
Journal of the Egyptian
Mathematical Society

Mugabi et al. Journal of the EgyptianMathematical Society           (2019) 27:53 
https://doi.org/10.1186/s42787-019-0058-1

ORIGINAL RESEARCH Open Access

Parameter-dependent transmission
dynamics and optimal control of foot and
mouth disease in a contaminated
environment
Francis Mugabi1* , Joseph Mugisha1, Betty Nannyonga1, Henry Kasumba1 and Margaret Tusiime2

*Correspondence:
mugabikanywa@yahoo.com
1College of Natural Sciences,
Makerere University, Wandegeya, P.
O. Box 7062 Kampala, Uganda
Full list of author information is
available at the end of the article

Abstract
The problem of foot and mouth disease (FMD) is of serious concern to the livestock
sector in most nations, especially in developing countries. This paper presents the
formulation and analysis of a deterministic model for the transmission dynamics of
FMD through a contaminated environment. It is shown that the key parameters that
drive the transmission of FMD in a contaminated environment are the shedding,
transmission, and decay rates of the virus. Using numerical results, it is depicted that
the host-to-host route is more severe than the environmental-to-host route. The model
is then transformed into an optimal control problem. Using the Pontryagin’s Maximum
Principle, the optimality system is determined. Utilizing a gradient type algorithm with
projection, the optimality system is solved for three control strategies: optimal use of
vaccination, environmental decontamination, and a combination of vaccination and
environmental decontamination. Results show that a combination of vaccination and
environmental decontamination is the most optimal strategy. These results indicate
that if vaccination and environmental decontamination are used optimally during an
outbreak, then FMD transmission can be controlled. Future studies focusing on the
control measures for the transmission of FMD in a contaminated environment should
aim at reducing the transmission and the shedding rates, while increasing the decay
rate.
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Introduction
Foot and mouth disease (FMD) is a highly contagious viral disease that affects all cloven-
hoofed domestic and wild animals [3]. FMD is caused by a virus of genus Aphthovirus
of the family Picornaviridae [8]. Outbreaks of FMD are characterized by fever, drop in
milk production, excessive salivation, and development of vesicles on the tongue, gums,
teats, and feet [1]. The mortality rate of animals due to FMD is usually low but may be
high depending on the age of the animals. The control measures against FMD include
vaccination, quarantine, bio-security measures, and killing the infected animals [7].
FMD can be transmitted either directly through contact with an infected host [4] or

indirectly through contact with a contaminated environment [9]. Direct transmission of
FMD occurs when infected and susceptible animals get in close contact with each other.
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Indirect transmission of FMD through a contaminated environment occurs when the
susceptible host comes into contact with the infected secretions and excretions. Once
infected, the animal releases large amounts of the virus in secretions and excretions,
before [30] and after [15] the appearance of clinical signs. Upon contact of a susceptible
animal with infectious secretions and excretions, the infectious cycle continues. FMDV
can remain in secretions and excretions for long periods of time and this facilitates the
transmission of FMD through a contaminated environment. Traditionally, direct route of
disease transmission has been considered as the main cause of infection spread. However,
the role of indirect transmission through a contaminated environment is becoming more
evident [6].
Numerous models have been developed to study the role of the environment in

the transmission dynamics of different pathogens [10, 24, 28, 31] and both deter-
ministic [14] and stochastic [17, 21] models have been used to study the transmis-
sion dynamics and control of FMD, but none of such studies shows a significant
development in assessing the parameters that determine the transmission dynam-
ics of FMD in a contaminated environment. In addition, it is known that vac-
cination [7] and environmental decontamination [18] are important tools in con-
trolling the environmental transmission of FMD. However, no sufficient knowledge
on the optimal way of applying these control tools exists. Thus, the aim of this
paper is to formulate a mathematical model to determine the key parameters and
optimal control measures for the transmission of FMD through a contaminated
environment.
The rest of this paper is organized as follows. In the “Model formulation and analysis”

section, formulation and analysis of the deterministic model for the transmission dynam-
ics of FMD in a contaminated environment are done. In the “Analysis of optimal control
measures for the environmental transmission of FMD” section, the optimal control strate-
gies for the disease are explored. The paper ends with a discussion of the results in the
“Discussion” section.

Model formulation and analysis
Considering the fact that the animals exposed to FMD can release large amounts of
the virus into the environment [30], we extend a Susceptible-Infectious-Recovered-
Susceptible-Pathogens (SIRSP) model presented in [6] to an SEIRSP model that includes
Asymptomatic individuals E capable of shedding FMDV into the environment.We ignore
the growth term considered in [6] because viruses do not multiply outside their hosts.
Let the total cattle population at any time t be denoted byN(t). In this model, the cattle

population is sub-divided into the Susceptible S(t), Asymptomatic E(t), Symptomatic I(t),
and Recovered R(t) cattle. The FMDV pathogens in the environment are denoted by P(t).
In the animal population, susceptible cattle S(t) are recruited by birth at a constant rate

�. Direct transmission is due to contact with susceptible S(t) and infected symptomatic
cattle I(t) at a rate βI . It is assumed that the process of direct transmission follows the law
mass of action and therefore denoted by βISI. Indirect transmission is between a contam-
inated environment P(t) and the susceptible individuals S(t). If βp is the rate of infection
due to a contaminated environment, then βpPS is the force of infection from a contami-
nated environment to the susceptible subjects which is also modeled by the law of mass
action.
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After infection, the cow is now exposed to FMD and transits to the asymptomatic class
E(t). At the end of the incubation period usually 1

σ
days, the cow is now symptomatic and

moves to class I(t), where it can die due to FMD at a rate ν or may recover at a rate γ

to join the recovered class R(t). While in R(t), the cow gains temporary immunity for at
least 6months after which it moves back to S(t) at a rate ω and the cycle continues. All the
animal sub-groups are subjected to the per capita natural mortality rate μ. Infected cattle
shed FMDV into the environment at a rate of λp. FMDV pathogens in the environment
decay due to the natural causes at a rate of δp. The parameters with their values are given
in the Table 1.
Combining all the above definitions and assumptions together, the system of the

ordinary differential equations describing the dynamics of FMD in a contaminated
environment is obtained and it is given by

dS
dt

= � + ωR − (βpP + βI I)S − μS, (1)

dE
dt

= (βpP + βI I)S − (σ + μ)E, (2)

dI
dt

= σE − (ν + μ + γ )I, (3)

dR
dt

= γ I − (μ + ω)R, (4)

dP
dt

= λp(I + E) − δpP. (5)

Summing up the equations for S, E, I, and R we obtain
dN
dt

=� − μN − νI. (6)

To determine whether the model is biologically meaningful, it is tested for positivity
and boundedness.

Theorem 1 The solutions S(t), E(t), I(t), R(t) and P(t) of the model (1)–(5)with positive
initial data, remain positive for all time t > 0.

Proof Suppose that t1 = sup {t > 0 : S(t) > 0,E(t) > 0, I(t) > 0,R(t) > 0,P(t) > 0} >

0. It follows from (1) that
dS
dt

= � + ωR − (βpP + βI I)S − μS ≥ � − (βpP + βI I)S − μS, (7)

Table 1Model parameters and their values

Parameter Description Value Reference

� Recruitment rate 0.2 [6]

ω Rate of immunity loss 0.0056 [13]

μ Natural mortality rate of cattle 0.0002 [2]

βp Environment-to-host transmission rate 0.01 Assumed

βI Host-to-host transmission rate 0.0001 Assumed

σ Development rate of clinical signs 0.25 [17]

ν Disease-induced mortality rate of cattle 0.0064 [11]

γ Recovery rate of infected cattle 0.143 [22]

λp Shedding rate of FMDV 0.002 Assumed

δp Decay rate of FMDV 0.0476 Assumed
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which can be written as

d
dt

(
S(t)exp

[
μt +

∫ t

0
(βpP + βI I)(u)du

])
≥ �exp

[
μt +

∫ t

0
(βpP + βI I)(u)du

]
.

(8)

Hence,

S(t1)exp
[
μt1 +

∫ t1

0
(βpP + βI I)(u)du

]

− S(0) ≥
∫ t1

0

(
�exp

[
μy +

∫ y

0
(βpP + βI I)(u)du

])
dy,

(9)

so that

S(t1) ≥S(0)exp
[
−μt1 −

∫ t1

0
(βpP + βI I)(u)du

]

+ exp
[
−μt1 −

∫ t1

0
(βpP + βI I)(u)du

]
∫ t1

0

(
�exp

[
μy +

∫ y

0
(βpP + βI I)(u)du

])
dy > 0.

(10)

Similarly, it can be shown that E(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0 and P(t) ≥ 0 for all time
t > 0.

Therefore, all solutions of the model (1)–(5) remain positive for all non-negative initial
conditions.

Theorem 2 The solutions to the model (1)–(5) with non-negative initial data are
bounded.

Proof From (6), we have

dN
dt

≤ � − μN . (11)

This gives a solution of

N(t) ≤ �

μ
+

{
N0 − �

μ

}
e−μt . (12)

Hence,


N =
{
N(t) ∈ R+ : N(t) ≤ �

μ

}
. (13)

Therefore, all solutions to the model (1)–(5) with non-negative initial data are bounded.
From (13), we obtain the feasible region


 =
{
N(t) ∈ R+ : N(t) ≤ �

μ

}
. (14)

In this region, the model can be considered as being epidemiologically feasible, positively
invariant and mathematically well-posed [16]. Therefore, every solution of the system
with initial conditions in 
 always remains in 
 for all t > 0.
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Existence and local stability of disease-free equilibrium point (D0)

The model (1)–(5) has a disease-free equilibrium point D0 given by

D0 = (S∗,E∗, I∗,R∗,P∗) =
(

�

μ
, 0, 0, 0, 0

)
. (15)

Definition 1 The point (D0) is said to be locally stable if all solutions of the model that
start out any where in 
 stay near D0 over a definite time.

The local stability of D0 is explored using the next-generation operator method [29].
Consider the infectious compartments E(t), I(t), and P(t) of the model (1)-(5). Let F be
the rate of appearance of new infections into the infectious compartments, V+ be the rate
of transfer of individuals into the infectious compartments, and V− be the rate of transfer
of individuals out of the infectious compartments. From (1)–(5), it can be observed that
the rate of appearance of new infections into the infectious compartments is given by

F =
⎛
⎜⎝

(βPP + βI I)S
0

λp(I + E)

⎞
⎟⎠ , (16)

the rate of transfer of individuals into the infectious compartments by

V+ =
⎛
⎜⎝

0
σE
0

⎞
⎟⎠ , (17)

and the rate of transfer of individuals out of the infectious compartments by

V− =
⎛
⎜⎝

(σ + μ)E
(ν + μ + γ )I

δpP

⎞
⎟⎠ . (18)

Then, it follows that

V = V− − V+ =
⎛
⎜⎝

(σ + μ)E
−σE + (ν + μ + γ )I

δpP

⎞
⎟⎠ . (19)

The Jacobian, F of F at the disease-free equilibrium point is given by

F =
⎛
⎜⎝

0 βI
�
μ

βp
�
μ

0 0 0
λp λp 0

⎞
⎟⎠ , (20)

and the Jacobian, V of V at the disease-free equilibrium point by

V =
⎛
⎜⎝

σ + μ 0 0
−σ μ + ν + γ 0
0 0 δp

⎞
⎟⎠ . (21)
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It follows that the associated basic reproduction number [16], denoted by R0, is given
by

R0 = ρ
(
FV−1) = βIσ�

2μ(σ + μ)(μ + ν + γ )
+

([
βIσ�

2μ(σ + μ)(μ + ν + γ )

]2

+ �(σ + μ + ν + γ )

μ(σ + μ)(μ + ν + γ )

[
λpβp
δp

]) 1
2
,

(22)

where ρ represents the spectral radius (the dominant eigenvalue in magnitude) of FV−1.
Using Theorem 2 of [29], the following result is established.

Lemma 1 The disease-free equilibrium point, D0 is locally asymptotically stable in 


wheneverR0 < 1 and unstable ifR0 > 1.

The threshold quantityR0 is the reproduction number for FMDmodel (1)–(5). It mea-
sures the average number of new cases generated by a single FMD infected cow in a
population throughout its life time. In epidemics,R0 is useful in describing themagnitude
of transmission. If R0 > 1, then the outbreak generates an epidemic, whereas ifR0 < 1,
then the infection will disappear from the population [6]. Equation 22 can be written as

R0 =1
2

[
Rd +

√
R2

d + 4Rp

]
, (23)

where Rd = βIσ�
μ(σ+μ)(μ+ν+γ )

, and Rp = �(σ+μ+ν+γ )
μ(σ+μ)(μ+ν+γ )

[
λpβp
δp

]
. The quantities Rd and√

Rp correspond, respectively, to the average number of secondary infections through
host-to-host and environment-to-host transmission caused by one infectious cow in its
infectious period. From (22), it can be seen that there is a positive relationship betweenR0
and the parameters βI , βp, and λp (It can be shown that ∂R0

∂βI
> 0, ∂R0

∂βp
> 0 and ∂R0

∂λp
> 0).

This implies that these parameters have the potential of aggravating the infection when
increased. In Fig. 1a–c, the effect of these parameters on the development of new infec-
tions of FMD (E) is depicted. From this figure it is easy to visualize that increase in the
transmission (βI and βp) and shedding (λp) rates causes an increase in the development of
new infections. From (22), it can be observed that there is a negative relationship between
the decay rate parameter δp and R0 (It can be verified that ∂R0

∂δp
< 0) . This means that

δp has the ability of minimizing the infection when increased. From Fig. 1d, it is observed
that increase in the decay rate δp leads to the decrease in the asymptomatic cattle E. From
Fig. 1e, it can be noted that the host-to-host route of FMD leads to more infections as
compared to the environment-to-host route.

Global stability of the disease-free equilibrium point (D0)

Definition 2 The point (D0) is said to be globally stable if all solutions of the model that
start out any where in 
 stay near D0 over an indefinite time.

Motivated by Shuai and van den Driessche [25], the global stability of D0 is analysed
by using a Lyapunov function. A function L is called a Lyapunov function for the model
(1)–(5) if it is continuous and non-increasing along every solution of the system. To con-
struct a Lyapunov function, a matrix theoretic method based on the Perron eigenvector
is used [25]. For other methods of Lyapunov construction see [26]. Let x = (E, I,P)T and
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Fig. 1 a–e Variation of E with time for different values of the parameters βI , βp , δp and λp . In e βI = 0.05 and
βp = 0.05. Other parameter values are in Table (1)

y = (S,R)T represent the populations in the infectious and non-infectious compartments,
respectively. Generally, the model (1)–(5) can be represented as

dx
dt

= F(x, y) − V(x, y), (24)

dy
dt

= g(x, y), (25)

with g = (g1, g2)T , whereF , V+ and V− are defined, respectively, as in (16), (17), and (18).
Set

f (x, y) = (F − V )x − F(x, y) + V(x, y), (26)
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where F and V are defined, respectively, as in (20) and (21). Then, Eq. 24 for the diseased
compartments can be written as

dx
dt

= (F − V )x − f (x, y). (27)

Let ξT ≥ 0 be the left eigenvector of the non-negative matrix V−1F corresponding to
the eigenvalue ρ(V−1F) = ρ(FV−1) = R0 [25], then, the Lyapunov function, L for the
model (1)–(5) is given by the following theorem.

Theorem 3 Let F ,V and f (x, y) be defined, respectively, as in (20), (21), and (26). If
f (x, y) ≥ 0 in 
, F ≥ 0, V−1 ≥ 0, andR0 ≤ 1, then L = ξTV−1x is a Lyapunov function
for the model (1)–(5) in 
.

Proof Differentiating L along the solutions of the model (1)–(5) gives

L′ =ξTV−1x′ = ξTV−1(F − V )x − ξTV−1f (x, y)

=(R0 − 1)ξTx − ξTV−1f (x, y).
(28)

Since ξT ≥ 0, V−1 ≥ 0, and f (x, y) ≥ 0 in 
, the last term is non-positive. If R0 ≤ 1,
then L′ ≤ 0 in 
, and thus L is a Lyapunov function for the model (1)–(5).

Theorem4 Let F ,V and f (x, y) be defined, respectively as in (20), (21), and (26). Suppose
that f (x, y) ≥ 0, F ≥ 0, V−1 ≥ 0 and V−1F is irreducible. Assume that the disease-free
system y′ = g(0, y) has a unique equilibrium y = y0 > 0 that is globally asymptotically
stable in 
. Then, the following results hold for the model (1)–(5):

(i) IfR0 < 1, then, D0 is globally asymptotically stable in 
.
(ii) IfR0 > 1, then, D0 is unstable in 
 .

Proof By Theorem (3), L′ = ξTV−1x is a Lyapunov function for the model (1)–(5)
provided that R0 < 1. Since V−1F is irreducible and non-negative, it follows by Perron-
Frobenius theory that ξ > 0. Hence, by (28), L′ = 0 implies that ξTx = 0, and thus
x = 0. Using the global stability assumption for the disease-free system and the fact that
f (0, y) = 0, the only invariant set in 
 where x = 0 is the singleton {D0}. Thus, D0 is
globally asymptotically stable in
 [19, 27]. IfR0 > 1, then by (28),L′ = (R0−1)ξTx > 0
provided x > 0 and y = y0. By continuity L′ > 0 in a neighborhood of D0. Solutions in 


sufficiently close to D0 move away from D0, implying that D0 is unstable.

Existence of the endemic equilibrium point (D1)

To find conditions for the existence of an equilibrium for which FMD is endemic in the
population, i.e., at least one of S∗, E∗, I∗, R∗, P∗ is non-zero, denoted by D1 = (S∗, E∗,
I∗, R∗, P∗), Eqs. (1)–(5) are solved in terms of the force of infection at steady state (T∗)
given by

T∗ = βpP∗ + βI I∗. (29)
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Setting the right-hand side of the Eqs. (1)-(5) to zero gives

S∗ = �(σ + μ)(μ + ν + γ )(μ + ω)

(T∗ + μ)(σ + μ)(μ + ν + γ )(μ + ω) − ωγσT∗ ,

E∗ = �(μ + ν + γ )(μ + ω)T∗

(T∗ + μ)(σ + μ)(μ + ν + γ )(μ + ω) − ωγσT∗ ,

I∗ = �σ(μ + ω)T∗

(T∗ + μ)(σ + μ)(μ + ν + γ )(μ + ω) − ωγσT∗ ,

R∗ = �σγT∗

(T∗ + μ)(σ + μ)(μ + ν + γ )(μ + ω) − ωγσT∗ ,

P∗ = λpT∗�(μ + ω)(σ + μ + ν + γ )

(T∗ + μ)(σ + μ)(μ + ν + γ )(μ + ω)δp − ωγσδpT∗ .

(30)

Substituting (30) into (29) gives

T∗ = βpλpT∗�(μ + ω)(σ + μ + ν + γ )

(T∗ + μ)(σ + μ)(μ + ν + γ )(μ + ω)δp − ωγσδpT∗

+ βI�σ(μ + ω)T∗

(T∗ + μ)(σ + μ)(μ + ν + γ )(μ + ω) − ωγσT∗ ,
(31)

which results into a polynomial b2(T∗)2 + b1T∗ + b0 = 0, where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b2 = δp (μ(μ + ν + γ )(σ + μ + ω) + σω(ν + μ)) {�(σ + μ + ν + γ )(μ + ω)

+μ(μ + ν + γ )(σ + μ + ω) + σω(ν + μ)} ,
b1 = 2δpμωγσ ((σ + μ)(μ + ν + γ )(μ + ω))2 (μ(μ + ν + γ )(σ + μ + ω)

+σω(ν + μ))

{
2R0(1−R0

2 )+Rp(1−R0)
2R0

}

+�δpμ(σ + μ)(μ + ν + γ )(μ + ω)2(σ + μ

+ν + γ )
{

(1−R0)(R0+Rp)
R0

}
,

b0 = δp ((σ + μ)(μ + ν + γ )(μ + ω)μ)2
{

(1−R0)(R0+Rp)
R0

}
,

(32)

withRp defined as in (23). It is worth noting that the coefficient b2 is always positive and
b0 is positive (negative) ifR0 is less than (greater than) unity, respectively. IfR0 < 1, then
b1 > 0 and b0 > 0, and no positive endemic equilibrium point exists. If R0 = 1, then
b1 > 0 and b0 = 0. Note, the root T∗ = 0 when R0 = 1 corresponds to the disease-free
equilibrium point D0 whose stability has already been analysed. In this case, there is no
positive endemic equilibrium point. If R0 > 1, regardless of the sign of b1 there is one
positive endemic equilibrium point which exists. This result is summarized below.

Lemma 2 The FMD model (1)–(5) has a unique positive endemic equilibrium point
wheneverR0 > 1 and no positive endemic equilibrium point otherwise.

Local stability of the endemic equilibrium point (D1)

The Center Manifold Theorem is used to establish the local asymptotic stability of the
endemic equilibrium point [12]. To apply this theorem, the following simplifications and
change of variables are made first. Let S = x1,E = x2, I = x3,R = x4 and P = x5. Further,
by using vector notation X = (x1, x2, x3, x4, x5)T , the FMD model (1)–(5) can be written
in the form dX

dt = F(X), with F = (f1, f2, f3, f4, f5)T as follows:
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dx1
dt

= f1 =� + ωx4 − (βpx5 + βIx3)x1 − μx1 = 0,

dx2
dt

= f2 =(βpx5 + βIx3)x1 − (σ + μ)x2 = 0,

dx3
dt

= f3 =σx2 − (ν + μ + γ )x3 = 0,

dx4
dt

= f4 =γ x3 − (μ + ω)x4 = 0,

dx5
dt

= f5 =λp(x3 + x2) − δpx6 = 0.

(33)

After linearizing the system at disease-free equilibrium point, the Jacobian matrix atD0
is given as

J(D0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−μ 0 −βI
�
μ

ω −βp
�
μ

0 −(σ + μ) βI
�
μ

0 βp
�
μ

0 σ −(μ + ν + γ ) 0 0
0 0 γ −(μ + ω) 0
0 λp λp 0 −δp

⎞
⎟⎟⎟⎟⎟⎟⎠
. (34)

Let φ∗ be the bifurcation parameter. Consider φ∗ = β∗
p as the bifurcation parameter.

From (22), whenR0 = 1, β∗
p is determined as

β∗
p = δp [μ(σ + μ)(μ + ν + γ ) − βI�σ ]

�λp(σ + μ + ν + γ )
, (35)

The Jacobian matrix for the transformed system with φ∗ has a simple zero eigenvalue
[12]. Therefore, the Center Manifold Theorem can be used to analyze the stability of the
system near φ∗ where by the local stability of D1 of the transformed system is the same as
the stability of D0 of the original system for φ∗ near φ∗. That is, eigenvectors of J(D1)|φ∗

p
are equal to eigenvectors of J(D0)|φ∗

p . The Jacobian matrix for the transformed system
has left and right eigenvectors associated with a simple zero eigenvalue. Let the left and
right eigenvectors, respectively, be denoted by m and n. The left eigenvector is given by
m = (m1,m2,m3,m4,m5) where

(
m1 m2 m3 m4 m5

)
⎛
⎜⎜⎜⎜⎜⎜⎝

−μ 0 −βI
�
μ

ω −βp
�
μ

0 J[2,2] βI
�
μ

0 βp
�
μ

0 σ −J[3,3] 0 0
0 0 γ −(μ + ω) 0
0 λp λp 0 −δp

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0. (36)

Here, J[2,2] = σ + μ and J[3,3] = μ + ν + γ . Solving (36), we findm1 = 0,m2 = m2 > 0,
m3 = �

(βIδp+λpβp)
μδp(μ+ν+γ )

m2 > 0,m4 = 0, andm5 = βp�m2
μδp

> 0. The right eigenvector denoted
by n = (n1, n2, n3, n4, n5)T is given by⎛

⎜⎜⎜⎜⎜⎜⎝

−μ 0 −βI
�
μ

ω −βp
�
μ

0 −(σ + μ) βI
�
μ

0 βp
�
μ

0 σ −(μ + ν + γ ) 0 0
0 0 γ −(μ + ω) 0
0 λp λp 0 −δp

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

n1
n2
n3
n4
n5

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0. (37)

This gives n1 = −1
μσ(μ+ω)

{μ(μ + ν + γ )(μ + ω + σ) + σω(μ + ν)} n3 < 0, n2 =
(μ+ν+γ )n3

σ
> 0, n3 = n3 > 0, n4 = γn3

μ+ω
> 0 and n5 = λp(μ+ν+γ+σ)n3

δpσ
> 0. The stability
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of the system around the equilibrium point is determined by the sign of the bifurcation
coefficients a and b where

a =
5∑

k,i,j=1
mkninj

∂2fk(0, 0)
∂xi∂xj

and b =
5∑

k,i=1
mkni

∂2fk(0, 0)
∂xi∂φ∗ . (38)

For a, sincem1 = 0 only values of k = 2 will be considered.
When k = 2, we have ∂2f2(0,0)

∂x1∂x5 = ∂2f4(0,0)
∂x5∂x1 = βp, and ∂2f2(0,0)

∂x1∂x3 = ∂2f2(0,0)
∂x3∂x1 = βI . Thus,

a =2n1m2(βpn5 + βIn3)

=−2m2n23(λpβp(μ + ν + γ + σ) + βIδpσ)

μσ 2δp(μ + ω)
{μ(μ + ν + γ )

(μ + ω + σ) + σω(μ + ν)} < 0.

(39)

From (38), it can be seen that the only non-vanishing partial derivative at the disease-free
equilibrium point is for k = 2 when i = 5, i.e., ∂2f2(0,0)

∂x5∂βp = x1 = �
μ
. Thus, b = m2n5x1 =

�λp(μ+ν+γ+σ)m2n3
μδpσ

> 0. Since a < 0 and b > 0, by Center Manifold Theorem [12], we
have established the following result:

Lemma 3 The unique endemic equilibrium point guaranteed by the Center Manifold
Theorem is locally asymptotically stable whenR > 1.

Analysis of optimal control measures for the environmental transmission of
FMD
Time-dependent preventive efforts (u1) and (u2) are introduced into the model (1)–(5)
as controls to curtail the environmental transmission of FMD in cattle. The model (1)–(5)
then becomes

dS
dt

=� + ωR − (1 − u1)[βpP + βI I] S − (μ + u1)S,

dE
dt

=(1 − u1)[βpP + βI I] S − (σ + μ)E,

dI
dt

=σE − (ν + μ + γ )I,

dR
dt

=γ I + u1S − (μ + ω)R,

dP
dt

=λp(I + E) − (δp + u2)P,

(40)

where the control function u1(t) ∈[0, 1] is aimed at reducing the transmission rates βp
and βI . This is done by using the vaccination strategy. The control function u2(t) ∈[0, 1]
is a preventive measure which is aimed at increasing the decay rate δp. This is through
decontamination using disinfectants. The objective function for our minimization prob-
lem is given by

J(u1,u2) =
∫ T

0
(B1E(t) + B2u21 + B3u22)dt, (41)

where B1, B2, and B3 are positive weights attached to the advantages of controlling cat-
tle infected with FMD over a finite period of time T. The main goal is to minimize the
number of those infected while at the same time minimizing the cost of implementing the
controls. In this respect, we seek optimal controls u∗

1 and u∗
2 such that
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J(u∗
1,u∗

2) = min {J(u1,u2)| u1,u2 ∈ U} (42)

subject to (40), where

U =
{
(u1(t),u2(t)) ∈ [

L2(0,T)
]2 | 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, t ∈[ 0,T]

}
. (43)

The necessary conditions that an optimal control must satisfy come from the
Pontryagin’s Maximum Principle [23]. The basic framework of an optimal control prob-
lem is to prove the existence of the optimal control and then characterize the optimal
control through the optimality system.

Existence of an optimal control

Let u = (u1,u2) ∈ [
L2(0,T)

]2. Then, a reduced cost function corresponding to (41) is
defined as

J(u,Eu) =
∫ T

0

(
B1E(t) + B2u21 + B3u22

)
dt, u ∈ U . (44)

Lemma 4 U is closed and convex.

Proof First, we prove that U is closed. For this purpose, suppose that un −→ u∗ in
L2(0,T) for un ∈ U , but u∗ /∈ U , i.e., u∗ < 0 or u∗ > 1 on a set of positive measure. Then
by taking u∗ < 0, it follows from Lebesgue measure methods that there exists ε > 0 and
a positive measure set (0, r) ⊂ (0,T) so that u∗ ≤ 0 − ε on (0, r). This implies that∫ T

0
(un − u∗)2 ≥

∫ r

0
(un − u∗)2 ≥

∫ r

0
(0 − u∗)2 ≥

∫ r

0
ε2 > 0, (45)

a contradiction. Thus, U is closed. Next, we prove convexity of U. First, we observe that
since (u1,u2) ∈ U , we have

0 ≤ u1 ≤ 1, (46)

and

0 ≤ u2 ≤ 1. (47)

Multiplying (46) by a and (47) by (1 − a) we get

0 ≤ au1 ≤ a, (48)

and

0 ≤ (1 − a)u2 ≤ (1 − a). (49)

Adding up Eqs. 48 and (49) gives

0 ≤ au1 + (1 − a)u2 ≤ 1. (50)

Thus, au1 + (1 − a)u2 ∈ U and hence, U is convex.

Theorem 5 There exists an optimal pair
((
u∗
1,u∗

2
)
,Eu∗) to the optimization problem

(42).

Proof Let

d = sup
u∈U

J(u,Eu). (51)
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Then, for any n ∈ N, there exists un ∈ U such that

d − 1
n

< J(un,Eun) ≤ d. (52)

Since U is a bounded subset of L2(0,T), it follows from Bolzano–Weierstrass theorem
(every bounded sequence has a convergent subsequence), that there exists a subsequence
{unk }k∈N such that

unk −→ u∗, (53)

weakly in L2(0,T). Theorem 2 shows that the set of state variables is bounded. Therefore,
there exists a subsequence {Eunk }k∈N such that

Eunk −→ Eu
∗
in C([ 0,T] ). (54)

From (52), we get

d − 1
n

<

∫ T

0

(
B1Eunk (t) + B2u21nk + B3u22nk

)
dt ≤ d. (55)

By (53) and (54), passing to the limit in (55), we obtain that

d =
∫ T

0

(
B1Eu

∗
(t) + B2(u∗

1)
2 + B3(u∗

2)
2
)
dt, (56)

that is,
(
(u∗

1,u∗
2),Eu

∗) is an optimal pair where u∗
1 and u∗

2 are optimal controls for (42).

Optimality system

In this section, the optimality system using results from Lewis and Syrmos [20] is pre-
sented. The optimality system can be used to compute values for the optimal control pair.
To do this, we begin by defining the Hamiltonian as follows

H(X,U , λ) = (
B1E(t) + B2u21 + B3u22

)
+ λ1

{
� + ωR − (1 − u1)

[
βI I + βpP

]
S − (u1 + μ)S

}
+ λ2

{
(1 − u1)

[
βI I + βpP

]
S − (σ + μ)E

}
+ λ3 {σE − (ν + μ + γ )I} + λ4 {γ I + u1S − (μ + ω)R}
+ λ5

{
λp(I + E) − (δp + u2)P

}
,

(57)

where λi, i = 1, 2, ...., 5 are adjoint or co-state variables corresponding to the state
variables S, E, I, R, and P, respectively.

Theorem 6 Let (u∗
1,u∗

2) be an optimal control pair to (41) over U with corresponding
optimal states Su∗ , Eu∗ , Iu∗ , Ru∗ , and Pu∗ of the system (40) that minimizes (41) over U.
Then, there exist adjoint functions λi, i = 1, 2, ...., 5 satisfying

∂λ1
∂t

=(λ1 − λ2)(1 − u1)
[
βI I + βpP

] + λ1μ + u1(λ1 − λ4),

∂λ2
∂t

= − B1 + λ2(σ + μ) − λ3σ − λ5λp,

∂λ3
∂t

=λ3(ν + μ + γ ) − λ4γ − λ5λp,
∂λ4
∂t

= −λ1ω + λ4(μ + ω),

∂λ5
∂t

=(λ1 − λ2)βp(1 − u1)S + λ5(u2 + δp),

(58)
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with transversality condition λi(T) = 0, i = 1, 2, ...., 5. Further, the following characteriza-
tion holds:

u∗
1 =max

{
0,min

(
1, û1(t)

)}
, u∗

2 = max
{
0,min

(
1, û2(t)

)}
, (59)

where

û1 = (βI I + βpP)(λ2 − λ1)S + (λ1 − λ4)S
2B2

, û2 = λ5P
2B3

. (60)

Proof Pontryagin’s maximum principle guarantees existence of λi, i = 1, 2, ...., 5 satisfy-
ing

∂λ1
∂t

= − ∂H
∂S

,
∂λ2
∂t

= −∂H
∂E

,
∂λ3
∂t

= −∂H
∂I

,
∂λ4
∂t

= −∂H
∂R

,

∂λ5
∂t

= − ∂H
∂P

, λi(T) = 0, i = 1, 2, 3, 4, 5.
(61)

Utilizing (57) and applying (61), we obtain
∂λ1
∂t

=(λ1 − λ2)(1 − u1)
[
βI I + βpP

] + λ1μ + u1(λ1 − λ4),

∂λ2
∂t

= − B1 + λ2(σ + μ) − λ3σ − λ5λp,

∂λ3
∂t

=λ3(ν + μ + γ ) − λ4γ − λ5λp,
∂λ4
∂t

= −λ1ω + λ4(μ + ω),

∂λ5
∂t

=(λ1 − λ2)βp(1 − u1)S + λ5(u2 + δp),

(62)

with transversality condition λi(T) = 0, i = 1, 2, ...., 5. Differentiating (57) with respect to
each of the admissible controls, we obtain

∂H
∂u1

=2B2u1 + (βI I + βpP)(λ1 − λ2)S + (λ4 − λ1)S,

∂H
∂u2

=2B3u2 − λ5P.
(63)

Setting the right-hand side of (63) to zero, we get the possible values û1 and û2 of the
optimal controls u∗

1 and u∗
2 solving the following system.

2B2û1 + (βI I + βpP)(λ1 − λ2)S + (λ4 − λ1)S = 0, 2B3û2 − λ5P = 0. (64)

Solving (64), we find

û1 = (βI I + βpP)(λ2 − λ1)S + (λ1 − λ4)S
2B2

, û2 = λ5P
2B3

. (65)

The standard arguments on the controls are such that

u∗
1 =

⎧⎪⎨
⎪⎩
0 if û1 ≤ 0,
û1 if 0 < û1 < 1,
1 if û1 ≥ 1,

(66)

where the value u∗
1 = 1 is a characteristic of a perfectly effective vaccine. However, this

upper bound (u∗
1 = 1) of this control may not be necessarily attainable. In a similar

manner, we have

u∗
2 =

⎧⎪⎨
⎪⎩
0 if û2 ≤ 0,
û2 if 0 < û2 < 1,
1 if û2 ≥ 1,

(67)
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where the upper bound of u∗
2 indicates that the contaminated environment is least likely

to be responsible for the transmission of FMD, especially if disinfectants are used. From
(66) and (67), we get

u∗
1 =max

{
0,min

(
1, û1(t)

)}
, u∗

2 = max
{
0,min

(
1, û2(t)

)}
. (68)

The optimality system is given by the state system (40) with the initial conditions, the
adjoint system (62) with the transversality conditions and the optimality condition (68).
The optimal control is obtained by solving the optimality system using a gradient type
algorithmwith projection. By subdividing the interval [0,T] into n sub-intervals such that
n = T

h , where h is the step size, the solutions of the state system (40) and the adjoint sys-
tem (62), respectively, are obtained by using Runge-Kutta fourth order schemes forward
and backward in time. Denoting the solutions of (40), (62), and (68), respectively, by xk =
{S(tk),E(tk), I(tk),R(tk),P(tk)}, λn−k = {λ1(tn−k), λ2(tn−k), λ3(tn−k), λ4(tn−k), λ5(tn−k))}
and uk = {u∗

1(tk),u∗
2(tk)}, where tk = kh and k = 0, 1, 2, ...., n. The algorithm for obtaining

the optimal control is given as follows:

Algorithm 1 The optimal control algorithm
S0: Choose uk ∈ U and xk ;

Set k := 0.
S1: Compute xk+1 the solution to (40) corresponding to xk and uk .
S2: Compute λn−(k+1) the solution to (62) corresponding to λn = 0, xk+1 and uk .
S3: Using λn−(k+1) and xk+1 update (68) to obtain uk+1.
S4: If ‖uk+1 − uk‖ < ε, then STOP (uk+1 is the optimal control) else k := k + 1; go to

S1. Here ε is an arbitrary small positive number.

Numerical simulations for optimal control

Parameter values and initial model variables used are βp = 0.007, λp = 0.01, S(0) = 1000
cattle, E(0) = 1, I(0) = 0, R(0) = 0, P(0) = 0, andR0 = 4.7837. Other parameter values
are in Table 1. The weight factors used are B1 = UShs 10750, B2 = UShs 1000, and B3 =
UShs 1350. The values used here are intended only for theoretical purposes to investigate
the effect of various control strategies. Three control strategies A, B, and C are studied.

Strategy A: optimal use of vaccination

Here, only the control of vaccination u1 is used to optimize the objective function (41)
while the control of the environmental decontamination u2 is set to zero. From Fig. 2a it
can be observed that the control strategy led to a decrease in E and P as against an increase
in the uncontrolled case. From Fig. 2b, it can be observed further that vaccination alone
cannot reduce the number of pathogens in the environment to zero. This can lead to a tail
of infection in the long run. The control profile is shown in Fig. 2c where it is observed
that the optimal control of vaccination u1 is at the upper bound till the time T = 27 days
before dropping to the lower bound. The result here show that if 100% of cattle in a herd of
1000 cattle are vaccinated within a period of 27 days of the outbreak, FMD transmission
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Fig. 2 a–c Optimal states and control profile for control strategy A

can be greatly reduced. The control of the environmental decontamination u2 is at zero
because in this strategy, only the control of vaccination u1 is active.

Strategy B: optimal use of environmental decontamination

With this strategy, only the control of environmental decontamination u2 is used to opti-
mize the objective function (41) while the control of vaccination u1 is set to zero. From
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Fig. 3a, the result show no big difference between E with and without optimal control.
In Fig. 3b, a big difference is observed between P with and without optimal control. This
strategy does not meet our objective which is minimizing the number of infections. The
control profile is shown in Fig. 3c where the optimal control of environmental decontam-
ination u2 starts and stays at the upper bound for T = 12 days, before dropping to the
lower bound. The results here indicate that if an effort of 100% is put in decontaminat-
ing the environment from the 1st day to the 12th day, the transmission of FMD through
a contaminated environment can be reduced. This strategy is less expensive as compared
to strategy A (optimal use of vaccination) as it takes 15 fewer days of the intervention.
Figure 3c shows that control of vaccination u1 is at zero for the entire period of inter-
vention and this is due to the fact that in this strategy only the control of environmental
decontamination u2 is active.

Strategy C: optimal use of both vaccination and environmental decontamination

With this strategy, both vaccination (u1) and environmental decontamination u2 are used
to optimize the objective function (41). From Fig. 4a and b, the result show a significant
difference in E and P with the optimal control strategy as compared to the case with-
out control. The controlled trajectories show convergence to the disease-free equilibrium
point. In Fig. 4c, the control profile, the control of vaccination u1 is at the upper bound of
100% for 11 days and drops gradually until reaching the lower bound, while the control of
environmental decontamination u2 starts at the upper bound where it is maintained for
8 days before dropping slowly to the lower bound of 0% at the end of 30 days. This figure
shows clearly how emergency vaccination and environmental decontamination can be
used optimally to control the transmission of FMD through a contaminated environment.

Discussion
In this paper, a deterministic mathematical model describing the transmission dynam-
ics of FMD in a contaminated environment was formulated and analysed. The model is
shown to have a locally and globally asymptotically stable disease-free equilibrium point
whenever its associated reproduction number is less than unity and has a unique, locally
asymptotically stable endemic equilibrium point when R0 exceeds unity. The existence
of a stable disease-free equilibrium point implies that the classical requirement of having
the basic reproduction number less than unity is necessary and sufficient for the control
of the transmission of FMD in a contaminated environment. The existence of a stable
endemic equilibrium point when R0 exceeds unity indicates that the disease can persist
in the livestock community if control measures are not put in place.
From the analysis of R0, it is shown that the transmission (βp and βI ) and the shed-

ding (λp) rates have a potential of aggravating the disease if increased. Therefore, control
measures such as vaccination, isolation, and quarantine are encouraged to minimize the
aforementioned parameters. Similarly, the decay (δp) rate parameter is shown to reduce
the incidence of the disease if increased. This implies that control measures (such as
decontamination) that accelerate the decay rate of FMD in the environment can yield pos-
itive results in the control of the disease. Further, it is shown that the host-to-host route
leads to more infections than the environment-to-host route. Thus, all farming practices
that result into physical contacts of hosts like communal grazing and sharing of water
points should be avoided.
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Fig. 3 a–c Optimal states and control profile for control strategy B

In the “Analysis of optimal control measures for the environmental transmission of
FMD” section, the model was then transformed into an optimal control problem with an
aim of minimizing the number of infected cattle at a minimal cost. Using the Pontryagin’s
Maximum Principle the optimality system was determined. Utilizing a gradient type
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Fig. 4 a–c Optimal states and control profile for control strategy C

algorithm with projection, the optimality system was solved for three control strategies:
optimal use of vaccination (StrategyA), environmental decontamination (Strategy B), and
a combination of vaccination and environmental decontamination (Strategy C). Results
of strategy A (Fig. 2) show that vaccination alone can minimize the infections to zero.
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However, it does not reduce the number of pathogens in the environment to zero. This
can lead to an environmental transmission in the long run especially when the vaccine is
not perfect or if the vaccination coverage is not to the maximum.
From Fig. 3, it was noted that environmental decontamination alone has little impact

on the disease prevalence. This is in line with a study by Bani-Yaghoub et al. [5], where
it was discovered that environmental decontamination can reduce the value of R0 to
less than unity, only when the environmental factors are the main cause of the infection.
In this study, it has been shown that the host-to-host route is more dominant than the
environment-to-host route rendering the single use of environmental decontamination
a less effective strategy. Results of strategy C suggest that when vaccination and envi-
ronmental decontamination are used optimally, it is possible to attain the disease-free
equilibrium point. This again is line with a study by Bani-Yaghoub et al. [5] where it
was found out that elimination of endemic equilibrium through environmental decon-
tamination is possible when it is applied in combination with other control measures.
Strategy C followed by A are the best strategies in the control of FMD in the presence of
environmental transmission.
From the results of this study, it can be concluded that it is possible to have both

disease-free and endemic equilibria points for the model (1)–(5). In an FMD endemic
area, regardless of the amount of FMDV in the environment and the number of infected
cattle, the transmission of FMD can always be contained provided that the transmission,
decay and shedding rates of the virus are simultaneously taken into consideration. In
communities where resources are limited, a control strategy that involves optimal use of
vaccination should be adopted with the best option being when vaccination is combined
with environmental decontamination. The farmer can save more funds if the optimal
control conditions discussed in this study are adhered to.
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