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Abstract
Williamson boundary layer fluid flow and heat transfer due to a nonlinearly stretching
sheet is undertaken in this research. An important aspect of this study is that the
thermal radiation and viscous dissipation phenomena are also included in this model.
Because there is still much need for more accurate results, the viscosity and the fluid
conductivity are assumed to vary with temperature. Our main purpose is to achieve a
similar solution in this physical model. Here, we come across a highly nonlinear
differential constitutive equations which are solved numerically after utilizing the
shooting method. In this respect, it is noteworthy that the main characteristic
developed here is that the study is made for the governing parameters and their
effects on both the drag velocity and the heat transfer rate. Further, a significant effect
of both radiation parameter and viscosity parameter on heating process is observed.

Keywords: Williamson fluid, Nonlinearly stretching sheet, Variable properties, Viscous
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Introduction
During the last two decades, different immense attempts have been performed in fluid
flow due to stretching sheet operation to give precious descriptions of standard manufac-
turing and industrial processes, such as polymer manufacturing, paper production, food
preserving processes, crystal manufacturing, and petroleum filtering operation. For this
sake and owing to these actual importance on this topic, many researchers have com-
pelled to search about the novel findings which serve this field. The first contributions
in this topic were inaugurated in discussion the fluid flow due to a stretched surface by
Sakiadis [1]. The problem of fluid flow of Blasius type due to a stretching sheet, which has
the application in the field of the drawing of plastic films has been studied by Crane [2].
Furthermore, we can resort to Chen and Char [3] to explore the mechanism of wall heat-
flux and its influence on an impermeable linearly stretching plate. Mohammadein and
Gorla [4] investigated the heat transfer characteristics of a steady micropolar boundary
layer fluid flow over a linearly stretching, continuous sheet. Shortly after the authors [4],
Liu [5] perceived the general importance of hydromagnetic flow over a stretching sheet by
applying it in a heat and mass transfer. Two years elapsed until Cortell [6] again presented
steady flow and mass transfer approach to a second-grade fluid behavior based upon the
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concept of impermeable stretching sheet. In a later study, Chen [7] attempted to com-
plete his research on some important mechanisms of MHD non-Newtonian power-law
fluid over a stretching sheet. Recently, an increasing number of studies which concern-
ing in exponentially stretching sheet can be introduced in Ref. [8–10] and in nonlinearly
stretching sheet can be adequately described in Ref. [11–16].
In this work, we use the Williamson model, which was firstly studied since in 1929 by

Williamson [17]. Due to the usefulness of this type of fluid, more of accurate researches
are introduced in this topic [18–22]. In the framework of all previous studies and in an
effort to analyze theWilliamson fluid flow due to nonlinear stretching sheet with variable
properties, thermal radiation, and viscous dissipation, this paper is introduced.

Mathematical description for the physical model
Currently, we will explain the physical problem under consideration by assuming that the
moving fluid is a Williamson fluid with a time constant �. Williamson fluid embody the
Cauchy stress tensor which fully governed by the extra stress tensor [18]. In addition,
the motion for the fluid is yielded from the nonlinearly stretching sheet accompanying
with the presence of the radiation and viscous dissipation phenomena. Also, the x- axis
is selected along the sheet, while the y-axis is chosen in the orthogonal direction for the
sheet (Fig 1). Due to the stretching process, this may be results in creating the velocity
Uw = cxm for the fluid, where c is a constant and m is an exponent. Herein, we suppose
that both the fluid thermal conductivity κ and the fluid viscosity μ are altering with the
temperature; however, the remaining fluid properties are constant.
After this former explanation and performing the approximations for the problem

which we will study, we now have to present the mathematical equations which reflect
what has been prescribed. These equations can be introduced in the following form [18]:
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we must refer that, the first equation represents the continuity equation while the second
equation expresses the momentum, but the final equation reflects the energy equation.
Always as usual, the characters u and v represent the components of the velocity vector in

Fig. 1 Sketch of flow over nonlinearly stretching sheet
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the x and y directions, respectively. Also, the constant ρ∞ is called the fluid density at the
ambient, the symbol T refers to the temperature for theWilliamson fluid, and the symbol
qr describes the heat flux term which is yielded due to the radiation, while the constant
property cp is the specific heat at constant pressure.
As reported previously, the Rosseland approximation [23], helped us to put qr as a
function of temperature in the following form:

qr = −4σ ∗

3k∗
∂T4

∂y
, (4)

where the constant σ ∗ is the Stefan-Boltzmann and k∗ is the absorption coefficient. In
this work, the coefficient k∗ must be coincide with the Rosseland approximation. As we
observed from Eq. (4), the highly nonlinearity of the term T4 can be simplified by using
Taylor expansion about the constant value T∞ as T4 ∼= 4T3∞T − 3T4∞, after ignoring all
higher-order terms [24].
In the same context, the nonlinear stretching process for the impermeable sheet and its

temperature at the surface and away from it can be reflected in the following conditions:

u = cxm, v = 0, Tw(x) = T∞ + Axr at y = 0 (5)

u → 0, T → T∞, as y → ∞, (6)

where T∞ is the constant ambient temperature, A, r are constants. Now, we will intro-
duce the non-dimensional functions f and θ in which they are function of the variable η

as follows:

η =
(
cxm−1

ν∞

) 1
2
y, ψ(x, y) = (

cxm+1ν∞
) 1
2 f (η), θ(η) = T − T∞

Tw − T∞
, (7)

where ν∞ is the kinematic viscosity at the ambient and ψ(x, y) is the stream function
which fulfill Eq. (1) according to:

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (8)

On the other hand, some of the important assumptions in this research is that the viscosity
is changing exponentially with the temperature, while the thermal conductivity is altering
linearly with temperature according to these equations [25]:

μ = μ∞e−αθ , κ = κ∞ (1 + εθ) . (9)

The final relations present the coefficient μ∞ and κ∞ which represent the viscosity and
the thermal conductivity at the ambient, respectively. Also, from the same relations, the
parameter α is the viscosity but the parameter ε is the thermal conductivity.
Employing Eq. (7) in the principal Eqs. (1)–(3), we trusted that Eq. (1) is exactly satisfied,

while the other equations reduce to:
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and the reduced boundary conditions are

f (0) = 0, f ′(0) = 1, θ(0) = 1, (12)

f ′ → 0, θ → 0, at η → ∞, (13)

where δ =
(√

2c
3
2 x

3m−1
2√

ν∞

)
� is the local Williamson fluid parameter, Pr = μ∞cp

κ∞ is the

Prandtl number, R = 16σ ∗T3∞
3κ∞k∗ is the radiation parameter, and Ec = U2

w
cp(Tw−T∞)

= c2x2m−r

Acp
is the local Eckert number. After finishing this analyzing, we observe that both the δ

parameter and the Ec number are dependent of x. To overcome this dilemma which
results in a non-similar solution for our problem, we should take r = 2m = 2

3 . So,

these parameters take the form, δ =
(√

2c
3
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)
� is the Williamson fluid parameter and

Ec = U2
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Acp is the Eckert number.

The local skin-friction coefficient and the local Nusselt number
The physical description for our problemmay be completed after analyzing the quantities
of local skin-friction coefficient Cfx and the local Nusselt number Nux as follows:

Cfx = −2Re
−1
2
x

(
1 + δ

2
f ′′(0)

)
f ′′(0)e−αθ(0), (14)

Nux = −Re
1
2
x (1 + R + εθ(0)) θ ′(0), (15)

Rex = Uwx
ν∞ is the local Reynolds number. It is clear from Eq. (14) that the local skin-

friction coefficient Cfx is directly affected with both the viscosity parameter α and the
Williamson fluid parameter δ, while noted from Eq. (15) that the local Nusselt number is
influenced by both the thermal conductivity parameter ε and the radiation parameter R.
Also, an implicit effects for another parameters on both the local Nusselt number and the
local skin-friction coefficient can be occurred.

Solutionmethodology
It is impossible to get the exact solution for the system posed by (10)–(11), so we should
resort to the numerical solution. Therefore, the numerical shooting method is adopted in
this work to get the numerical solution of the proposedmodel. In thismethod, the govern-
ing Eqs. (10)–(11) along with the boundary conditions (12)–(13) were first reformulated
as a system of first-order equations. This system cannot be solved with the infinite condi-
tions which appear in (13). So, these conditions are replaced by appropriate finite guessing
values for f ′′(0) and θ ′(0) to start the solution. Whenever these values are appropriate,
we hasten to get the solution. Also, the main objective of this section is to validate the
numerical shooting solution to confirm the accuracy of our results. To perform this task,
we must recall some previously published work which can be considered as a special
case from our problem. We noticed that our problem can be reduced to the previously
published work by Gorla and Sidawi [26] when δ = α = ε = R = Ec = r = 0 andm = 1.
Therefore, after performing the comparison which appear in Table 1, the shootingmethod
proves to be accurate and very powerful.
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Table 1 Comparison of Nusselt number

(
NuxRe

−1
2
x

)
for various values of Pr when δ=α=ε=R=Ec=

r=0 andm = 1

Pr Gorla and Sidawi [26] Present study

0.07 0.06562 0.065531

0.20 0.16912 0.169117

2.0 0.91142 0.911358

7.0 1.89546 1.895453

20.0 3.35391 3.353902

Results and discussion
It must be affirmed that, this work can be completely self-contained, if we present all
striking features for the non-Newtonian Williamson flow which yielded from a nonlin-
ear stretching sheet after introducing the following graphs. The presented figures can
recap all physical phenomena which can created from the introduced parameters in this
section. So, the influence of the viscosity parameter α which ranging from 0.0 to 1.0 on
both the velocity and temperature profiles are introduced in Figs. 2 and 3, respectively.
As is foreseeable from these figures, the velocity distribution is altered with decreasing
behavior by the presence of α, while the temperature profiles has a reversible trend. Physi-
cally, the feature of Fig. 3 convince and enable us to predict the thermal thickness for large
values of α.
On the other hand, Figs. 4 and 5 study the effect of Williamson δ parameter on both

the velocity and temperature profiles. These figures stipulated that the velocity distribu-
tion reached a maximum when we ignored the δ parameter, i.e., (for Newtonian fluid),
but Fig. 4 reveals that the temperature distribution is slightly dependent on the manner
in which the δ parameter varies. Further, Fig. 5 attains close agreement about the non-
Newtonian Williamson fluids having large parameter δ which can be chosen to govern
the rate of heat transfer insofar as it is possible.
The curves of the relationships between both ε,R parameters and the temperature dis-

tribution are presented in Figs. 6 and 7, respectively. It is clear that a thermal curve of

Fig. 2 Velocity f ′(η) for various α
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Fig. 3 Temperature θ(η) for various α

the fluid which having less thermal conductivity was placed down the curve with more
thermal conductivity, which means that a large ε value induces more progress in the
distribution of the temperature inside the thermal region. On the other hand, Fig. 6 indi-
cates that the tested heat pattern through the parameter ε was primarily affected by the
Williamson fluids having variable conductivity. Further, thermal thickness and distribu-
tion of temperature with great radiation parameter R are larger than those of distribution
and thermal thickness with small radiation parameter R as shown in Fig. 7.
In Fig. 8, a similar behavior for the Eckert number Ec will be given , which elucidates

the response of the thermal region for the viscous dissipation phenomena. It is important
to bear in mind that the presence of viscous dissipation phenomena has the probability of
inducing the growth of both the temperature distribution and the thickness of the thermal
layer. Physically, when viscous dissipation is considered in the model, the mechanism of
convective heat is strengthen and this results in thickening the thermal layer.

Fig. 4 Velocity f ′(η) for various δ



Megahed Journal of the EgyptianMathematical Society           (2019) 27:12 Page 7 of 10

Fig. 5 Temperature θ(η) for various δ

For returning to the work at hand and seeking to measure the impact of all physical
parameters governing theWilliamson fluid flow on both the local skin-friction coefficient
1
2Re

1
2
x Cfx and the local Nusselt number Re

−1
2
x Nux, one needs to calculate the data which

appear in Table 2. Of particular interest, introduced here are the Eckert number Ec, the
viscosity parameter α, and the non-Newtonian Williamson parameter δ, in which they
result in a diminishing behavior for both the local skin-friction coefficient and the local
Nusselt number. On the other hand, an augmentation behavior in the local Nusselt num-
ber is noted from this study for increasing both the thermal conductivity parameter ε and
the thermal radiation parameter R, but a reduction trend was for the local skin-friction
coefficient.

Fig. 6 Temperature θ(η) for various ε
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Fig. 7 7. Temperature θ(η) for various R

Concluding remarks
According to the yielded analysis for the proposed Williamson fluid flow, some of main
interesting results which are drawn from this study are established below in an elabo-
rated form as follows: (i) Both the thermal radiation parameter and the Eckert number
have the influence to enhance the temperature distribution, thicken the thermal region,
thus increase the local Nusselt number and decrease the local skin-friction coefficient.
(ii) Increasing both the viscosity parameter and the Williamson parameter will result in
a rise in the temperature distribution, and hence a diminishing behavior for both the
rate of heat transfer and the local skin-friction coefficient. (iii) The thermal conductivity
parameter has an impact in enhancing the temperature distribution, hence an increasing
behavior for the local Nusselt number.

Fig. 8 Temperature θ(η) for various Ec
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Table 2 Values of 1
2 Re

1
2
x Cfx and Re

−1
2
x Nux for various values of α, δ, ε , R, and Ec with

m = 1
3 , r = 2

3 , Pr = 2.0

α δ ε R Ec 1
2 Re

1
2
x Cfx Re

−1
2

x Nux

0.0 0.2 0.2 0.2 0.2 0.659037 1.33148

0.5 0.2 0.2 0.2 0.2 0.546574 1.27392

1.0 0.2 0.2 0.2 0.2 0.439826 1.20470

0.5 0.0 0.2 0.2 0.2 0.567823 1.28576

0.5 0.2 0.2 0.2 0.2 0.546574 1.27392

0.5 0.5 0.2 0.2 0.2 0.506503 1.24864

0.5 0.2 0.0 0.2 0.2 0.549231 1.21855

0.5 0.2 0.2 0.2 0.2 0.546574 1.27392

0.5 0.2 0.5 0.2 0.2 0.543210 1.34926

0.5 0.2 0.2 0.0 0.2 0.549629 1.19309

0.5 0.2 0.2 0.5 0.2 0.542856 1.37819

0.5 0.2 0.2 1.0 0.2 0.538196 1.51929

0.5 0.2 0.2 0.2 0.0 0.548239 1.36147

0.5 0.2 0.2 0.2 0.2 0.546574 1.27392

0.5 0.2 0.2 0.2 0.5 0.544103 1.14333
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