely of the recovery rate they can expect independent of any 
medical intervention. But sure this ratio is not something that the model can anticipate 
beforehand. Any negligence on the part of the healthcare system or the unintentional 
absence of any safeguarding measures to face unexpected shortcomings which may arise 
can lead to far-reaching consequences. For example, a very common instance occurring 
is the sudden lack of oxygen in hospitals at a crucial moment amounting to high mortal-
ity; and surely no model can take it into consideration as a possible risk factor. Thus the 
less representative variables in the model, the less will be their deviation from the true 
data. Again, most models assume unrealistically that the population is uniform, i.e. con-
stituting a homogeneous mixture which is not true. It is commonly known that children 
usually have more adequate contacts per day than adults. Again, different geographic 
groups and socio-economic ones usually have different contact rates. Besides, who can 
tell if any child belongs to the class M having temporary passive immunity to infection 
acquired from his mother during pregnancy; whether he already moved to the suscepti-
ble class or not yet, etc.…But we admit that those issues are difficult to investigate.

Method
It is agreed upon that pandemics spread according to the exponential function; a func-
tion investigated by Jacob Bernoulli (1655–1705). Let us assume that, at the beginning 
of the outbreak, the number of infected persons contagious to others is N0 which can 
be one person only (patient zero). This will result in a number  No × Ro of the newly 
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infected persons. Thus, the total number of infected persons per one cycle of conta-
gion becomes equal to No + No × Ro = No(1+ Ro) . As the number of cycles n unfolds 
each of period 1/γ , the bracket (1+ Ro) is raised to the power n = tγ after a time t . 
Thus, the total cumulative number N  of infected cases at time t becomes equal to 
N (t) = No(1+ Ro)

tγ = Noe
tγ ln(1+Ro) , where "ln" stands for the natural logarithm. But 

ln(1+ Ro) < Ro ; thus the rate dN/dt with which the cumulative number N  of infected 
cases grows at time t is bounded by N × γ × Ro ; and the model is therefore governed 
by the simple differential equation dN/dt = Nβ having as solution N = N0e

βt.
The reason for accounting for N0 as contributing to the next cycle of infection 

although this group might have recovered is because it usually remains active for a 
longer period and might continue spreading the disease. For it is quite known that 
in general, patients may become infectious on average 4 days before showing major 
symptoms (a susceptible individual first goes through a latent period after infection 
before becoming infectious) in addition to ten more days at least since symptoms 
first appeared until recovery. In this long period of illness overlapping the 14 days of 
incubation period of N (t)× Ro , N (t) remains active; and therefore the original N (t) 
can simultaneously transmit it. So being cautious, we add it to the group which can 
spread the disease. Besides, there are cases reported by the MIT medical issue May-
13–2020, in which the person can still test positive after being symptom free for more 
than 2 weeks.

On the contrary, if No is exempted from the responsibility of a secondary infection, 
the second cycle gives No + No × Ro(1+ Ro) = No(1+ Ro + R

2
o) as the total number 

of infected persons, and so on…; i.e. a geometric series in Ro having as sum

The advantage of this model over the previous one, is that it is commonly 
known that if Ro < 1 , the spread must eventually die out (N becomes constant and 
dN/dt → 0 ) which doesn’t show in the previous model. For if Ro < 1 , ln Ro < 0 and 
the exponential function in Eq. (1) will vanish as t → ∞ , and N will stabilize to

The data though reported by the different countries for the COVID-19 doesn’t run 
according to the above simplified model even if Ro is big, otherwise we should have 
witnessed a much dramatic explosion in the number of infected cases. Thus, the 
above suggested equation is suitable to represent the dynamics of COVID-19 only in 
the beginning of the outbreak. For although Ro is not small for COVID-19 as given 
in [10] (exceptional small values have been recorded [11]), the actual data reported 
worldwide show some saturation; for there are many unsusceptible person, being 
immune or live in remote areas, etc.…. The authors preferred therefore to rely on the 
actual universal data published by the WHO [9] from which an average growth rate c 
substituting β can be calculated at the beginning of the outbreak from the expression

(1)N (t) = No
R
tγ+1
o − 1

Ro − 1
= No

Roe
tγ ln Ro − 1

Ro − 1
.

(2)N∞ =
No

1− Ro
, (Ro < 1)
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(The average estimated value from the published data in [9] gives c = 0.06  days−1). 
However, by using this value in our model, we found that it gives—over a longer 
period of time—an expected number of infected cases much higher than the actual 
value. The truth is, whenever the total number of infected persons N  in a certain 
pandemic becomes large enough, only a few infections will be recorded; for the virus 
won’t find enough people to infect since the majority had been already infected and 
this is the main idea behind the herd immunity (see footnote). This occurs especially 
in countries with a small population size; since an instant in time will quickly come at 
which there will be no new susceptible persons at all to be infected. This assumption, 
being quiet reasonable, convinced the authors to take it from there, and try to modify 
the model accordingly by adjusting this ratio c by scaling it with a proportionality 
factor that obeys certain rules: It must be dimensionless like Ro . That it must be less 
than unity. That it must tend to zero as t → ∞ and that for small t, N  should grow 
with a rate c . The reason why it must be dimensionless is straightforward for it is a 
proportionality factor to the rate c . That it must be less than unity is also essential 
so that the spread of the pandemic declines eventually given enough time; otherwise 
it will explode through the foregoing exponential function. It must also tend to zero 
as t → ∞ so that the total number of infected cases N saturates or that dN/dt → 0 
eventually. Finally, at the beginning of the outbreak, it is expected to follow the Ber-
noulli model as if nothing can stop its spread. For these reasons, the authors settled 
for the logistic model introduced by Pierre François Verhulst in 1838 modeling the 
population growth in ecology, an improvement of Malthus [12] famous population 
model in which such proportionality factor is chosen as [1− (N/P)] . In fact, many 
authors [13–15], concurrently to us, had the same idea as to use the same model for 
COVID-19. The reason is that since 0 ≤ N < P , one has that 0 < 1− (N/P) ≤ 1 . This 
means that, as the number of infected persons N  approaches the final population size 
P , [1− (N/P)] comes nearer to zero; and the cumulative number N will remain con-
stant; so that no new daily rate of infections will be recorded. On the contrary, in 
countries with large population like Egypt, the value of N is usually negligible rela-
tive to P . The spread of the disease will thus follow at the beginning of the outbreak 
an exponential growth with a rate c , a situation we already witnessed. It therefore 
seems reasonable that so long that there exist villages or district areas that are not yet 
infected, there is no clear evidence that the outbreak will subside very soon. The situ-
ation was different in a country say like Italy, because there was a lockdown for a long 
time, so that P doesn’t constitute the whole of the population; rather those exposed 
only and which saturates to a final epidemic size P, a number which is by far less than 
P . So that when the Italian government felt that N was about to approach all those 
that are expected to catch the disease eventually based on similar world data, then 
there was no need for a complete caution; and the responsibility lies in the hands of 
the citizens in avoiding the gatherings as much as possible. To clarify further, let us 
take the example of the USA a country of population size of 328 millions. If an epi-
demic hits the country, would the whole population be susceptible for an infection, 

(3)c =
1

N

dN

dt

∣

∣

∣

∣

N∼=0
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definitely not. For there are those who do not necessarily contract the disease, or for 
some reasons they are immune by birth, others live in a remote area. In fact, scientists 
could not explain why some suffer from severe symptoms which can lead to death, 
while others exhibit minor symptoms or nothing at all. Some may need intensive care 
units and respiratory intervention apparatus and can still die, while others do not 
even know if they were hit by the virus at all. The reason is that the person might 
have developed antibodies from a previous attack of say SARS-Cov-1 or Mers; two 
of the severe respiratory diseases which reached Egypt in 2002–2004 and in late 2019 
respectively. This can also explain the small number of infections in Egypt. Scientists 
call this phenomenon immunity memory against the whole Covid family. The authors 
therefore settled for the factor [1− (N/P)] . We shall explain shortly how to estimate 
the value of P.

Solving for N (t) the differential equation

we obtain

in which we took N0 = 790 in the first of April. We then traced the relation between the 
total number of infected persons N against t (from April till the date of submission of 
the original manuscript being late July) for values of P between 400,000–600,000. The 
reason for choosing these estimates for P, is that we consulted the WHO tables [9] and 
found that, as the number of infective cases N approached stabilization, they counted 
worldwide between 0.4–0.7% of the total population size (Italy 0.4%, Sweden 0.7% try-
ing to adopt herd immunity). Some extreme cases exist like 1.1% for the USA or 0.02% 
for South Korea. For Egypt it should range thus between 400,000–600,000 citizens all 
in all to be infected during the whole course of the pandemic. Upon taking P = 400,000, 
we found the estimated curve resembling a great deal the actual values yet shifted a lit-
tle to the right. Since we know well that the actual data are rough figures for the matter 
of guidance to the government, it was not worth the effort to proceed with an optimi-
zation scheme i.e. to minimize the difference between both under some norm, usually 
norm-2 (Least-squares fit) to obtain c and P. Instead, we kept decreasing the value of P 
until we found that P = 105,000 makes the two figures: the estimated one from the model 
and the announced one by the authorities fit each other almost perfectly. At the same 
date we submitted our paper in July, three authors from Alexandria-Egypt adopted sev-
eral regression models [16] and obtained the final epidemic size P to be around 166,760. 
Ours is more close to the actual figure of 104,000 which was reported by the government 
in October after our first submission.

Figure 1 shows N (t) in its S shape, while Fig. 2 represents the time remaining to the 
inflection point as a function of the parameter P; all starting from the beginning of 
April. As we prepared a revised manuscript in December, we preferred to extend the 
data in Figs. 1 and 3 until the end of October 2020.

(4)
dN

dt
= c

(

1−
N

P

)

N , N (0) = N0

(5)N (t) =
N0Pe

ct

P − N0 + N0ect
,
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From Eq. (5), the graph of N (t) in Fig. 1 saturates to P. Such graph is composed of 
two parts: the first shows that there are always new infections, since

but more important that their number is initially accelerating day after day. This is seen 
from the second derivative

(6)
dN

dt
=

N0Pce
ct(P − N0)

(

P − N0 + N0ect
)2

> 0, for all t

(7)
d2N

dt2
= N0Pc

2ect(P − N0)
P − N0 − N0e

ct

(

P − N0 + N0ect
)3

,
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Fig. 1  Total number of COVID-19 cases in Egypt in the first wave assuming P = 105,000

Fig. 2  Inflection point in the first wave versus the value of P 
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showing that the curve is concave upwards until a point of inflection is reached, a point 
crucial in the development of the pandemic. To obtain it, we set P − N0 − N0e

ct = 0 , 
giving the timing at which this inflection point occurs; that is

(around the 20th of June). Following this date, despite there will be still new infections, 
but it is the daily rate which starts to lessen day after day (curve becoming concave 
downwards); meaning that the daily rate reaches its peak value at this point in time. In 
Eq. (8),  No << P so that it can be neglected in the numerator relative to P. It therefore 
seems that in general if c is large, we reach more quickly the inflection point and the 
opposite is the case if c is small. Equally, if the population P is large, it takes a longer 
time to reach the inflection point. Thus the right procedure to adopt for lessening P is 
to make the people less exposed as much as possible; whether by staying longer times at 
home or wearing masks regularly. Of course, a lockdown is always possible, except that it 
leads to bad economic consequences.

Finally, to compare our model with the classical SIR model, ours contains one variable 
only namely N (t) against three for the SIR. The latter incorporates the following three com-
partment variables [17]:

satisfying S(t)+ I(t)+ R(t) = P and where P is the total population size which is a fixed 
constant. The equations are

(8)tm =
1

c
ln

P − N0

N0

∼= 82 days

(9)
i) S(t) the number of susceptible people at time t

ii) I(t) the number of infected cases at time t

iii) R(t) the number of recovered cases at time t

May June July Aug. Sept. Oct.
0

200

400

600

800

1000

1200

1400

1600

1800

2000

 N
ew

 D
ai

ly
 C

as
es

 

COVID-19 Cases in Egypt, P=105,000 

 Announced Data
 Estimated

Fig. 3  The daily COVID-19 cases in Egypt in the first wave assuming P = 105,000
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All S0 , I0 , R0 ≥ 0 ( R0 not to be confused with the basic reproduction number).
In our model, I(t) and R(t) are combined instead into one variable N (t) := I(t)+ R(t) . 

The function N (t) will thus represent the total cumulative sum found at some instant of 
time t of all those either contracting (infectives) or had previously contracted (recovered 
from) the disease. Since S(t) = P − N (t) . Equation (10a) will then read

giving that

in which �(t) ∝ I(t)

P
 or that

Now, look how close is Eqs. (13) to (4); they are identical, except for two things: one, 
is that the SIR model replaces N (t) in Eq. (4) outside the bracket by I(t) . The second, is 
that P in Eq. (13) is constant while P in Eq. (4) is a parameter. For the first distinction, we 
believe that N (t) was more appropriate to use rather than I(t) in Eq. (13); the fact that at 
the sudden outbreak of the pandemic N (t) << P so it can be neglected in the equation, 
and dN/dt must be found proportional to N and not I. As for the second distinction 
from the SIR model, it is true that in our case S(t)+ N (t) = P , but both the variable S 
and the parameter P signify different meanings than those of the SIR model. We already 
explained that the whole population P cannot—for different reasons—be susceptible for 
an infection, definitely not. For example, the present number announced so far is 85,000 
from a total population of 100 millions (that was when we were about to submit our first 
manuscript). We took into consideration that this constitutes the number of only those 
that have been tested positive; for there are a vast majority who were not tested or even 
felt they contracted the disease. But sure this majority could not approach by any means 
any value near 100 millions and thus we could not take P as equal to 100 millions; for it 
will be totally absurd. Besides, If P was to take this value of P = 100, 000, 000 like in the 
SIR model, then by neglecting N relative to P in Eq. (13), we find that N will keep rising 
continuously without bound; being impossible. On the contrary, from Eq. (5), as t → ∞ , 
N → P and consequently S → 0 . The latter variable S will stand only for the number of 
citizens waiting in the queue to be infected from a totality of 400,000 say for the Egyp-
tian case. So P becomes a parameter of choice. In fact, this is one strong point in favor 
of the model having qualities similar to the statistical models. By taking P = 105, 000 , 
we found that our estimated data matches exactly the announced ones. This value of 

(10)

(a)
dS

dt
= −�(t) S(t), S(0) = S0

(b)
dI

dt
= −�(t) S(t)− γ I(t), I(t) = I0

(c)
dR

dt
= γ I(t), R(0) = R0

(11)d (P − N (t)

dt
= −

d N (t)

dt
= −�(t) S(t)

(12)
d N (t)

dt
= �(t)

[

P − N (t)
]

(13)
dN (t)

dt
=∝

(

1−
N (t)

P

)

I(t)
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105,000 was never announced by the authorities by the time we submitted the first man-
uscript, yet our model predicts it as the total expected cumulative number of infectives 
that can be reached near saturation. From the graph of Fig. 3, it seems that we passed the 
first peak in early July 2020.

Again, in Eq. (10) adding Eqs. (b) to (c) results in

which is again Eq. (11).
The standard SIR model is sometimes criticized for being rigid in its assumptions. For 

example it assumes a constant basic reproduction number Ro which is not true. Usually, 
people respond by lowering their contacts long before herd immunity is attained. The 
fear to contract the disease influences their behavior and compels them to change their 
human conduct. Therefore to anticipate massive infections, hospitalizations and deaths 
in a mechanical way does not appear to be always the case; like in Egypt when a sudden 
drop in the number of infectives occurred. To say that the model we used is mechanical 
like the SIR in which the disease grows first exponentially, and then it starts to decline as 
N (t) approaches P is true. But the latter is not fixed like in the SIR; rather a parameter 
that can be monitored based on the current state of affairs and consequently the rate 
of growth of lnN  is proportional to [1− (N/P)] . True in both models, whether S(t) or 
S(t) → 0 , but in the SIR model R(t) → P (the total population size) which is not pos-
sible even under herd immunity. In our model, N (t) → P (the number of citizens liable 
for infection); thus we reach the end of the pandemic and the rate of growth becomes 
equal to zero.

To end our discussion, it is important to mention some new trends in the field. 
Although the logistic differential Eq.  (4) is the classical one to date for modeling the 
growth of many biological and social science phenomena, yet successful efforts based 
on fractional calculus emerged lately replacing integer-order models by fractional order 
ones. It seems that the latter are more descriptive; especially when it comes to hereditary 
and memory properties of such processes. This trend found applications in numerous 
disciplines; a famous example is in the growth of tumors in medicine [18]. In [19], the 
authors replaced the differential operator d/dt in Eq. (4) by CDα

t  ( α ∈ (0, 1] ) denoting the 
fractional differential operator of Caputo type, then used Galerkin method for its solu-
tion. While c in Eq. (4) still represents the intrinsic growth rate, P is called the carrying 
capacity of the environment. Interestingly enough, the fractional-order predator–prey 
problem [20] is another variant of Eq. (4) and furnishes an understanding of the dynam-
ics of many biological models. Also, based upon the Khan-Atangana fractional model on 
the dynamics of the corona virus and which accounts for many compartment variables 
[21], the authors in [22] proposed a computational method to solve the fractional-order 
equations along with a stability analysis. In [23] a generalized wavelet method is devel-
oped together with the quasi-linearization technique to solve the Volterra’s population 
growth model of fractional order and the problem is finally transformed into an equiva-
lent system of algebraic equations easily solvable using classical methods. Since biologi-
cal models can exhibit hyperchaotic behaviours, the authors in [24] studied their chaos 
control in both the frameworks of classical and fractional calculus by designing a set 

(14)
dI

dt
+

dR

dt
=

dN

dt
= −�(t) S(t)
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of optimal and adaptive controllers to compensate the undesirable hyperchaotic behav-
iours. The purpose of this paper is to analyze and control the hyperchaotic behaviours of 
a biological snap oscillator.  They mainly study the chaos control and synchronization of 
a hyperchaotic model in both the frameworks of classical and fractional calculus, respec-
tively. First, the phase portraits of the considered model and its hyperchaotic attractors 
are analyzed. Then two efficacious optimal and adaptive controllers are designed to com-
pensate the undesirable hyperchaotic behaviours. It turns out that fractional calculus 
techniques leads to more realistic and flexible models with memory effects, which could 
help us to design more efficient controllers.

Results and discussion
The second wave

Since the completion of our study of the first wave and the design of a model explain-
ing the spread of pandemics, the number of infected cases began to rise again. It seems 
we are almost starting from scratch. This time, a stronger outbreak of the pandemic hit 
Egypt as from the beginning of the fall. In fact, worldwide epidemiologists when witness-
ing the first wave suggested the possibility of a much heavier reoccurrence. In addition 
to the oncoming winter, one of their arguments is based on historical evidence like the 
second outburst of the Spanish flu with a lethal eruption claiming more than 50 million 
lives. Again, will there be a third wave of COVID-19 like the latter which struck in four 
successive waves? No one can speculate its happening. All of these questions are worth 
exploring and the authors felt obliged to investigate this new situation; and whether they 
should reverse back to their original model for the purpose of revision and rectification. 
Fortunately, the model proved to be still sound.

Why a second wave occurred is one major question. Among the many reasons is the 
rapid lifting of the lockdown, also the irresponsible ease of the restrictions on the part of 
the individual, his relaxing behavior and negligence in taking the necessary precautions; 
thinking that severity of the disease is over. We started seeing fewer people wearing 
masks, more gathering indoors to eat, drink, and observe religious practices or celebrate 
and socialize. The authorities themselves, at one time, didn’t seem to stress upon the 
measures that people should consider for their safety; for taking the matter too seriously 
has a serious fallback on the economic situation causing massive disruption of jobs and 
affecting employment issues. Even if some healthcare responsible believe that the gov-
ernment had decided for a premature reopening to avoid a financial crisis of its citizens 
along with some mild preventive measures, the effects of that change in policy will take 
a month or more to be seen. Besides, several cycles of infection/recovery must occur 
before a noticeable increase shows in the data.

In the authors view, the herd immunity is inevitable if no medical intervention is 
adopted, and the disease will take its due course in several consecutive waves. In fact, 
being vaccinated does not provide the person with a proper level of protection; neither 
does it stop him from transmitting the disease. What the country hopes for by vaccina-
tion is to flatten the curve avoiding a vast spreading of the pandemic in order to allow 
the physicians to cope well and not to overburden the healthcare system. For letting the 
virus circulate freely among the public can result in either hundreds of thousands of 
deaths or to the least an everlasting damage to the patients’ health. This is why scientists 
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are eagerly trying to determine whether people recovering from COVID-19 get a perma-
nent immunity or that it only lasts for a while and they can get the disease again; result-
ing in even more death and disability ?.

Like the rest of the world, the first wave in Egypt subsided noticeably around the 
beginning of October making the Egyptians more relaxed so as not to take the simplest 
precautions anymore. They started taking off their masks being unaware of the sever-
ity of the illness. In fact, everybody felt that the virus had been brought under control 
and that the cases had fallen substantially. But then, a sustained rise in infections started 
to be quickly noticed and the Egyptians were compelled this time to show more con-
cern. This switching from taking preventive measures to a complete relaxation and then 
back again to taking the necessary precautions is not an odd behavior in any society. It is 
called in science negative feedback mechanism whereby any physical/social phenomenon 
in nature oscillates between positive/high and negative/low until it is brought to a stand-
still/stabilized situation. Whether the virus this time—like it was announced prema-
turely—is less deadly but spreads more rapidly; or whether it is still lethal is debatable. 
We see around us that many are dying. It seems that subsequent rounds of pandemics 
are sometimes worse than the first like in the case of the Spanish flu killing in a matter of 
months between 50–100 million people. We know well that viruses tend to mutate and 
spread anew in different strains. It was found [25], using assisted models with different 
intervention scenarios, that the likelihood of an additional round of illness and death by 
COVID-19 can increase significantly when relaxing the preventive interventions used to 
limit the spread of the pandemic and that the virus has the potential to re-emerge and 
produce second and possibly even third waves of disease. In fact, the virologists do not 
rule out the possibility that it might even mutate into something more resilient; thus 
more lethal, before a potent vaccine becomes widespread. In fact, a group of molecular 
epidemiologist [26] at the University of Bern in Switzerland, identified a prominent vari-
ant of the virus which seemed to have originated in Spain by late summer and is reck-
oned to be the one to have accounted for 60–80% of all second wave cases in the United 
Kingdom as well as in other countries.

Going back to our original study of the first wave, the model predicted that the total 
cumulative number of infected cases N will reach near saturation an estimated value for 
P = 105, 000 by October as the final epidemic size (the actual figure announced then was 
104,000 [27]). Moreover, the estimated values given by the model through the course of 
the spread fit chronologically with the published data, and this is one major advantage in 
favor of the model.

As we passed this saturation point, the number of infective cases started to rise again 
driven by the second wave. The latter saturation point serves as a second inflection point 
upwards in the course of the pandemic; a point at which dN/dt is almost nil; meaning 
no new noticeable infections (the first inflection point calculated from Eq. (8) was after 
almost 82 days from the first of April; a point at which dN/dt is maximum). Note that N 
is a cumulative number that never drops; it either increases or remains almost constant 
for a while.

Our next task is to estimate the values of both c and P for this second wave. Based 
on these estimates, one can expect a second peak which will become a third inflection 
point (at which dN/dt is another local maximum). Consequently a second saturation 
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point will also be expected according to the model which will be a fourth inflection 
point at which dN/dt has a local minimum.

To calculate the values of c and P, we resorted to the actual graph of N (t) published 
in [27] and which facilitated this time our task enormously. The reason is that for 
the first wave, as we were about to submit our paper, the pandemic was showing that 
there a peak on its way. Not knowing when, we had no time to do an analysis. This 
time, the date of the peak has already passed in the first of January. So we decided to 
consider the period from the first of November until the first of January ( tm = 60 ). 
The reason for taking the first of November as the starting point is that the curve in 
[27] was seen to begin accelerating upwards quite noticeably announcing a new wave. 
The total number of reported cases was reaching then 107,736 from the very begin-
ning of the outbreak, whereas the number of active cases was given as 1903 infec-
tives in the first of November. Since the number of the recovered must be minimal 
then, the latter figure was taken as the value for N0 . The value at the peak was given 
from [27] as N (tm) = 139, 471 . To compare it with the model, this value is adjusted 
to 139,471–107,736 + 1903 = 33,638. From Eq.  (8), since tm = 60 , P − No = Noe

60c . 
Thus from Eq. (5), N (tm) = P/2 ; from which we obtain that P = 67,276. By adding the 
datum value gives the final epidemic size P = 67,276 + 107,736–1903 = 173,109. The 
value of c becomes equal to 0.059 which is about the same of the first wave. Finally, 
assuming that the date at which the pandemic spread will start to subside noticea-
bly is when N approaches P, say N = 0.9P . Equation (5) gives 97 days from the first 
of November; which is about early February. This matches with what we heard then 
that the spread has noticeably decreased. However, if we consider the second wave to 
be almost finished when only one person remains uninfected yet out of every thou-
sand of those who will become eventually infected ( N = 0.999P ), then Eq.  (5) gives 
177 days, i.e. until the end of April 2021.

Figure 4 shows the total number of COVID-19 cases in Egypt for the second wave 
until saturation to be 173,000 while Fig.  5 gives the daily COVID-19 cases starting 
from the first of November until we intend to submit our revised manuscript.

Fig. 4  The total number of COVID-19 cases in Egypt in the second wave assuming P = 173,000
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Conclusions
In this article, a model has been adopted to predict the spread of the COVID-19 pan-
demic in Egypt. It is based on some premises that is applicable to many pandemics. It 
is found that during the sudden outbreak, the number of people who are to contract 
the disease is expected to rise exponentially. Later it will begin to be curbed automati-
cally after passing a point crucial to the spread. The model was found to fit well with 
the data published by the Egyptian authorities. A comparison is made with the classical 
SIR model showing a great similarity between both models. On the contrary, the model 
we used is advantageous as P is a parameter that is allowed to be changed to fit cer-
tain acknowledged data like in the statistical models used for short-term forecasts and 
quick projections. To assess whether the model is superior to other models is not at all 
a trivial or easy task. However, it is simple and the mathematics involved is straightfor-
ward. Besides, the only three issues in our view that are vital to investigate in any model 
are: how to explain mathematically the graph of N(t), how to expect the timing of the 
inflection point as well as the final epidemic size. Again, the model is a long forecasting 
model in the sense that it can expect the number N from the beginning of the outbreak 
until the pandemic starts to vanish substantially. Yet it is a model valid only for one cycle 
of the spread, i.e. it cannot forecast a next wave. Like the rest of the models, it follows a 
Black Box approach and do not consider the mechanism of transmission of a disease. For 
example, it does not differentiate like many models between direct and indirect mode 
of transmission. It also supposes that there is a homogeneous mixing of the population 
irrespective of any age structure. Neither it considers the variability in the transmission/
infectivity process or the variation in the incubation period, etc.

Finally, whether we shall witness a third wave or not, it is always possible; nobody can 
exclude it. Once we reach the fourth inflection point of the second wave at which the 
daily rate of the infectives becomes minimal that their number may start to rise again 
predicting a new wave. So, nobody can really tell whether the pandemic will subside 
eventually and indefinitely or that the world shall witness even multiple reoccurrences. 
Most likely, the virus came to stay, and it will keep mutating so that the vaccine will turn 

Fig. 5  The daily COVID-19 cases in Egypt in the second wave assuming P = 173,000
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out to be like the seasonal flu needing to be changed all the time. Although the authors 
considered the period from the beginning of November until the end of the year, they 
kept tracing the curves until the end of January. The reader should also note that the fig-
ures estimated can change under medical interventions like the vaccination of the popu-
lation. At last, the authors can recommend the following classical references [28–31] to 
the reader interested in widening his scope about mathematical modeling of infectious 
diseases. 
+ +Herd immunity is a health term agreed upon by epidemiologists and virologists 

meaning that when enough people (reckoned to be about 70% of the population) have 
been immune from a disease by some reason or another (contracting it and forming 
antibodies, or being vaccinated, etc.…), the community becomes protected from the 
outbreaks of that disease at least for a while.

Abbreviations
COVID-19: Corona virus disease 2019; IHME: Institute for Health Metrics and Evaluation; SIR: Susceptible–infected–recov‑
ered; SEIR: Susceptible–exposed–infectious–recovered; SEIRS: Susceptible–exposed–infectious–recovered–susceptible; 
WHO: World Health Organization.

Acknowledgements
The authors would like to thank the anonymous referees for their careful and very detailed review of our manuscript. 
Their comments and suggestions have greatly contributed in improving the quality of our work.

Authors’ contributions
A.D. derived the mathematical equations of the model and wrote the manuscript. S.E. collected the data, plotted the 
figures, and participated in writing the manuscript. All authors read and approved the final manuscript.

Funding
The authors declare that they did not receive any funding.

Availability of data and materials
The data used in this study can be found in “COVID-19, estimation updates, published by the University of Washington 
Institute for Health Metrics and Evaluation, predictions since June 15, 2020.” http://​www.​healt​hdata.​org/​covid/​updat​es. 
The data is also available in ref [20].

Declaration

Competing interests
The authors declare that they have no competing interests.

Author details
1 Engineering Mathematics and Physics Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt. 2 Misr 
University for Science and Technology, Cairo, Egypt. 

Received: 5 August 2020   Accepted: 12 May 2021

References
	1.	 COVID-19, estimation updates, published by the University of Washington Institute for Health Metrics and Evalua‑

tion, predictions since June 15, 2020. http://​www.​healt​hdata.​org/​covid/​updat​es
	2.	 Kermack, W.O., McKendrick, A.G.: Contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115, 

700–721 (1927)
	3.	 Yi, N., Zhang, Q., Mao, K., Yang, D., Li, Q.: Analysis and control of an SEIR epidemic system with nonlinear transmission 

rate. Math. Comput. Model. 50(9–10), 1498–1513 (2009). https://​doi.​org/​10.​1016/j.​mcm.​2009.​07.​014
	4.	 Wang, M., Fless, S.: Modelling Covid-19 under uncertainty: what can we expect? Eur. J. Health Econ. 21(5), 665–668 

(2020). https://​doi.​org/​10.​1007/​s10198-​020-​01202-y
	5.	 Barnett, M., Buchak, G., Yannelis, C.: Epidemic responses under uncertainty, working paper 27289. National Bureau of 

Economic Research, Cambridge, MA, USA. (2020) https://​doi.​org/​10.​3386/​w27289
	6.	 Zhang, Z., Gul, R., Zeb, A.: Global sensitivity analysis of COVID-19 mathematical model. Alex. Eng. J. 60(1), 565–572 

(2021). https://​doi.​org/​10.​1016/j.​aej.​2020.​09.​035
	7.	 MSCA (short for Marie Skłodowska-Curie Actions) projects researching COVID-19, SARS-CoV-2 and related topics, 

The MSCA fund numerous projects whose work builds better policies, resources and strategies in the fight against 
COVID-19 and infectious diseases

http://www.healthdata.org/covid/updates
http://www.healthdata.org/covid/updates
https://doi.org/10.1016/j.mcm.2009.07.014
https://doi.org/10.1007/s10198-020-01202-y
https://doi.org/10.3386/w27289
https://doi.org/10.1016/j.aej.2020.09.035


Page 16 of 16Deif and El‑Naggar ﻿J Egypt Math Soc           (2021) 29:13 

	8.	 Anastassopoulou, C., Russo, L., Tsakiris, A., Siettos, C.: Data-based analysis, modeling and forecasting of the covid-19 
outbreak. PLoS ONE (2020). https://​doi.​org/​10.​1371/​journ​al.​pone.​02304​05

	9.	 Worldometer, COVID-19 Coronavirus Pandemic. https://​www.​world​omete​rs.​info/​coron​avirus/
	10.	 Billah, A., Miah, M., Khan, N.: Reproductive number of coronavirus: a systematic review and meta-analysis based on 

global level evidence. PLoS ONE. (2020) open access, Nov. 11
	11.	 Dharmaratne, S., Sudaraka, S., Abeyagunawardena, I., Manchanayake, K., Kothalawala, M., Gunathunga, W.: Estima‑

tion of the basic reproduction number (Ro) for the novel coronavirus disease in Sri Lanka. Virol. J. 17(144), 1–7 (2020). 
https://​doi.​org/​10.​1186/​s12985-​020-​01411-0

	12.	 Malthus, T.: An Essay on the Principle of Population. University of Michigan Press, Ann Arbor (1986)
	13.	 Batista, M.: Estimation of the final size of the second phase of the coronavirus COVID 19 epidemic by the logistic 

model. MedRxiv (2020). https://​doi.​org/​10.​1101/​2020.​03.​11.​20024​901
	14.	 Wang, P., Zheng, X., Li, J., Zhu, B.: Prediction of epidemic trends in COVID-19 with logistic model and machine learn‑

ing technics. Chaos Solitons Fract. 139, 110058 (2020). https://​doi.​org/​10.​1016/j.​chaos.​2020.​110058
	15.	 Shen, C.Y.: Logistic growth modelling of COVID-19 proliferation in China and its international implications. Int. J. 

Infect. Dis. 96, 582–589 (2020)
	16.	 Amar, L., Taha, A., Mohamed, M.: Prediction of the final size for COVID-19 epidemic using machine learning: a case 

study of Egypt. Infect. Dis. Modell. 5, 622–634 (2020)
	17.	 Iannelli, M.: The Mathematical modeling of Epidemics, Lecture I: Essential Epidemics, Summer School on Mathemati‑

cal Models in Life Science: Theory and Simulation, Bolzano, Italy (2005)
	18.	 Fory’s, U., Marciniak-Czochra, A.: Logistic equations in tumor growth modelling. Int. J. Appl. Math. Comput. Sci. 13, 

317–325 (2003)
	19.	 Izadi, M., Srivastava, H.M.: A discretization approach for the nonlinear fractional logistic equation. Entropy 22, 1–17 

(2020). https://​doi.​org/​10.​3390/​e2211​1328
	20.	 Srivastava, H.M., Dubey, V.P., Kumar, R., Singh, J., Kumar, D., Baleanu, D.: An efficient computational approach for 

a fractional-order biological population model with carrying capacity. Chaos Solitons Fract. 138, 109880 (2020). 
https://​doi.​org/​10.​1016/j.​chaos.​2020.​109880

	21.	 Khan, M.A., Atangana, A.: Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. Alex. 
Eng. J. 59(4), 2379–2389 (2020). https://​doi.​org/​10.​1016/j.​aej.​2020.​02.​033

	22.	 Singh, H., Srivastava, H.M., Hammouch, Z., Nisar, K.S.: Numerical simulation and stability analysis for the fractional-
order dynamics of COVID-19. Res. Phys. 20, 1–8 (2021). https://​doi.​org/​10.​1016/j.​rinp.​2020.​103722

	23.	 Srivastava, H.M., Shah, F.A., Irfan, M.: Generalized wavelet quasi-linearization method for solving population growth 
model of fractional order. Math. Methods Appl. Sci. 43, 8753–8762 (2020). https://​doi.​org/​10.​1002/​mma.​6542

	24.	 Sajjadi, S.S., Baleanu, D., Jajarmi, A., Pirouz, H.M.: A new adaptive synchronization and hyperchaos control of a bio‑
logical snap oscillator. Chaos Solitons Fract. 138, 109919 (2020). https://​doi.​org/​10.​1016/j.​chaos.​2020.​109919

	25.	 Leung, K., Wu, J.T., Liu, D., Leung, G.M.: First-wave COVID-19 transmissibility and severity in China outside Hubei after 
control measures, and second-wave scenario planning: a modeling impact assessment. Lancet 395, 1382–1393 
(2020). https://​doi.​org/​10.​1016/​S0140-​6736(20)​30746-7

	26.	 Hodcroft, E.B., Zuber, M., Nadeau, S., Comas, I., Candelas, F., Stadler, T., Neher, R.: Emergence and spread of a SARS-
CoV-2 variant through Europe in the summer of 2020, Covid19 SARS Cov-2 preprints from medRxiv and bioRxiv 
(2020) https://​doi.​org/​10.​1101/​2020.​10.​25.​20219​063

	27.	 Worldometer, COVID-19 Coronavirus Pandemic in Egypt. https://​www.​world​omete​rs.​info/​coron​avirus/​count​ry/​
egypt/

	28.	 Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000)
	29.	 Brauer, F., Castillo-Chávez, C.: Mathematical Models in Population Biology and Epidemiology. Springer, New York 

(2001)
	30.	 Siettos, C., Russo, L.: Mathematical modeling of infectious disease dynamics. Virulence 4(4), 295–306 (2013)
	31.	 Tan, W., Wu, H.: Deterministic and Stochastic Models of AIDS Epidemics and HIV Infections with Intervention. World 

Scientific, London (2005)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1371/journal.pone.0230405
https://www.worldometers.info/coronavirus/
https://doi.org/10.1186/s12985-020-01411-0
https://doi.org/10.1101/2020.03.11.20024901
https://doi.org/10.1016/j.chaos.2020.110058
https://doi.org/10.3390/e22111328
https://doi.org/10.1016/j.chaos.2020.109880
https://doi.org/10.1016/j.aej.2020.02.033
https://doi.org/10.1016/j.rinp.2020.103722
https://doi.org/10.1002/mma.6542
https://doi.org/10.1016/j.chaos.2020.109919
https://doi.org/10.1016/S0140-6736(20)30746-7
https://doi.org/10.1101/2020.10.25.20219063
https://www.worldometers.info/coronavirus/country/egypt/
https://www.worldometers.info/coronavirus/country/egypt/

	Modeling the COVID-19 spread, a case study of Egypt
	Abstract 
	Introduction
	Method
	Results and discussion
	The second wave

	Conclusions
	Acknowledgements
	References


