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Abstract

In this paper, we investigate the Cauchy problem for the stochastic Kawahara equation,
which is a fifth-order shallow water wave equation. We prove local well-posedness for
data in Hs(R), s > −7/4. Moreover, we get global existence for L2(R) solutions. Due to
the non-zero singularity of the phase function, a fixed point argument and Fourier
restriction method are proposed.
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Introduction
In this paper, we consider the Cauchy problem for the stochastic Kawahara equation:

ut + αu5x + βu3x + γux + μuux = �
∂2B
∂t∂x

, (1)

where α �= 0, β , and γ are real numbers; μ is a complex number; u is a stochastic process
defined on (x, t) ∈ R × R+; � is a linear operator; and B is a two-parameter Brownian
motion on R × R+, that is, a zero mean Gaussian process whose correlation function is
given by:

E (B(x, t)B(y, s)) = (x ∧ y)(t ∧ s), t, s ≥ 0, x, y ∈ R. (2)

In general, the covariance operator � can be described by a kernel K(x, y). The
correlation function of the noise is then given by

E

(
�

∂2B
∂t∂x

(x, t)�
∂2B
∂t∂x

(y, s)
)

= c(x, y)δt−s,

where t, s ≥ 0, x, y ∈ R, δ is the Dirac function and

c(x, y) =
∫
R

K(x, z)K(y, z)dz.

Consider a fixed probability space (�,F ,P) adapted to a filtration (Ft)t≥0. As usual, we
can rewrite the right hand side of Eq. (1) as the time derivative of a cylindrical Wiener
process on L2(R) by setting:
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W (t) = ∂B
∂x

=
∑
i∈N

βi(t)ei, (3)

where (ei)i∈N is an orthonormal basis of L2(R) and (βi)i∈N is a sequence of mutually
independent real Brownian motions in (�,F ,P). Let us rewrite Eq. (1) in its Itô form as
follows:

{
du + (αu5x + βu3x + γux + μuux) dt = �dW (t),
u(x, 0) = u0(x)

(4)

In order to obtain local well-posedness of Eq. (1), we mainly work on the general mild
formulation of Cauchy problem (4) as below:

u(t) = U(t)u0 +
∫ t

0
U(t − s) (μuux) ds +

∫ t

0
U(t − s)�dW (s). (5)

Here, U(t) = F−1
x exp (−itφ(ξ))Fx is the unitary group of operators related to the

linearized equation:

ut + αu5x + βu3x + γux = 0, (x, t) ∈ R × R+, (6)

where φ(ξ) = αξ5 − βξ3 + γ ξ is the phase function and Fx (or “ .̂ ") is the usual
Fourier transform in the x variable. We note that the phase function φ has non-zero
singularity. This differs from the phase function of the linear Korteweg-de Vries (KdV)
equation (see [1]) and causes some difficulties in the problem. To avoid these difficul-
ties, we eliminate the singularity of the phase function φ by using the Fourier restriction
operators [2]:

PN f =
∫

|ξ |≥N
eixξ f̂ (ξ)dξ , PN f =

∫
|ξ |≤N

eixξ f̂ (ξ)dξ , ∀N > 0.

In the case of � ≡ 0 (effect of the noise does not exist), Eq. (1) is reduced to the
deterministic Kawahara equation:

ut + αu5x + βu3x + γux + μuux = 0, (x, t) ∈ R × R+. (7)

As aforesaid in [3–5], Eq. (7) is a fifth-order shallow water wave equation. It arises in
study of the water waves with surface tension, in which the Bond number takes on the
critical value, where the Bond number represents a dimensionless magnitude of surface
tension in the shallow water regime. If we consider a realistic situation, in which a non-
constant pressure affects on the surface of the fluid or the bottom of the layer is not flat,
it is meaningful to add a forcing term to Eq. (7). This term can be given by the gradient of
the exterior pressure or of the function whose graph defines the bottom [6, 7]. This paper
focuses on the case when the forcing term is of additive white noise type. This leads us to
study the stochastic fifth-order shallow water wave Eq. (1). By means of white noise func-
tional analysis, the analytical white noise functional solutions for the nonlinear stochastic
partial differential equations (SPDEs) can be investigated. This subject is attracting more
and more attention [8–15].
It is well known that the Cauchy problem (4) is locally well-posed for data inHs(R), s ∈

R, if for any finite time T, there exists a locally continuous mapping that transfers u0 ∈
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Hs(R) to a unique solution u ∈ C ([ 0,T] ;Hs(R)). If the solution mapping exists for all
time, we say that the Cauchy problem (4) is globally well-posed [16].
In [17], Huo obtained a local well-posedness result in Hs(R)(s > −11/8) for the Kawa-

hara equation. Moreover, Jia and Huo [18] proved the local well-posedness of the Kawa-
hara and modified Kawahara equations for data in Hs(R) with s > −7/4 and s ≥ −1/4
respectively. The first well-posedness result for the Kaup-Kupershmidt equations was
presented by Tao and Cui [19]. They proved that their Cauchy problems are locally well-
posed in Hs(R) for s > 5/4 and s > 301/108, respectively. Thereafter, Zhao and Gu [20]
lowered the regularity of the initial data space to s > 9/8 and improved the preceding
result in [19]. Also, using a Fourier restriction method, a local well-posedness result for
the Kaup-Kupershmidt equations was established in [18] for data inHs(R)with s > 0 and
s > −1/4, respectively.
If α = γ = 0, the model (7) is minified to the famous KdV equation:

ut + βu3x + μuux = 0, (x, t) ∈ R × R+. (8)

The well-posedness of Eq. (8) was studied by Kenig, Ponce, and Vega [21]. They proved
that its Cauchy problem is locally well-posed in Hs(R) for s > −3/4. Also, Ponce [1]
discussed the general fifth-order shallow water wave equation:

ut + ux + c1uux + c2u3x + c3uxuxx + c4uu3x + c5u5x = 0 (x, t) ∈ R × R+ (9)

and gave a global well-posedness result of its Cauchy problem for data inH4(R). The well-
posedness of the SPDEs has been the subject of a large amount of work. de Bouard and
Debussche [22] considered the stochastic KdV equation forced by a random term of white
noise type. They proved existence and uniqueness of solutions in H1(R) and existence of
martingale solutions in L2(R) in the case of additive andmultiplicative noise, respectively.
Since that time, many researchers paid more attention to investigate the Cauchy problems
for some SPDEs and have obtained a number of local and global well-posedness results
[23–25].
The goal of this paper is to investigate the Cauchy problem of the stochas-

tic Kawahara Eq. (1), where the random force is of additive white noise type.
By employing a Fourier restriction method, a Banach fixed point theorem, and
some basic inequalities, we show that Eq. (1) is locally well-posed for data in
Hs(R), s > −7/4. Also, we give global existence for L2(R) solutions. An outline
of this paper is as follows. The “Main results” section contains precise state-
ment of our new results and some important function spaces. In the section
“The stochastic convolution estimate”, we give an estimation of the stochastic con-
volution term via a Fourier restriction method and some basic inequalities. In the
section “Local well-posedness: proof of Theorem 1”, we use the stochastic estima-
tion proved in the section “The stochastic convolution estimate” and the Banach
fixed point theorem to obtain a local well-posedness result of Eq. (1). In the section
“Global well-posedness: proof of Theorem 2”, we extend our technique and show global
well-posedness result of Eq. (1). The “Summary and discussion” section is devoted to the
summary and discussion.

Main results
Before giving the precise statement of our main results, we introduce some notations and
assumptions.
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Definition 1 For s, b ∈ R the space Xs,b is defined to be the completion of the Schwartz
function space S

(
R
2) with respect to the norm:

‖u‖Xs,b = ‖U(−t)u‖Hs
xHb

t
= ‖〈ξ〉s〈τ + φ(ξ)〉bFu‖L2ξL2τ , (10)

where 〈·〉 = 1 + | · |.

Definition 2 For T > 0, XT
s,b is the space of restrictions to [ 0,T] of functions in Xs,b

endowed with the norm:

‖u‖
XT

s,b
= inf{‖ũ‖Xs,b : ũ ∈ Xs,b,u = ũ|[0,T]}. (11)

Theorem 1 Assume that s > − 7
4 , � ∈ L0,s2 , b ∈ (

0, 12
)
and b is close enough to 1

2 . If
u0 ∈ Hs(R) for almost surely ω ∈ � and u0 is F0−measurable. Then for almost surely
ω ∈ �, there exists a constant Tω > 0 and a unique solution u of the Cauchy problem (4)
on [ 0,Tω] which satisfies:

u ∈ C
(
[ 0,Tω] ;Hs(R)

) ∩ X
Tω

s,b .

In fact the L2−norm is preserved for a solution of the Kawahara equation [4]. Therefore,
in the case of s = 0, we can obtain a global existence result for Eq. (1). Precisely, we have:

Theorem 2 Let u0 ∈ L2
(
�, L2(R)

)
be anF0−measurable initial data, and let � ∈ L0,02 .

Then, the solution u given by Theorem 1 is global and satisfies:

u ∈ L2
(
�;C

(
[ 0,T0] ;Hs(R)

))
, for any T0 > 0.

The stochastic convolution estimate
In this section, using the Fourier restriction method, the properties of Itô stochastic inte-
gral and some basic inequalities, we give an estimation for the last term in Eq. (5), which
is the stochastic convolution:

ul(t) :=
∫ t

0
U(t − s)�dW (s). (12)

Choose χ ∈ C∞
0 (R+) such that χ(t) = 0 for t > 0, χ(t) = 1 for 0 < t < 1 and χ(t) = 0

for t ≥ 2. Hence, χ ∈ Hb(R) for any b < 1
2 . Let H

b
t := Hb ([ 0,T] ;R) be the Sobolev

space in the time variable t with the norm:

‖ψ‖2
Hb
t
:= ‖ψ‖2L2(R)

+
∫
R

∫
R

|ψ(t1) − ψ(t2)|2
|t1 − t2|1+2b dt1dt2, ψ ∈ Hb

t . (13)

Now, we state and prove the estimation of the stochastic convolution (12) as follows:

Lemma 1 Assume that s, b ∈ R with b ∈ (
0, 12

)
, and let � ∈ L0,s2 Then, ul defined by (12)

satisfies:

χul ∈ L2
(
�,Xs,b

)

and
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E

(
‖χul‖2Xs,b

)
≤ N(b,χ)‖�‖2

L0,s0
, (14)

where N(b,χ) is a constant that depends on b, ‖χ‖Hb
t
, ‖|t| 12 χ‖L2t and ‖|t| 12 χ‖L∞

t ,

Proof Let us introduce the function

w(t, .) = χ(t)
∫ t

0
U(−s)�dW (s), t ∈ R+. (15)

This implies that U(t)w(t, .) = χ(t)ul(t). Thus, by Eq. (10), we have:

E

(
‖χul‖2Xs,b

)
= E

(∫
R

∫
R

(1 + |ξ |)2s (1 + |τ |)2b |Fxw(t, ξ)|2dτdξ

)

=
∫
R

(1 + |ξ |)2s E
(
‖Fxw(., ξ)‖2Hb

t

)
dξ ,

(16)

According to the expansion (3) of the cylindrical Wiener process and Eq. (13), we have:

E

(
‖Fxw(., ξ)‖2Hb

t

)
= S1 + S2, (17)

where,

S1 =
∑
i∈N

|�̂ei|2
[
E

(∥∥∥∥χ(t)
∫ t

0
eisφ(ξ)dβi(s)

∥∥∥∥
2

L2(R)

)]
, (18)

S2 =
∑
i∈N

|�̂ei|2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∫
R

∫
R

∣∣∣∣∣∣
χ(t1)

∫ t1
0 eisφ(ξ)dβi(s)

−χ(t2)
∫ t2
0 eisφ(ξ)dβi(s)

∣∣∣∣∣∣
2

|t1 − t2|1+2b dt1dt2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

From the Itô isometry formula, we get:

S1 =
∑
i∈N

|�̂ei|2
∫ 2

0
|χ(t)|2 E

(∣∣∣∣
∫ t

0
eisφ(ξ)dβi(s)

∣∣∣∣
2)

dt

=
∥∥∥|t| 12 χ∥∥∥2

L2t

∑
i∈N

|�̂ei|2. (20)

To estimate S2, we have:
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S2 =
∑
i∈N

|�̂ei|2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
E

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∫
R

∫
R

∣∣∣∣∣∣
χ(t1)

∫ t1
0 eisφ(ξ)dβi(s)

−χ(t2)
∫ t2
0 eisφ(ξ)dβi(s)

∣∣∣∣∣∣
2

|t1 − t2|1+2b dt1dt2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=2
∑
i∈N

|�̂ei|2
∫
t2>0

∫
t1<t2

E

⎛
⎜⎝
∣∣∣∣∣∣

χ(t1)
∫ t1
0 eisφ(ξ)dβi(s)

−χ(t2)
∫ t2
0 eisφ(ξ)dβi(s)

∣∣∣∣∣∣
2
⎞
⎟⎠

|t1 − t2|1+2b dt1dt2

≤
∑
i∈N

|�̂ei|2
[
2
∫
t2>0

∫
t1<0

|χ(t2)|2E
(∣∣∣∫ t2

0 eisφ(ξ)dβi(s)
∣∣∣2
)

|t1 − t2|1+2b dt1dt2

+2
∫
t2>0

∫
0<t1<t2

E

⎛
⎜⎜⎜⎝

∣∣∣∣∣∣∣∣∣

χ(t1)
∫ t1
0 eisφ(ξ)dβi(s)

−χ(t2)
∫ t1
0 eisφ(ξ)dβi(s)

+χ(t2)
∫ t2
t1 eisφ(ξ)dβi(s)

∣∣∣∣∣∣∣∣∣

2⎞
⎟⎟⎟⎠

|t1 − t2|1+2b dt1dt2
]

≤
∑
i∈N

|�̂ei|2
[
2
∫
t2>0

∫
t1<0

|χ(t2)|2E
(∣∣∣∫ t2

0 eisφ(ξ)dβi(s)
∣∣∣2
)

|t1 − t2|1+2b dt1dt2

+4
∫
t2>0

∫
0<t1<t2

|χ(t1) − χ(t2)|2E
(∣∣∣∫ t1

0 eisφ(ξ)dβi(s)
∣∣∣2
)

|t1 − t2|1+2b dt1dt2

+4
∫
t2>0

∫
0<t1<t2

|χ(t2)|2E
(∣∣∣∫ t2

t1 eisφ(ξ)dβi(s)
∣∣∣2
)

|t1 − t2|1+2b dt1dt2
]

=
∑
i∈N

|�̂ei|2 [I1 + I2 + I3] .

(21)

Now, we limit I1, I2, and I3 separately,

I1 ≤ 2
∫ 2

0
t1|χ(t2)|2

∫
t1<0

1
|t1 − t2|1+2b dt1dt2 ≤ Mb

∥∥∥|t| 12 −bχ
∥∥∥2
L2t

. (22)

Using Eq. (15) and the assumption that 2b ∈ (0, 1), we have

I2 ≤ 4
∫ ∞

0

∫ t2

0

t1|χ(t1) − χ(t2)|2
‖t1 − t2‖1+2b dt1dt2

≤ 4
∫ 2

0

∫ t2

0

t1|χ(t1) − χ(t2)|2
‖t1 − t2‖1+2b dt1dt2

+ 4
∫ ∞

2

∫ 2

0

t1|χ(t1)|2
‖t1 − t2‖1+2b dt1dt2

≤ 8‖χ‖2Hb
t

+ 4
∥∥∥|t| 12 χ∥∥∥2

L∞
t

∫ ∞

0

∫ 2

0

1
|t1 − t2|1+2b dt1dt2

≤ 8‖χ‖2Hb
t

+ Mb

∥∥∥|t| 12 χ∥∥∥2
L∞
t
. (23)

Similarly,

I3 ≤ 4
∫ 2

0

∫ t2

0

|χ(t2)|2
|t1 − t2|2b dt1dt2 ≤ Mb

∥∥∥|t| 12−bχ
∥∥∥2
L2t
. (24)

Combining (20)–(24) with (17), we get

E

(
‖Fxw(., ξ)‖2Hb

t

)
≤ N(b,χ)

∑
i∈N

|�̂ei|2 (25)
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where N(b,χ) = Mb
(
‖χ‖Hb

t
+ ‖|t| 12 χ‖L2t + ‖|t| 12 χ‖L∞

t

)
. Hence, the estimate (14) comes

from (16) and (25).

Local well-posedness: proof of Theorem 1
According to the stochastic estimation proved in the above section and the Banach fixed
point theorem, we deduce a local well-posedness result of Eq. (1). That is, this section is
devoted to the proof of Theorem 1. Let v(t) = U(t)u0 and ū = u(t) − v(t) − ul(t), then
Eq. (5) is equivalent to

ū(t) = Aū(t) := 1
2

∫ t

0
U(t − s)

∂

∂x
(
ū2 + u2l + v2 + 2 (ūul + ūv + vul)

)
(s)ds. (26)

Therefore, the goal of this section becomes to prove thatA is a contraction mapping in

YT
R =

{
ū ∈ XT

s,b : ‖ū‖
XT

s,b
≤ R

}
, R > 0, T > 0,

where R and T are sufficiently large and small, respectively. Before doing this, we recall
some previous results on the linear and bilinear estimates.

Lemma 2 [23] Assume that a > 0, b < 1
2 and b is close enough to 1

2 . For s ∈ R, u0 ∈
Hs(R), and f ∈ XT

s,−a, we have:∥∥∥∥
∫ t

0
U(t − τ)f (τ )dτ

∥∥∥∥
XT

s,b

≤ CT1−a−b‖f ‖
XT

s,b
(27)

and

‖v‖
XT

s,b
≤ ‖u0‖Hs . (28)

Lemma 3 [18] Assume that a > 0, b < 1
2 , and b is close enough to 1

2 . For b
′ > 1

2 , s > − 7
4 ,

and u1,u2 ∈ S(R2), we have:∥∥∥∥ ∂

∂x
(u1u2)

∥∥∥∥
Xs,−a

≤ C‖u1‖Xs,b‖u1‖Xs,b′ (29)

provided that the right hand side is finite.

According to Lemmas 1, 2, and 3, we obtain

‖Aū‖
XT

s,b
≤ C′T1−a−b

(
R2 + ‖ul‖XT

s,b
+ ‖u0‖Hs

)
. (30)

Therefore, for ū1, ū2 ∈ YT
R , we get

‖Aū1 − Aū2‖XT
s,b

≤ C′T1−a−b
(
R2 + ‖ul‖XT

s,b
+ ‖u0‖Hs

)
‖ū1 − ū2‖XT

s,b
. (31)

Now, define the stopping time Tω by:

Tω = inf
{
t > 0 : 4C′t1−a−bRT

ω ≥ 1
}
, (32)

where RT
ω = ‖ul‖XT

s,b
+ ‖u0‖Hs . Then, A maps the ball with center zero and radius RT

ω in

X
Tω

s,b into itself, and

‖Aū1 − Aū2‖XTω
s,b

≤ 3
4

‖ū1 − ū2‖XTω
s,b

. (33)

From the fixed point theory, A has a unique fixed point, which is the solution of (5) in
X
Tω

s,b . Observe that u = v + ū + ul ∈ X
Tω

s,b′ + X
Tω

s,b .
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In the remaining part of this section, we complete the proof by showing that u ∈
C([ 0,Tω] ,Hs(R)). Taking in attention that b < 1

2 , b
′ > 1

2 . By virtue of the Sobolev imbed-
ding theorem, we have v ∈ C ([ 0,Tω] ,Hs(R)). Under the condition that � ∈ L0,s2 and the
fact that U(t) is a unitary group in Hs(R), an application of Theorem 6.10 in [16] implies
that ul ∈ C ([ 0,Tω] ;Hs(R)).
Now, choose a cutoff function χT ∈ C∞

0 (R) such that χT (t) = 1 on [ 0, 2], supp χT ⊂
[−1, 2] , and χT (t) = 0 on (−∞,−1]∪[ 2,∞). Denote χq(.) = χ

(
q−1(.)

)
for some q ∈ R.

By Lemma 3, we have ũũx ∈ Xs,−a for any prolongation ũ of u in Xs,c + Xs,b. Therefore,∥∥∥∥χT

∫ t

0
U(t − s) (ũ(s)ũx(s))

∥∥∥∥
Xs,1−a

≤ C ‖ũ(s)ũx(s)‖Xs,−a . (34)

Since 1−a > 1
2 , then ũ ∈ Xs,b ⊂ C ([ 0,Tω] ;Hs(R)). This completes the proof of Theorem

1.

Global well-posedness: proof of Theorem 2
Fix T0 > 0 and assume that u0 satisfies the conditions of Theorem 1. In this section, we
present a proof of Theorem 2, that is, we show that the solution u can be extended to the
whole interval [ 0,T0]. Let (�n)n∈N be a sequence in L0,40 such that

lim
n→∞ �n = � in L0,02 . (35)

and let
(
u0,n

)
n∈N be another sequence in L2 (�,Hs(R)) such that

lim
n→∞u0,n = u0 in L2

(
�, L2(R)

)
. (36)

By using reasoning similar to that in [23], we can find a unique solution un in
C
(
[ 0,T0] ,H3(R)

)
for

un = U(t)u0,n +
∫ t

0
U(t − s)

(
un(s)

∂un
∂x

(s)
)
ds +

∫ t

0
U(t − s)�ndW (s). (37)

By using the Itô formula on ‖un‖2L2(R)
and martingale inequality (see [16]), we have

E

(
sup

t∈[0,T0]
‖un‖2L2x

)
≤ E

(
‖u0,n‖2L2x

)
+ C‖�n‖2L0,02 . (38)

Therefore, the sequence (un)n∈N is bounded and weakly star convergent to a function
u∗ ∈ L2

(
�; L∞ (

[0,T0] ; L2(R)
) )
, which satisfies

E

(
sup

t∈[0,T0]
‖u∗‖2L2x

)
≤ E

(
‖u0‖2L2x

)
+ C‖�‖2

L0,02
. (39)

In the same way asA, define the mappingAn. It is easy to show thatAn is uniformly strict
contraction on Y

t(ω)
r(ω) in X

Tω

s,b . According to the fixed point theorem, there exists a unique
function u ∈ X

Tω

s,b such that

u = u∗ = lim
n→∞un a.s. in [ 0,Tω] , (40)

where un is the unique fixed point ofAn. Also, we have

‖u(t(ω))‖L2(R) ≤ ‖u∗‖L∞([0,T0];L2(R)). (41)

Thus, we can emerge a solution on [Tω, 2Tω]. Hence, the solution u can be extended to
[0,T0] almost surely by reiteration. This completes the proof of Theorem 2.
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Summary and discussion
This paper is devoted to employ the Fourier restriction method, the Banach contraction
principle, and some basic inequalities for investigating nonlinear SPDEs and for proving
local and global well-posedness results for their solutions in convenient function spaces.
Our attention is focused on the stochastic Kawahara Eq. (1), which is a fifth-order shallow
water wave equation considered in random environment. We prove that Eq. (1) is locally
well-posed for data in Hs(R), s > −7/4 and its solution can be extended to a global one
on [ 0,T0]. The Fourier restriction method is proposed due to the non-zero singularity of
the phase function φ.
The deterministic Kawahara Eq. (7) was discussed by Jia and Huo in [18]. They proved

local well-posedness result for data in Hs(R), s > −7/4. In this paper, we extend their
result and handle the stochastic version of the Kawahara equation by choosing new appro-
priate stochastic function spaces (such as the space XT

s,b) and estimating the stochastic
convolution (12) in these spaces. That is, we consider a realistic situation of the fifth-order
shallow water wave equations. We believe that the ideas which we have suggested in this
paper can be also applied to a wide class of stochastic nonlinear evolution equations in the
field of mathematical physics, for instance, the stochastic modified Kawahara, generalized
KdV, Hirota-Satsuma coupled KdV, and Swada-Kotera equations.
Abbreviations
KdV: Korteweg-de Vries; SPDEs: Stochastic partial differential equations
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