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Abstract

The aim of this paper is to study the free convection boundary-layer flow with heat
generation and variable fluid properties past a vertical plate. We incorporated the
heat generation and variable viscosity are the exponential decay form and thermal
conductivity is the linear form in the governing equation. Using similarity
transformations, the governing coupled non-linear partial differential equations are
transformed into a system of coupled non-linear ordinary differential equations and
then solved using Maple symbolic software to execute the computations via dsolve.
The effects of the temperature-dependent viscosity, the wall velocity power index,
the thermal conductivity, the wall temperature parameter, and the Prandtl number
on the flow and temperature fields are presented. The skin friction and the wall
temperature gradient are also presented for different values of the physical
parameters.

Keywords: Internal heat generation, Variable viscosity, Maple, Lie group
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Introduction
For a long time, a vital subject in fluid dynamics is the problem of steady and unsteady

laminar flow over a permeable surface because of its worth from both theoretical and

viable point of view and has been studied in detail. It also has abundant applications in

engineering and technological processes, such as petroleum industries, groundwater

flows, the expulsion of a polymer sheet from a dye, and boundary layer control. The

heat transfer mechanisms with non-uniform heat source/sink are an important topic

for current researchers due to its comprehensive applications in the fields of physics

and engineering. There are various industrial and engineering applications involving

non-uniform heat source/sink, for example, nuclear power plants, aircraft, gas turbines,

satellites, missiles, polymer industry, biomedicine, and processes concerning high

temperature. Mohammadein and El-shear [1] revealed the effect of variable permeabil-

ity on both free and forced convection. They reported the results of both uniform
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permeability and variable permeability cases. Later, Seddek and Salma [2] publicized

the MHD boundary layer flow attribute of temperature-dependent viscosity and ther-

mal conductivity. Reddy et al. [3] deliberated the numerical analysis for variable viscos-

ity and thermal conductivity across a vertical porous plate. Consequently, several

hypothetical and practical features of the flow and heat transfer with regards to power-

law fluids have been examined by numerous researchers [4–6]. Further, a notable num-

ber of various studies has been carried out by innumerable researchers on

electromagneto-hydrodynamic viscoelastic fluid [7–9].

Problems of the dynamic world led to inquire about analytical and numerical tech-

niques to find out the deserved solutions of highly nonlinear and complex models. Al-

though advancement in programming (like Mathematica, Matlab, Maple, C++, and

Java) facilitate to solve such heavy, time-consuming ODEs/PDEs problems, yet it is the

focused field for the researcher to erect and scan advance techniques that evaluate re-

sults of the nonlinear equations having multiple parameters arising from nature. In lit-

erature, the running techniques are the variational iteration method (VIM) [10],

homotopy analysis method (HAM) [11], differential transform method (DTM) [12],

and finite element method (FEM) [13]. The spectral relaxation method [14] and spec-

tral perturbation method [15] have secured importance these days. Recently, several au-

thors [16–20] have studied different flow parameters considering different fluid flows

over different geometries.

There are a couple of reviews in the appurtenant literature concerning the numerical

investigation of power-law fluid flow with internal heat generation generated by vertical

or di surfaces [21–28]. To the best knowledge of the authors, not many studies have

been conducted on the flow of these fluids by considering the impacts of non-uniform

heat source/sink, exponential variable viscosity, and thermal conductivity in mathemat-

ical model with a Lie group transformation approach. The innovation of this review is

the computation of multiple solutions for such kind of physical model for the first time.

So, in this article, we simulate free convection flow of over vertical plate.

Influenced by the abovementioned literature, the objective of our study is to explore

the effects of internal heat generation on steady, free convective and variable fluid prop-

erties past a vertical plate. The effect of exponential variable viscosity and thermal con-

ductivity is also taken into account. The crux of the present study is the discussion of

internal heat generation caused by the momentum diffusion. Hence, an effective ap-

proach namely Maple symbolic software via dsolve has been adopted for simulations of

leading non-linear system. Several plots are assembled to present the effects of involved

pertinent parameters on momentum and thermal boundary layers. The equation gov-

erns the flow phenomena are solved using Maple symbolic software [29] to execute the

computations via dsolve.

Governing equations with a similarity
We consider the flow of an incompressible, viscous fluid with the plane y = 0 consider-

ing variable viscosity and thermal conductivity. Figure 1 demonstrates a physical illus-

tration of the flow model past a vertical surface that is designed for the present study.

In the flow geometry, the vertical plate is fixed along the x-direction and the fluid is as-

sumed to flow with the plate; the y-axis is taken exactly normal to it. A constant uni-

form temperature Tw which is greater than T∞ is maintained by the plate. The vertical



Fig. 1 Coordinate system of fluid configuration

Ferdows et al. Journal of the Egyptian Mathematical Society           (2019) 27:56 Page 3 of 11
surface moving continually in the positive x-direction with a velocity u =U∞.with the

above assumptions the basic equations for steady flow are the corresponding equations,

under the above assumptions, describing the two-dimensional viscous fluid motion, are

given by the model of Dinesh et al. [30] leading to

∂u
∂x

þ ∂v
∂y

¼ 0 ð1Þ

u
∂u
∂x

þ v
∂u
∂y

¼ −
1
ρ
∂
∂y

μ
∂u
∂y

� �
ð2Þ

u
∂T
∂x

þ v
∂T
∂y

¼ ∂
∂y

α
∂T
∂y

� �
þ q‴ ð3Þ

The boundary conditions of the problem are
u ¼ 0; v ¼ 0;T ¼ Tw ¼ Tc þ Cxa; y ¼ 0
u ¼ U∞;T ¼ T∞; y→∞

g ð4Þ

where q′′′ is the exponential form of internal heat generation which is defined by
q000 ¼ U0 Tw−Tcð Þ
2x

e−η

Furthermore, by introducing a dimensional stream function ψ defined into Eqs.
(1)–(4), we have

u ¼ ∂ψ
∂y

; v ¼ −
∂ψ
∂x

;
T−Tc

Tw−Tc
¼ θ; μ ¼ μ0e

−β1θ; α ¼ α0 1þ β2θð Þ

then we have
∂μ
∂θ

¼ −μ0β1e
−β1θ;T ¼ Tc þ Tw−Tcð Þθ ¼ Tc þ cxaθ;

∂T
∂x

¼ caxa−1θ þ cxa
∂θ
∂x

;
∂T
∂y

¼ cxa
∂θ
∂y

;
∂2T
∂y2

¼ cxa
∂2θ
∂y2

From Eq. (2)
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u
∂u
∂x

þ v
∂u
∂y

¼ −
1
ρ
∂μ
∂θ

∂θ
∂y

∂u
∂y

−
1
ρ
μ
∂2u
∂y2

∂ψ
∂y

∂2ψ
∂x∂y

−
∂ψ
∂x

∂2ψ
∂y2

¼ 1
ρ
μ0β1e

−β1θ
∂θ
∂y

∂2ψ
∂y2

−
1
ρ
μ0e

−β1θ
∂3ψ
∂y3

ð5Þ

From Eq. (3)

u
∂T
∂x

þ v
∂T
∂y

¼ ∂α
∂θ

∂θ
∂y

∂T
∂y

þ α
∂2T
∂y2

þ q‴

∂ψ
∂y

Tw−Tcð Þ ∂θ
∂x

−
∂ψ
∂x

Tw−Tcð Þ ∂θ
∂y

¼ α0β2
∂θ
∂y

Tw−Tcð Þ ∂θ
∂y

þ α0 1þ β2θð Þ Tw−Tcð Þ ∂
2θ
∂y2

þ q‴

∂ψ
∂y

∂θ
∂x

−
∂ψ
∂x

∂θ
∂y

¼ α0β2
∂θ
∂y

∂θ
∂y

þ α0 1þ β2θð Þ ∂
2θ
∂y2

þ q‴

ð6Þ

The boundary conditions (4) become

∂ψ
∂y

¼ 0;
∂ψ
∂x

¼ 0; θ ¼ 1; y ¼ 0

∂ψ
∂y

→U∞; θ→0; y→∞
g ð7Þ

Lie group transformation

The solution of the system of non-similar partial differential Eqs. (5)–(6) subject to the

boundary conditions (7) is analytically not possible. Numerical methods are required.

However, even with powerful algorithms, the equations remain challenging and expen-

sive also. Therefore, it is necessary to transform these into self-similar ODEs using Lie

group transformations (see [31–35]). This effectively reduces the number of independ-

ent variables of the governing partial differential equations. Lie algebra is a powerful

analytical approach based on continuous symmetry of mathematical structures and ob-

jects which has found many uses in modern theoretical physics and applied mathemat-

ics. This theory provides a new methodology for analyzing the continuous symmetries

of governing equations of many fluid dynamic systems including non-Newtonian trans-

port phenomena. Defining:

Γ : x� ¼ xeεα1 ; y� ¼ yeεα2 ;ψ� ¼ ψeεα3 ; θ� ¼ θeεα4 ð8Þ

Substituting (8) into (5) and (6), we get
e−ε α1þ2α2−2α3ð Þ ∂ψ
∂y

∂2ψ
∂x∂y

−
∂ψ
∂x

∂2ψ
∂y2

� �
¼ −

1
ρ
μ0β1e

β1α4θe−ε 2α2−α3−α4ð Þ ∂θ
∂y

∂2ψ
∂y2

−
1
ρ
μ0e

β1α4θe−ε 3α2−α3ð Þ ∂
3ψ
∂y3

ð9Þ

and
e−ε α1þα2−α3−α4ð Þ ∂ψ
∂y

∂θ
∂x

−
∂ψ
∂x

∂θ
∂y

� �
þ α0β2e

−ε 2α2−2α4ð Þ ∂θ
∂y

� �2

þ α0 1þ β2e
−εα4θð Þe−ε 2α2−α4ð Þ ð10Þ

The transformed Eqs. (9) and (10) are invariant under the Lie group of transform-
ation if the following relations among the transform parameters are satisfied.
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α1 þ 2α2−2α3 ¼ 2α1−α3−2α4 ¼ 3α2−α3−α4 ð11Þ

and
α1 þ α2−α3−α4 ¼ 2α2−2α4 ¼ 2α2 ð12Þ

and the boundary conditions we obtain at y→∞

∂ψ
∂y

¼ U∞ ¼> eε α2−α3ð Þ ¼ U∞e
0;

α2−α3 ¼ 0 ¼> α2 ¼ α3

From (11) and (12)
α4 ¼ 0; α2 ¼ α3 ¼ 1
2
α1; ð13Þ

If we insert (13) into the scaling (8), the set of transformations reduces to a one-

parameter group of transformations given by

Γ : x� ¼ xeεα1 ; y� ¼ yeε
1
2α1 ;ψ� ¼ ψeε

1
2α1 ; θ� ¼ θ ð14Þ

Expanding Eq. (14) by Tailor’s method and the remaining terms up to O (ε2) of the
one-parameter group, we further get

x�−x ¼ xεα1 þ o ε2
� �

; y�−y ¼ −yε
1
2
α1 þ o ε2

� �
;ψ�−ψ ¼ ψε

1
2
α1 þ o ε2

� �
; θ�−θ

¼ 0 ð15Þ

From Eq. (15), one can easily deduce the set of transformation in the form of the fol-
lowing characteristic equations:

dx
xα1

¼ dy
1
2
yα1

¼ dψ
1
2
ψα1

¼ dθ
0

ð16Þ

Integrating the subsidiary equations (16),
dx
xα1

¼ dy
1
2
yα1

;

we get
1
2

lnx− lny ¼ constant ln

ffiffiffiffiffiffi
u∞
ν

r
− lnη

� �
sayð Þ

or
η ¼ y

ffiffiffiffiffiffi
u∞
νx

r

From the subsidiary equations
dx
xα1

¼ dθ
0
;

we get dθ = 0,that is θ(η)= constant=θ(say).

Also integrating the equation dx
xα1

¼ dψ
1
2ψα1

;
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we get ψ

x
1
2
¼ constant¼ ffiffiffiffiffiffiffiffi

u∞ν
p

f ðηÞ (say),
i.e., ψ ¼ ffiffiffiffiffiffiffiffi

u∞ν
p

x
1
2 f ðηÞ

or

ψ ¼ ffiffiffiffiffiffiffiffiffiffi
u∞νx

p
f ηð Þ

Thus, the new similarity transformations are obtained as follows: η ¼ y
ffiffiffiffiu∞

p
;ψ
νx

¼ ffiffiffiffiffiffiffiffiffiffi
u∞νx

p
f ðηÞ; θ ¼ θðηÞ

We introduce the following transformations

η ¼ y

ffiffiffiffiffiffiffi
U∞

νx

r
;ψ ¼ ffiffiffiffiffiffiffiffiffiffi

u∞νx
p

f ηð Þ; μ ¼ μ0e
−β1θ; α ¼ α0 1þ β2θð Þ; θ ¼ T−T∞

Tw−T∞
ð17Þ

u ¼ ∂ψ
∂y

¼ u∞ f
0; v ¼ −

∂ψ
∂x

¼ 1
2

ffiffiffiffiffiffiffiffi
u∞ν
x

r
ηf 0− fð Þ

Using the above Eq. (17), the transformed equations yield the following transformed,

dimensionless system of ordinary differential equations:

f ‴ þ eβ1θ

2
f f ″−β1 f

″θ
0 ¼ 0 ð18Þ

1þ β2θð Þθ″ þ β2 θ
0� �2

−
1
2

Pr 2af
0
θ− f θ

0� �
þ c Pre−η ¼ 0 ð19Þ

where Pr = υ/α is the Prandtl number, c = 0 or 1 corresponding to with and without

internal heat generation.

The boundary conditions are converted to:

f ¼ 0; f
0 ¼ 0; θ ¼ 1atη ¼ 0

f
0 ¼ 1; θ ¼ 0 asη→∞

g ð20Þ

Numerical solution
Equations (18) and (19) which are self-similar nonlinear two-point boundary value

problem has been solved using Maple via dsolve under boundary conditions (20). This

is a very vigorous, legitimate computational algorithm with excellent convergence po-

tentiality. This code has been used by many authors to acquire numerical solutions.

Results and discussion
We solve Eqs. (18) and (19) subject to boundary conditions (20) using the dsolve rou-

tine from MAPLE. The numerical solutions are obtained for various values of the pa-

rameters such as Prandtl number Pr, viscosity variation parameter β1, thermal

diffusivity parameter β2, and temperature exponent parameter a with and without in-

ternal heat generation (IGH). We examined our result for positive and negative values

of β1 the viscosity of the fluid such as water and lubrication oils for positive values of

viscosity while for negative values of β1 the viscosity of the air. From the above discus-

sions, the range of variations of the parameters of the flows β1 and β2 can be taken as

follows [36]:

1) For air: −0.7 ≤ β1 ≤ 0, 0 ≤ β2 ≤ 6
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2) For water: 0 ≤ β1 ≤ 0.6, 0 ≤ β2 ≤ 0.12

3) For lubricants: 0 ≤ β1 ≤ 3, − 0.1 ≤ β2 ≤ 0

The effects of the physical parameters on the skin friction coefficient and wall

temperature gradient for the variable viscosity and thermal conductivity parameter with

and without IHG are presented in Table 1. From this table, it is seen that increasing

viscosity parameter is to increase the skin friction and rate of heat transfer in both

cases (with and without IHG). On the other hand, with increasing thermal conductivity

parameter is to increase skin friction and rate of heat transfer for a negative value of

viscosity parameter (i.e., gases) but opposite behavior is shown for the positive value of

viscosity parameter (i.e., fluid).

The effect of changes in the viscosity parameter β1 = − 0.7, − 0.3, 0 and β1 = 0.1, 0.4, 0.6

on velocity and temperature profiles against η with Pr = 1, β2 = 1, a = 1 and without internal

heat generation is shown in Figs. 2 and 3. From Fig. 2, it is observed that an increase in the

viscosity parameter causes an increase in the velocity profile. Viscosity parameter is inversely

proportional to dimensionless viscosity as an exponential form which describes Eq. (17).

Therefore, an increase in viscosity parameter results to a decrease in dimensionless viscosity

and in turn a decrease in viscous forces which oppose the fluid motion. This translates to

inertia forces dominating viscous forces and hence fluid accelerates. It is noticed that the

velocity profiles have no significant effect on the presence and absence of internal heat gen-

eration. Figure 3 describes the effects of changes in the viscosity parameter β1 on the

temperature distribution. An increase in the viscosity parameter β1 causes a decrease in the

temperature profile. This is attributed to a decrease in dimensionless viscosity translating

into a decrease in viscous forces. These smaller viscous forces result in reduced friction be-

tween the fluid and the surface and thus decrease in the dissipation of heat within the

boundary layer. Also, internal heat generation induced more flow than that of without in-

ternal heat generation for temperature distribution.

Figure 4 illustrates the influence of variable thermal conductivity parameter β2 on vel-

ocity and temperature profiles. We observed that fluid velocity induces with variable
Table 1 Skin friction coefficient f ' ' (0), wall temperature gradient for different values β1, and β2
with and without IHG

c β1 f ' ' (0) −θ ' (0)

β2 = 0 β2 = 0.5 β2 = 1 β2 = 0 β2 = 0.5 β2 = 1

0 − 0.7 0.181717 0.184248 0.186379 0.474524 0.377818 0.326275

− 0.3 0.257635 0.259323 0.260711 0.512622 0.408447 0.352639

0 0.332059 0.332059 0.332059 0.542446 0.432228 0.372970

0.1 0.360758 0.359903 0.359217 0.552587 0.440272 0.379819

0.4 0.460068 0.455469 0.451866 0.583495 0.464651 0.400488

0.6 0.538406 0.530079 0.523656 0.604404 0.481026 0.414294

1 − 0.7 0.191439 0.192941 0.194268 0.174406 − 0.065429 0.012722

− 0.3 0.263955 0.264886 0.265697 0.107642 − 0.017303 0.025892

0 0.332059 0.332059 0.332059 0.059221 0.017874 0.054215

0.1 0.357687 0.357242 0.356866 − 0.043428 0.029389 0.063499

0.4 0.444177 0.441882 0.439979 0.002844 0.063217 0.090802

0.6 0.510429 0.506380 0.503076 0.032728 0.085122 0.108499



Fig. 2 Effect of variable viscosity parameter on velocity profile with and without IHG
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thermal conductivity. We also observed that the fluid temperature enhancement for in-

creasing values of variable thermal conductivity parameter. It is verified that by increasing

β2, kinetic energy of fluid particles increases which escalate intensifies in temperature.

Figure 5 describes the velocity and temperature profile with various values of power

exponent parameter a. The value of a = 0 corresponds to uniform surface temperature,

whereas a = 0.5 correspond to uniform surface flux and a = 1 correspond to uniform

wall temperature. We observed that velocity profile and temperature distribution de-

creases with increasing values of power exponent parameter a. this effect is more sig-

nificant for temperature profile than that of the velocity profile. Also, internal heat

generation induced more flow than that of without internal heat generation for

temperature distribution but there is no significant impact for velocity profile.

Figure 6 describes the velocity and temperature profile with various values of Prandtl

number with and without internal heat generation. For all the cases, we see that vel-

ocity and temperature profiles decrease with the increase in the Prandtl number for all
Fig. 3 Temperature profiles for the viscosity parameter with and without IHG



Fig. 4 Velocity and temperature profiles for the thermal conductivity parameter with and without IHG
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types of heat generation. Physically, when Pr = υ/α increases, α decreases, i.e., thermal

diffusivity of fluid decreases. Hence, the heat flow through fluid decreases as Pr in-

creases. Also, internal heat generation induced more flow than that of without internal

heat generation, i.e., the mechanical strength in the fluid motion is increased. Note that

temperature has a significant impact due to the Prandtl number.
Conclusion
In this paper, the effect of internal heat generation on free convective power-law vari-

able temperature considering exponential variable viscosity and thermal conductivity

past a vertical plate is analyzed. Few of the findings are as follows:

1) Fluid velocity induced with variable viscosity parameter but the fluid temperature

reduced for increasing values of viscosity parameter.
Fig. 5 Velocity and temperature profiles for the temperature power exponent parameter with and without IHG



Fig. 6 Velocity and temperature profiles for the Prandtl number with and without IHG
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2) The effect of variable thermal conductivity parameter is to enhance the temperature

in the flow region and is reversed in the case of the wall temperature parameter.

3) The fluid velocity and temperature profiles decrease with the increase in the Prandtl

number.

4) The effect of internal heat generation is to induce more flow than that of without

internal heat generation for temperature distribution but there is no significant

impact for all velocity profiles.
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