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Abstract
Let (G, ∗) be a finite group and S = {x ∈ G|x �= x−1} be a subset of G containing its
non-self invertible elements. The inverse graph of G denoted by �(G) is a graph whose
set of vertices coincides with G such that two distinct vertices x and y are adjacent if
either x ∗ y ∈ S or y ∗ x ∈ S. In this paper, we study the energy of the dihedral and
symmetric groups, we show that if G is a finite non-abelian group with exactly two
non-self invertible elements, then the associated inverse graph �(G) is never a
complete bipartite graph. Furthermore, we establish the isomorphism between the
inverse graphs of a subgroup Dp of the dihedral group Dn of order 2p and subgroup Sk
of the symmetric groups Sn of order k! such that 2p = n! (p, n, k ≥ 3 and p, n, k ∈ Z

+).
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Introduction
Graph representation is one of the combinatorial properties used to understand some
interesting properties of complex structures. It is a known fact that the beauties of some
algebraic structures inmathematics remain hidden, not until the associated Cayley graphs
of these algebraic structures (semigroups, groups, rings, etc.), began to gain the attention
of researchers. Recently, Alfuraidan and Zakariya [1] introduced and studied the inverse
graphs associated with finite groups. They established some interesting graph-theoretic
properties of the inverse graphs of some finite groups which further shed more light on
the algebraic properties of the groups. They established the inter-relatedness between
the algebraic properties of the finite groups and the graph-theoretic properties of the
associated inverse graphs. The inverse graph was used to characterize some isomorphism
problems of finite groups. In the same vein, Kalaimurugan and Megeshwaran [2] studied
the magic labeling on the inverse graph. They considered a non-trivial abelian group A
under addition and defined the Zk-magic labeling on inverse graphs from the finite cyclic
group to be a graph G if there exists a labelling f : E(G) → A − {0} such that the vertex
labelling f +(v) given as f +(v) = ∑

uv∈E(G) f (uv) taken over all edges uv incident at v is a

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42787-020-00101-8&domain=pdf
http://orcid.org/0000-0003-2328-4862
mailto: unusoj1@yahoo.com
mailto: aremukazeemolalekan@gmail.com
http://creativecommons.org/licenses/by/4.0/


EJIMA et al. Journal of the EgyptianMathematical Society           (2020) 28:43 Page 2 of 10

constant. They noted that the corresponding constant, say x, is the A-magic value of the
associated inverse graph.
On the other hand, Jones and Lawson [3] studied graph inverse of semigroups, gen-

eralized the polycyclic inverse monoids and further showed how the graph inverse play
an important role in the theory of C∗-algebras. Their work was targeted at two main
goals: first, to provide an abstract characterization of graph inverse semi groups; and sec-
ond, to show how this graph may be completed under suitable conditions, to form what
they called the Cuntz-Krieger semigroup of the graph. According to [3], this semigroup is
the ample semigroup of a topological groupoid associated with the graph, and the semi-
group analog of the Leavitt path algebra of the graph. Mesyan andMitchell [4] studied the
semigroup-theoretic structure of G(E). Specifically, they described the non-Rees congru-
ences on G(E) and showed that the quotient of G(E) by any Rees congruence is another
graph inverse semigroup. They further classified the G(E) that have only Rees congru-
ences and also found the minimum possible degree of a faithful representation by partial
transformations of any countable G(E). Finally, they showed that a homomorphism of
directed graphs can be extended to a homomorphism (that preserves zero) of the corre-
sponding graph inverse semigroups if and only if it is injective. Very recently, Chalapathi
and Kiran-Kumar [5] investigated some properties of invertible graphs of finite groups,
invertible graphs were defined, and some interesting results were established using finite
group classification. For each finite group, the size, girth, diameter, clique number, and the
chromatic number were obtained. Furthermore, they showed that the invertible graphs
are weakly perfect and specifically, formulas for enumerating the number of edges in
the invertible graph of the symmetric group, and dihedral group were derived. They
also established the relationships among isomorphic groups, non-isomorphic groups, and
their respective invertible graphs.
The notion of energy of graphs was introduced by Gutman [6] in an attempt to study

electron energy in theoretical chemistry. In brief, Gutman [7] studied and outlined the
connection between the energy of graphs and the total electron energy of a class of organic
molecules. He also obtained the relationship between the energy of graphs and their cor-
responding characteristics polynomials. Furthermore, Gutman [7] established some nice
properties of graph extremals with their respective energies. Since then, energies of sev-
eral types of graphs have been studied extensively in the literature. For instance, Andrade
et al. [8] introduced and studied the lower bound for the energy of a symmetrymatrix par-
titioned into blocks. According to [8], this bound is related to the spectrum of its quotient
matrix. They gave the lower bound for the energy of a graph with a bridge and also pre-
sented some computational experiments in order to show some cases where lower bound
is incomparable with the known lower bound of 2

√
m (where m is the number of edges

of the graph). Fadzil et al. [9] used a specific subset S = {b, ab, ..., an−bb} for the dihedral
groups of order 2n, where n ≥ 3 to find the Cayley graph with respect to the set. They
computed the eigenvalues and the energies of the respective Cayley graphs and further
generalized the energy of the generating subset of the dihedral groups.
Energy of graphs has vast applications in mathematics and other areas of science such

as physics, chemistry, computer science, engineering, and biology, as well as in social sci-
ence. For instance, combinatorial optimization can be studied using the energy of the
graph of the adjacency matrix of an optimization problem. This helps to understand the
partition problem of the associated adjacency matrix. Also, the energy of graph is applied
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to graph spectra in internet technologies, pattern recognition, and computer vision (see
[10] for details). Since matrices are important structure in the field of complex networks,
energy of graphs are considered in complex networks and social networks. In particu-
lar, networks that exhibit interesting topological characteristics. The concept of energy of
graph is applied to egocentric network, which showed that the energy of the graph corre-
lates to the vertex centrality measure (see [11] for details). In chemistry, energy of graph
is applied to the theory of unsaturated conjugated hydrocarbons, known as the Huckel
molecular orbital theory, while in physics, it is applied to a discrete model of membrane
used to treat membrane vibration problem (see also [10] for details).
In this paper, motivated by the works of Alfuraidan and Zakariya [1], Gutman [7], and

Fadzil et al. [9], we compute the energy of some inverse graphs which is the sum of the
absolute values of the eigenvalues of adjacency matrices of their corresponding inverse
graphs of finite groups. We study the energy of dihedral and symmetry groups and show
that if G is a finite non-abelian group with exactly two non-self invertible elements, then
the associated inverse graph �(G) is never a complete bipartite graph. Furthermore, we
establish that the inverse graphs of the subgroup Dp of a dihedral group Dn of order 2p
and the subgroup Sk of a symmetric groups Sn of order k! such that 2p = n! (p, n, k ≥
3 and p, n, k ∈ Z

+) are isomorphic.

Preliminaries
We state some known and useful results which will be needed in the proofs of our main
results and understanding of this paper. For the definitions of basic terms and results
given in this section, see [1, 2, 4, 5, 9, 12, 21].
A graph � is an ordered triple (V (�),E(�),��) consisting of a nonempty set of vertices

V (�), a set E(�) of edges disjoint fromV (�) and an incidence function�� that associates
with each edge of � an unordered pair of (not necessarily distinct) vertices of �. If e ∈
E(�) and u, v ∈ V (�) such that��(e) = uv, then e is said to join u and v; the vertices u and
v are called the ends of e. The cardinality of V (�) and E(�) are called the order and size
of �, respectively. The degree of a vertex u in a graph � denoted by δ(u) is the number of
edges incident to it. A graph � is simple if it has no loops and no two of its links join the
same pair of vertices. For the rest of this paper, our graph � is simple and undirected.

Definition 1 [5] Let (G, ∗) be a finite group with the identity element e. Then, an element
a ∈ G is called a self invertible element of G if a = a−1, where a−1 is the inverse of a in
G. The set of all self invertible elements of G and its cardinality are denoted by S′ and |S′|,
respectively.

Definition 2 [22, 23] Let N be a positive integer, a complete graph is a graph with N
vertices and an edge between every two vertices. That is every vertex is adjacent to every
other vertex. Consequently, if a graph contains at least one non-adjacent pair of vertices,
then that graph is not complete. A complete graph is usually denoted by KN .

Definition 3 [1] Let (G, ∗) be a finite group and S = {x ∈ G|x �= x−1} be a subset of
G. The inverse graph �(G) associated with G is the graph whose set of vertices coincides
with G such that two distinct vertices x and y are adjacent if and only if either x ∗ y ∈ S or
y ∗ x ∈ S.
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Fig. 1 Inverse graph of integer modulo 3

Remark 1 [1] Clearly, the identity e is a trivial self-invertible element in a finite group
G. Hence, e /∈ S. Consequently, the order of S is obviously less than the order of G. To be
specific, if G contains no self-invertible element besides the identity then | S |=| G | −1

Example 1 [1] The graphs in Figs. 1 and 2 are the inverse graphs of the groups (Z3,+),
S = {1, 2} and (Z5 \ {0}, ∗), S = {2, 3} under the usual addition and multiplication,
respectively.

Definition 4 [15] A bipartite graph is a graph with its set of vertices decomposed into
two disjoint sets such that no two graph vertices within the same set are adjacent.

Theorem 1 [1] Let G be a finite abelian group with exactly two non-self invertible
elements. Then, the associated inverse graph �(G) is complete bipartite.

Theorem 2 [12] Let � be a graph, the energy of � is never an odd integer.

Fig. 2 Inverse graph of integer modulo 5
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Theorem 3 [13] Let ai and bi be two vectors in R
n. The Cauchy-Schwartz inequality

states that

| ai.bi | ≤ | ai || bi |

Definition 5 [16] The dihedral group Dn is the group of symmetries of a regular poly-
gon with n vertices. This polygon is seen as having vertices on the unit circle, with vertices
labeled 0, 1, ..., n − 1 starting at (1, 0) and proceeding counterclockwise at angles in mul-
tiples of 360/n degrees (that is, 2π/n radians). There are two types of symmetries of the
n-gon, each one gives rise to n elements in the group Dn.

• Rotations R0,R1, ...,Rn−1, where Rk is rotation of angle 2πk/n where
k = {0, 1, ..., n − 1}.

• Reflections S0, S1, ..., Sn−1, where Sk is a reflection about the line through the origin
and making an angle of πk/n with the horizontal axis.

The group operation is given by the composition of symmetries: if a and b are two elements
in Dn, that is to say, a ∗ b is the symmetry obtained by applying first a, followed by b. It is
obvious that the following relations hold in Dn:

Ri ∗ Rj = Ri+j

Ri ∗ Sj = Si+j

Si ∗ Rj = Si−j

Si ∗ Sj = Ri−j

where 0 ≤ i, j ≤ n − 1, and both i + j and i − j are computed modulo n. It can be observed
that R0 is the identity, R−1

i = Rn−i, and S−1
i = Si.

Theorem 4 [17] Let G = Sn be a finite group of order n, the adjacency spectrum of Sn =
{√n − 1, 0, ..., 0,−√

n − 1; where eigenvalue λ = 0 has multiplicity (n − 2).

Definition 6 [18] Let � be a graph with n vertices and m edges, A =[ ai,j] be the adja-
cencymatrix for� and λ1, λ2, ..., λn be the eigenvalues of A.The energy of graph� is defined
as the sum of the absolute values of the eigenvalues of A. That is,

Ē(�) =
n∑

i=1
|λi|.

Definition 7 [17] Adjacency spectrum of a graph is the set of all n eigenvalues of the
(n × n) adjacency matrix is denoted as {λ1, λ2, · · · , λn} where λi ≥ λj for ∀ i < j.

Main results
This section introduces the energy of the inverse graph of both the dihedral and
symmetric groups. We begin with the following example of a dihedral group.

Example 2 Let Dn be the dihedral group of equilateral triangle, with vertices on the unit
circle, at angles 0, 2π \ 3, and 4π \ 3. The matrix representation according to [16] is given
by
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R0 =
(
1 0
0 1

)

,R1 =
(

− 1
2 −

√
3
2√

3
2 − 1

2

)

,R2 =
(

− 1
2

√
3
2

−
√
3
2 − 1

2

)

S0 =
(
1 0
0 −1

)

, S1 =
(

− 1
2

√
3
2√

3
2

1
2

)

, S2 =
(

− 1
2 −

√
3
2

−
√
3
2

1
2

)

and D3 = {R0,R1,R2, S0, S1, S2}. By Definition 5, we obtain the compositions of rotations
and reflections of the equilateral triangle in the following table;

∗ R0 R1 R2 S0 S1 S2
R0 R0 R1 R2 S0 S1 S2
R1 R1 R2 R0 S1 S2 S0
R2 R2 R0 R1 S2 S0 S1
S0 S0 S1 S2 R0 R1 R1
S1 S1 S2 S0 R2 R0 R1
S2 S2 S0 S1 R1 R2 R0.

Also, from Definition 3 and to ease understanding, we rewrite the elements of D3 =
{1, 2, 3, 4, 5, 6} (where R0 = 1,R1 = 2,R2 = 3, S0 = 4, S1 = 5 and S2 = 6) and
S = {x ∈ D3|x �= x−1} = {2, 3}. Then, the associated inverse graph of D3 are the two
disjointed graphs in the figure below.
From Fig. 3, we can draw the adjacency matrix of �(D3) as follows:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

To compute the eigenvalues of A, we compute the roots of the characteristics polyno-
mial of A which is given as λ6 − 5λ4 + 6λ2 − 2λ3 + 4λ. The roots λi (i = 1, 2, ..., 6) of the
polynomial is given as 0, 0, –1, 2, –

√
2, and

√
2. Hence, from Definition 6, the energy of

the inverse graph of D3 is 3 + 2
√
2.

Fig. 3 Inverse graph of dihedral group D3
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Theorem 5 Let G = Dn be the dihedral group of order 2n, where n ≥ 3 and S = {x ∈
G|x �= x−1} be a subset of Dn. Then, the energy Ē of the inverse graph �(G) is given as
3 + 2

√
2 ≤ Ē(�(G)) < 2m where m is the number of edges in �(G).

Proof Let G = Dn be the dihedral group of order 2n, where n ≥ 3 and S = {x ∈ G|x �=
x−1}. Suppose�(G) is the inverse graph of the dihedral group with n vertices andm edges.
Let A be the adjacency matrix of � with λ1, λ2, · · · , λn as its eigenvalues. Then, to obtain
the bounds of the energy of our inverse graphs, we shall adopt the general form of energy
of graphs (see Brualdi [20]) given as

Ē(�(G)) ≥
√
2m + n(n − 1) | detA |2/n. (1)

Recall that, the inverse graph � of finite groups are simple graphs. Furthermore, they
have no loops, and thus, the leading diagonals of the adjacency matrix A are 0s; therefore,
the determinant of A; det(A) = 0 then (1) becomes

Ē(�(G)) ≤ √
2m. (2)

Also, the energy of a graph is a function of both the vertex set and the edge set (see
[20]). Therefore, Ē(�(G)) ∈ R

+. And if (2) holds, then it is safe to write the following

Ē(�(G)) ≤ √
2m < 2m. (3)

And using the inequality property (if a ≤ b < c, then a < c) and we can write (3) as

Ē(�(G)) < 2m. (4)

Furthermore, since the least number n of Dn is 3, the lower bound is obvious from
Example 2. Then, it is safe to write

Ē(�(G)) ≥ 3 + 2
√
2. (5)

(see Example 2), then combining (4) and (5), we can conclude that

3 + 2
√
2 ≤ Ē(�(G)) < 2m.

Theorem 6 [19] Let G be a finite non-abelian group generated by two elements of order
2.Then, G is isomorphic to a dihedral group.

Theorem 7 Let G = Dn be the dihedral group of order 2n, where n ≥ 3 and S = {x ∈
G|x �= x−1} be a subset of Dn. Then, the inverse graph �(Dn) is never a complete bipartite
graph.

Proof Let G = Dn be the dihedral group of order 2n, where n ≥ 3, S = {x ∈ G|x �= x−1}
and S ⊆ Dn. Suppose the inverse graph of Dn is bipartite for all n ≥ 3, then the set of
vertices V (�(Dn)) can be partitioned into two sets, say V1 and V2 (the set of rotation of
angle 2πk/n and the set of reflections about the line through the origin) and also, there
exist two vertices u ∈ V1 and v ∈ V2 which are adjacent. But the dihedral groups are non-
abelian and these disjoint partitions contain elements which are not commutative. Hence,
by Definition 3, it is not possible for a v ∈ V1 and a u ∈ V2 to be adjacent.
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Corollary 1 Let G be a finite non-abelian group with exactly two non-self invertible
elements. Then, the associated inverse graph �(G) is never a complete bipartite graph.

Proof Let G be a finite non-abelian group with | S | = 2 and let the partition of the
vertex set V (�(G)) = {V1,V2}, where V1 = {x | x ∈ S} and V2 = {y | y /∈ S}. Suppose
x, y ∈ V (�(G)) and for the pair x, y to be adjacent, x ∗ y will be an element in S But G
is non-abelian and S contains only two elements. Then, obviously there is no any other
element say z such that z = x ∗ y ∈ V1.

Remark 2 Let G = Dn be the dihedral group of order 2n with a non bipartite graph,
then the adjacency matrix of G is non-symmetric and the sum of the absolute value of the
eigenvalues is not equal to zero.

Corollary 2 Let G be a finite non-abelian group with an even order n and S = {x ∈
G|x �= x−1}. Then, the associated inverse graph �(G) of the group decomposes into two
smaller disjoint subgraphs.

Proof Let G be a non-abelian group of order n where n is even, S = {x ∈ G|x �= x−1}.
Suppose V1 and V2 are two disjoint vertex sets of G, where V1(�(G)) = {1, 2, ..., n2 },
V2(�(G)) = {n2 , ..., n}. Note that, for x, y ∈ G to be adjacent, then x ∗ y or y ∗ x must
be in S. However, G is non-abelian and obviously, not all x and y in G are commutative.
To clearly show that there are two distinct vertex sets which are disjoint but forms the
disjoint subgraphs, we will consider two cases.
Case (I), let x and y be two vertices in G, such that x ∗ y and y ∗ x are both in S, they

might not necessarily be the same, but their is a common edge between x and y. This sets
of vertices and edges form a part of the inverse graph �(G) that is connected.
Case (II), let x and y be two different vertices in G such that x ∗ y is in S but the con-

verse y ∗ x is not in S, this set of vertices also form the second part of the inverse graph
�(G) which is not connected. Thus, clearly, we can conclude that an inverse graph �(G)

of a non-abelian group G with an even order n decomposes into two smaller disjoint
subgraphs.

Example 3 Let

G = S3 =
{

A =
(
1 2 3
1 2 3

)

,B =
(
1 2 3
2 1 3

)

,C =
(
1 2 3
3 2 1

)

,

D =
(
1 2 3
1 3 2

)

,E =
(
1 2 3
2 3 1

)

, F =
(
1 2 3
3 1 2

)}

be the symmetric group of order 6. By Definition 3, we obtain that

S =
{

E =
(
1 2 3
2 3 1

)

, F =
(
1 2 3
3 1 2

)}

.

Since S = {x ∈ G|x �= x−1}, then the inverse graph �(S3) of S3 is (Fig. 4)
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Fig. 4 Inverse graph of symmetric group S3

Theorem 8 Let Dp ⊆ Dn be a subgroup of the dihedral group of order 2p and Sk ⊆ Sn
be a subgroup of the symmetric group of order k!; k, p ≥ 3 are positive integers which are
not necessarily equal but 2p = k! and S = {x ∈ Dp, Sk|x �= x−1}. Then, the inverse graphs
of Dp and Sk are isomorphic.

Proof Let Dp ⊆ Dn be a subgroup of a dihedral group of order 2p and Sk ⊆ Sn be a
subgroup of a symmetric group of order k!; k, p ≥ 3 are positive integers which are not
necessarily equal. Suppose 2p = k! and S = {x ∈ Dp and Sk|x �= x−1}, it suffices to
show that the inverse graphs of �(Dp) and �(Sk) are isomorphic then the finite groups
Dp and Sk have the same adjacency matrix. If the order of | S |= 2 then by Theorem 6, it
is obvious that Dp and Sk have the same adjacency matrix, but if | S |�= 2, then | S | = 1 or
| S |> 2. If | S | = 1, then the relation �(Dp) � �(Sk) is trivial and we are left to show for
when | S |≥ 3. Suppose we claim that �(Dp) � �(Sk)when | S |≥ 3, then we have to show
a map ψ which is isomorphic on the two groups, we first show that ψ is an injection. So
let x and y be two elements of Dp and let a and b be two corresponding vertices of �(Dp)

if a and b are equal they must have the same effect on �(Sk). Check their effect on the
identity vertex, a = a(e) = ψ(e) = b(e) = b clearly ψ(a) = ψ(b) shows the injection of
the map ψ and a = b and the bijection is obvious.

Consequently, we obtain the following remark from Theorems 5 and 8.

Remark 3 Let Sk be a subgroup of the symmetric group Sn (Sk ⊆ Sn), such that the
inverse graph of Sk; �(Sk) � �(Dn), where Dp is a subgroup of Dn and k, p, n ∈ Z. Then,
the energies Ē(�(Sk)) and Ē(�(Dp)) are equal.

Conclusions
This study has highlighted the energies of the dihedral and symmetric groups; clearly, we
show that the energies of these groups are in this range 3+2

√
2 ≤ Ē(�(G)) < 2m, though

these energies might not necessarily be the same, because from Theorem 4 and Defini-
tion 7, this assertion is obvious. However, if we consider the energies of the subgroups Dp
and Sk of the dihedral and symmetric groups such that 2p = n!, the energies are necessarily
the same. Furthermore, the associated inverse graphs of the group Dp ⊆ Dn, with order
2p and Sk ⊆ Sn, with order k!) are isomorphic if 2p = n!. Further research is encouraged
to find the energy of inverse graphs of finite groups in general.
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