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Abstract

Sorting an array of n elements represents one of the leading problems in different
fields of computer science such as databases, graphs, computational geometry, and
bioinformatics. A large number of sorting algorithms have been proposed based on
different strategies. Recently, a sequential algorithm, called double hashing sort
(DHS) algorithm, has been shown to exceed the quick sort algorithm in performance
by 10–25%. In this paper, we study this technique from the standpoints of
complexity analysis and the algorithm’s practical performance. We propose a new
complexity analysis for the DHS algorithm based on the relation between the size of
the input and the domain of the input elements. Our results reveal that the previous
complexity analysis was not accurate. We also show experimentally that the
counting sort algorithm performs significantly better than the DHS algorithm. Our
experimental studies are based on six benchmarks; the percentage of improvement
was roughly 46% on the average for all cases studied.

Keywords: Sorting, Quick sort, Counting sort, Performance of algorithm, Complexity
analysis
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Introduction
Sorting is a fundamental and serious problem in different fields of computer science

such as databases [1], computational geometry [2, 3], graphs [4], and bioinformatics

[5]. For example, to determine a minimum spanning tree for a weighted connected

undirect graph, Kruskal designed a greedy algorithm and started the solution by sort-

ing the edges according to weight in increasing order [6].

Additionally, there are several reasons why the sorting problem in the algorithm as-

pect is important. The first pertains to finding a solution for a problem in which data

are sorted according to certain criteria; this routine should be more efficient, in run-

ning time, than when the data are unsorted. For example, searching for an element in

an unsorted array requires O(n); the searching requires O(log n) time when the array is

sorted [6]. The second reason is that the sorting problem has been solved by a lot of

algorithms using different strategies such as brute-force, divide-and-conquer, random-

ized, distribution, and advanced data structures [6, 7]. Insertion sort, bubble sort, and

selection sort are examples of sorting algorithms using brute-force; merge sort and

quick sort algorithms are examples of the divide-and-conquer strategy. Radix sort and
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flash sort algorithms are examples of sorting using the distribution technique; heap sort

is an example of using an advanced data structure method. Additionally, the

randomization techniques have been used for many previous sorting algorithms such

as randomized shell sort algorithm [8]. The third reason is the lower bound for the

sorting problem which is equal to Ω(n log n) was determined based on a comparison

model. Based on a determined lower bound, the sorting algorithms are classified into

two groups: (1) optimal algorithms such as merge sort and heap sort algorithms and

(2) non-optimal algorithms such as insertion sort and quick sort algorithms. The fourth

reason is when the input data of sorting problem are taken from the domain of integers

[1,m], different strategies are suggested to reduce the time of sorting from O(n log n) to

linear, O(n). These strategies are not based on a comparison model. Examples for this

kind of sorting are counting sort and bucket sort [6].

The sorting problem has been studied thoroughly, and many research papers have fo-

cused on designing fast and optimal algorithms [9–16]. Also, some studies have focused

on implementing these algorithms to obtain an efficient sorting algorithm on different

platforms [15–17]. Additionally, several measurements have been suggested to compare

and evaluate these sorting algorithms according to the following criteria [6, 7, 18]: (1)

Running time, which is equal to the total number of operations done by the algorithm

and is computed for three cases: (i) best case, (ii) worst case, and (iii) average case; (2)

the number of comparisons performed by the algorithm; (3) data movements, which

are equal to the total number of swaps or shifts of elements in the array; (4) in place,

which means that the extra memory required by the algorithm is constant; and (5)

stable, which means that the order of equal data elements in the output array is similar

in which they appear in the input data.

Recently, a new sorting algorithm has been designed and called the double hashing

sort (DHS) algorithm [19]. This algorithm is based on using the hashing strategy in two

steps; the hash method used in the first step is different than in the second step. Based

on these functions, the elements of the input array are divided into two groups. The

first group is already sorted, and the second group will be sorted using a quick sort al-

gorithm. The authors in [19] studied the complexity of the algorithm and calculated

three cases of running time and storage of the algorithm. In addition, the algorithm

was implemented and compared with a quick sort algorithm experimentally. The re-

sults reveal that the DHS algorithm is faster than the quick sort algorithm.

In this paper, we study the DHS algorithm from three viewpoints. The first aspect in-

volves reevaluating the complexity analysis of the DHS algorithm based on the relation

between the size of the input array and the range of the input elements. Then, we prove

that the time complexity is different than that is calculated in [19] for most cases. The

second aspect involves proving that a previous algorithm, counting sort algorithm, ex-

hibits a time complexity less than or equal to that of the DHS algorithm. The third as-

pect refers to proving that the DHS algorithm exhibits a lower level of performance

than another certain algorithm from a practical point of view.

The results of these studies are as follows: (1) the previous complexity analysis of the

DHS algorithm was not accurate; (2) we calculated the corrected analysis of the DHS

algorithm; (3) we proved that the counting sort algorithm is faster than the DHS algo-

rithm from theoretical and practical points of view. Additionally, the percentage of im-

provement was roughly 46% on the average for all cases studied.
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The remainder of this work is organized into four sections. In the “Comments on DHS

algorithm” section, we discuss briefly the DHS algorithm, its analysis, and then, we provide

some commentary about the analysis of DHS algorithm that was introduced by [19]. In the

“Complexity analysis of DHS algorithm” section, we analyze the DHS algorithm using

different methods. Also, we show that a previous algorithm exhibits a time complexity less

than that of the DHS algorithm in most cases. We prove experimentally that the DHS

algorithm is not as fast as the previous algorithm in the “Performance evaluation” section.

Finally, our conclusions are presented in the “Conclusions” section.
Comments on DHS algorithm
The aim of this section is to give some comments about DHS algorithm. So, we men-

tion in this section shortly the main stages and complexity analysis of DHS algorithm.

Then, we give some comments about the analysis of the algorithm.
DHS algorithm

The DHS algorithm is based on using two hashing functions to classify input elements

into two main groups. The first group contains all elements that have repetitions

greater than one; the second group contains all elements in the input array that do not

have repetition. The first hashing function is used to compute the number of elements

in each block and to determine the boundaries of each block. The second hashing func-

tion is used to give a virtual index to each element. Based on the values of the indices,

the algorithm divides the input into two groups as described previously. The algorithm

sorts the second group using a quick sort algorithm only. The algorithm consists of

three main stages [19]. The first stage involves determining the number of elements be-

longing to each block assuming that the number of blocks is nb. The block number of

each element, ai, can be determined using ⌈ai/sb ⌉, where sb is the size of the block

and equal ⌈(Max(A) −Min(A) + 1)/nb⌉. The second stage refers to determining a virtual

index for each element that belongs to the block bi, ∀ 1 ≤ i ≤ nb. The values of the indices

are integers and float numbers according to the equations in [19]. The final stage involves

classifying the virtual indices into two separate arrays, EqAr and GrAr. The EqAr array is

used to represent all elements that have repetitions greater than 1; the GrAr array is used

to represent all input elements that do not have repetition. The EqAr array stores all

virtual integer indices and its repetitions; the GrAr array stores all virtual float indices.

The algorithm sorts only the GrAr array using a quick sort algorithm.

The running times of the first and the second stages are always O(n), because we scan

an array of size n. The running time of the third stage varied from one case to another;

the running time of the DHS algorithm is based mainly on the third stage. Based on

the concept of complexity analysis for the running time of the algorithm, we have three

cases: best, worst, and average. The running time of the DHS algorithm is based on the

size of the array, n, and the maximum element, m, of the input array. The authors [19]

analyzed the running time of the DHS algorithm as follows:

1. Best case: this case occurs if the elements of the input array are well distributed

and either of n or m is small. In this case, the running time of the third phase is

O(n).
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2. Worst case: this case occurs if the value of n is large and m is small. Therefore, the

number of elements that belong to the array GrAr is large. So, the running time of

DHS algorithm is O(n + x log m), where x≪ n.

3. Average case: the authors in [19] do not specify the value of n and m in this case.

The running time of the DHS algorithm is O(n + x log m), where x≪ n.
Comments on DHS algorithm

In this part, we provide two main comments about the DHS algorithm. The first cat-

egory of comments is related to the theoretical analysis of the DHS algorithm; the sec-

ond category of comments is related to the data generated in the practical study.

For the first category, we found that the running times for the DHS algorithm have

the following three notes.

The first note is that the running time calculated for the best case is correct when m

is small; the running time calculation is not correct when n is small. When n is small

and m is large, the number of repetitions in the input array is very small in general.

Therefore, most of the elements belong to the GrAr array. This situation implies that

the DHS algorithm uses the quick sort algorithm on the GrAr array. Therefore, the

running time of the third phase is O(n log n), not O(n).

Example 1 Let n = 10, m = n2 = 100, and the elements of A is well distributed as follows:

1 2 3 4 5 6 7 8 9 10
77 18 35 63 4 21 29 89 46 35

It is clear that the value of n is small compared with m. Therefore, in general, the

number of elements that belong to the EqAr array is very small compared with the

GrAr array that contains most of the input elements.

The second note is that the calculated running time for the worst case is not correct if

the value of n is large and m is small. This situation implies that the number of repetitions

in the input array is large because the n elements of the input array belong to a small

range. Therefore, the maximum number of elements belonging to the GrAr array is less

than m, say α. On the other hand, the array EqAr contains n − α elements. Therefore, the

statement “the number of elements belong to the GrAr array is large” [19] is not accurate.

It should be small since m is small. Therefore, the calculated running time for the worst

case of the DHS algorithm, O(n + x log m), is not accurate in the general case.

Example 2 Let m = 4, n =m2 = 16 and A is given as follows

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 1 3 4 1 1 1 1 1 1 1 1 2 1 1

It is clear that the number of non-repeated elements is 3 and the GrAr array contains

only 3 different elements, 2, 3, and 4; the EqAr array contains 13 elements from 16.

The third note is that no determination when the average case occurs, which is why

the running time is O(n + x log m).
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For the second category, the data results in [19] for the three cases reveal how that

the percentages of elements in the EqAr array, repeated elements, is at least 65%, which

is too much and do not represents the general or average cases. This situation means

that the input data used to measure the performance of DHS algorithm do not repre-

sent various types of input. For example, in the average case, n = 100,000 and the range

of elements equals 100,000, the number of elements in the EqAr array is 70,030 [19].

Complexity analysis of DHS algorithm
In this section, we study the complexity of the DHS algorithm using another method of

analysis. The DHS algorithm is based on dividing the elements of an input array into

many slots; each slot contains elements in a specific range. Therefore, we mainly

analyze the DHS algorithm based on the relation between the size of the array, n, and

the domain of the elements in the array, m. There are three cases for the relation be-

tween n and m.

Case 1: O(m) <O(n). In this case, the range of values for the elements of the input

array is small compared with the number of elements in A. This case can be formed as

A = (a1, a2, …, an), where ai <m and m < n. We use big Oh notation to illustrate that

the difference between n and m is significant. For example, let m ¼ ffiffiffi
n

p
and m = log n

and if n = 10,000, then m = 100 and 4, respectively.

Case 2: O(m) =O(n). In this case, the range of the values for the elements of the input

array is equal to the number of elements. This case can be formed as A = (a1, a2, …,

an), where ai ≤m, n ≈m, and m = α n ± β such that α and β are constant. For example,

let m = 2n and m = n + 25; if n = 1000, then m = 2000 and 1025, respectively.

Case 3: O(n) <O(m). In this case, the range of the values for the elements of the input

array is greater than the number of elements. This case can be formed as A = (a1, a2,

…, an), where ai <m, m > n. For example, let m = nk, where k > 1. If n = 100 and k= 3,

then m = 1,000,000.

Now, we study the complexity of the DHS algorithm in terms of three cases.

Case 1: O(m) <O(n). The value of m is small compared with the input size n; the

array contains many repeated elements. In this case, the maximum number of slots is

m, and there is no need to map the elements of the input array to n slots such as map-

ping sort algorithm [20], where the index of the element ai is calculated using the equa-

tion: ⌊((ai −Min(A)) × n)/(Max(A) −Min(A))⌋.

The solution to this case can be found using an efficient previous sorting algorithm

called counting sort (CS) algorithm [6]. Therefore, there is no need to use the insertion

sort, quick sort, and merge sort algorithms as in [19, 20] to sort un-repeated elements.

The main idea of the CS algorithm is to calculate the number of elements less than the

integer i ∈ [1,m]. Then, we use this value to allocate the element aj in a correct location

in the array A, ∀ 1 ≤ j ≤ n. The CS algorithm consists of three steps. The first step of the

CS algorithm starts with scanning the input array A and computing the number of rep-

etitions each element occurs within the input array A. The second step of the CS algo-

rithm is to calculate, for each i ∈ [1,m], the starting location in the output array by

updating the array C using the prefix-sum algorithm. The prefix-sum of the array C is

to compute C½i� ¼Pi
j¼1C½ j�. The final step of the CS algorithm allocates each i ∈ [1,m]

and its repetition in the output array using the array C.
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Additionally, the running time of the CS algorithm is O(n +m) =O(n), because O(m)

<O(n). The running time of the CS algorithm does not depend on the distribution of

the elements, uniform and non-uniform, over the range m. Also, the CS algorithm is

independent of how many repeated and unrepeated elements are found in the input

array.

The following example illustrates how to use the CS algorithm in this case; there is

no need to distribute the input into two arrays, EqAr and GrAr, as in the DHS

Algorithm.

Example 3 Let m = 5, n =m2 = 25, and the elements of the input array A as in Fig. 1a.

As a first step, we calculate the repetition array C, where C[i] represents the number of

repetitions of the integer i ∈ [1,m] in the input array A as in Fig. 1b. It is clear that the

number of repetition for the integer “1” is 6; the integer “4” has zero repetition. In the

second step, we calculate the prefix-sum of C as in Fig. 1c, where the prefix-sum for

C[i] is equal to
Pi

j¼1C½ j�. In the last step, the integer 1 is located from positions 1–6;

the integer 2 is located from positions 7–14 and so on. Therefore, the output array is

shown as in Fig. 1d.

Remark Sometimes the value of m cannot fit in memory because the storage of the

machine is limited. Then, we can divide the input array into k (<m) buckets, where the

bucket number i contains the elements in the range [(i − 1)m/k + 1, i m/k], 1 ≤ i ≤ k. For

a uniform distribution, each bucket contains n/k elements approximately. Therefore,

the running time to sort each bucket is O(n/k + k). Hence, the overall running time is

O(k(n/k + k)) =O(n + k2) =O(n). For non-uniform distributions, the number of elements

in each bucket i is ni such that
Pk

i¼1ni ¼ n. Therefore, the overall running time is O(n

+ k) =O(n).

Case 2: O(m) =O(n). The value of m is approximately equal to the input size n. If the

elements of the array are distributed uniformly, then the number of repetitions for the

elements of the array is constant. In this case, we have two comments about the DHS

algorithm. The first comment is that there is no need to construct two different arrays,

GrAr and EqAr. The second comment is that there is no need to use the quick sort al-

gorithm in the sorting because we can sort the array using the CS algorithm.

If the distribution of the elements for the input array is non-uniform, then the num-

ber of repetitions for the elements of the array is varied. Let the total number of
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2 3 3 3 5 1 1 1 1 5 2 3 5 2 2 5 1 2 3 2 5 2 3 2 1
(a) Input array A.

1 2 3 4 5

6 8 6 0 5
(b) Count array C.

1 2 3 4 5

6 14 20 20 25
(c) Prefix-sum for C.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 5 5 5 5 5
(d) Sorted array A.

Fig. 1 Tracing of the CS algorithm in case of O(m) < O(n). a Input array A. b Count array C. c Prefix-sum for
C. d Sorted array A
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repetitions for all the elements of the input array be φ(n). Therefore, the array EqAr

contains φ(n) elements; the array GrAr contains n − φ(n) elements. The running time

for executing the DHS algorithm is O(n + (n − φ(n)) log (n − φ(n)) ), where the first term

represents the running time for the first two stages and the second term represents ap-

plying the quick sort algorithm on the GrAr array. In the average case, we have n/2 re-

peated elements, so the running time of the DHS algorithm is O((n/2) log (n/2) ) =O(n

log n). In this case, the CS algorithm is better than the DHS algorithm. On the other

side, if φ(n) ≈ n, then the running time of the DHS algorithm is O(n).

Example 4 Let m = 30, n = 25. Fig. 2 shows how the CS algorithm can be used instead

of the DHS algorithm in the case of a uniform distribution.

Case 3: O(n) <O(m). The value of m is large compared with the input size n, so the

elements of the input array are distinct or the number of repetitions in the input array

is constant in general. The DHS and CS algorithms are not suitable for this case. Rea-

sons for not considering these strategies include the following:

1. All of these algorithms require a large amount of storage to map the elements

according to the number of slots. For example, if m = n2 and n = 106 (this value is

small for many applications), then m = 1012 which is large.

2. If the machine being used contains a large amount of memory, then the running

times of the DHS algorithm are O(n log n). But the main drawbacks of the DHS

algorithm are (1) the output of the second hashing function is not unique; (2) the

equations used to differentiate between repeated elements and non-repeated ele-

ments are not accurate which means that there is an element with certain repeti-

tions and another element without repetition have the same visual indices

generated by the suggested equations. Therefore, merge sort and quick sort are bet-

ter than the DHS algorithm.

3. In the case of CS, the algorithm will scan an auxiliary array of size m to allocate

the elements at the correct position in the output. Therefore, the running time is

O(m), where O(m) >O(n). If m = n2, then the running time is O(n2) which is

greater than merge sort algorithm, O(n log n).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

26 4 6 18 1 8 13 20 11 12 26 4 30 21 25 23 7 5 29 19 15 2 11 17 4

(a) Input array A.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 1 0 3 1 1 1 1 0 0 2 1 1 0 1 0 1 1 1 1 1 0 1 0 1 2 0 0 1 1

(b) Count array C.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 2 5 6 7 8 9 9 9 11 12 13 13 14 14 15 16 17 18 19 19 20 20 21 23 23 23 24 25

(c) Prefix-sum for C.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 2 4 4 4 5 6 7 8 11 11 12 13 15 17 18 19 20 21 23 25 26 26 29 30

(d) Sorted array A.

Fig. 2 Tracing of the CS algorithm in case of O(m) = O(n). a Input array A. b Count array C. c Prefix-sum for
C. d Sorted array A
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From the analysis of the DHS algorithm for the three cases based on the relation be-

tween m and n, there is a previous sorting algorithm that is associated with less time

complexity than the DHS algorithm.
Performance evaluation
In this section, we studied the performance of the DHS and CS algorithms from a prac-

tical point of view based on the relation between m and n for the two cases, O(m) <

O(n) and O(m) =O(n). Note that both algorithms are not suitable in the case of O(n) <

O(m).
Platforms and benchmarks setting

The algorithms were implemented using C language and executed on a computer con-

sisting of a processor with a speed of 2.4 GHz and a memory of 16 GB. The computer

ran the Windows operating system.

The comparison between the algorithms is based on a set of varied benchmarks to

assess the behavior of the algorithms for different cases. We build six functions as

follows.

1. Uniform distribution [U]: the elements of the input are generated as a uniform

random distribution. The elements were generated by calling the subroutine

random() in the C library to generate a random number.

2. Duplicates [D]: the elements in the input are generated as a uniform random

distribution. The method then selects log n elements from the beginning of the

array and assigns them to the last log n elements of the array.

3. Sorted [S]: similar to method [U] such that the elements are sorted in increasing

order.

4. Reverse sorted [RS]: similar to method [U] such that the elements are sorted in

decreasing order.

5. Nearly sorted [NS]: similar to [S]; we then select 5% random pairs of element

swaps.

6. Gaussian [G]: the elements of the input are generated by taking the integer value

for the average of four calling for the subroutine random().

In the experiment, we have three parameters affecting the running time for both al-

gorithms. The first two parameters are the size of the array n and the domain of the in-

put m; the third parameter is the data distribution (six benchmarks). Based on the

relation between n and m, say O(m) <O(n), we fixed the size of the array n and adopted

different values of m, mi, such that mi ∈ O(m) <O(n). For example, let n = 108, and the

values of m are m1 = 106, m2 = 105, m3 = 104, m4 = 103, and m5 = 102. For each fixed

value of n and mi, we generated six different input data values based on the six bench-

marks (U, D, S, RS, NS, G). For each benchmark, the running time for an algorithm

was the average time of 50 instances, and the time was measured in milliseconds.

Therefore, the running time for the algorithm, Alg, using the parameters n, m and a

certain type of data distribution, is given by the following equation.



Bahig Journal of the Egyptian Mathematical Society            (2019) 27:3 Page 9 of 12
1
nm

Xnm
i¼1

1
50

X50
j¼1

ti n;mi; dd;Algð Þ
 !

where

� mi is one of the values for m such that mi satisfies either O(m) <O(n) or O(m) =

O(n). In the experiment, if n = 10x, then 102 ≤mi ≤ 10x-2.

� nm is the number of different values for mi. In the experiment, if n = 10x, then nm =

x-3, because 102 ≤mi ≤ 10x-2.

� dd is the type of data distribution used in the experiment, and the value of dd is

one of six benchmarks (U, D, S, RS, NS, G).

� Alg is either the CS or DHS algorithm.

� ti is the running time for the Alg algorithm using the parameters n, mi, and the data

distribution dd.

In our experiments for both cases, we choose the value of n equal to 108, 107, 106,

and 105, because the running times for both algorithms are very small when n is less

than 105.

Experimental results

The results of implementing the methodology to measure the running time of the CS

and DHS algorithms considering all parameters that affect the execution times are

shown in Figs. 3 and 4. Each figure consists of four subfigures (a), (b), (c), and (d) for n

= 105, 106, 107, and 108, respectively. Also, each subfigure consists of six pairs of bars.

Each pair of bar represents the running times for the CS and DHS algorithms using a
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Fig. 3 Running time for the CS and DHS algorithms in case of O(m) < O(n). a n = 105. b n = 106. c n = 107.
d n = 108
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Fig. 4 Running time for the CS and DHS algorithms in case of O(m) = O(n). a n = 105. b n = 106. c n = 107.
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certain type of data distribution. Fig. 3 illustrates the running times for the CS and

DHS algorithm in the case of O(m) <O(n) and shows that the running time for the CS

algorithm is faster than for the DHS algorithm for all values of n and benchmarks. The

difference in running time between the algorithms varies from one type of data distri-

bution to another. For example, the running time for the CS algorithm using the six

benchmarks are 7.7, 9.7, 8.2, 9.8, 8.2, and 6.1 milliseconds; while the running times for

the DHS algorithm using the same benchmarks are 11.2, 12.4, 10.6, 15, 13.9, and 14.1

milliseconds in the case of n = 106. In general, the maximum difference between the

two algorithms occurs in the case of a Gaussian distribution

Similarly, Fig. 4 illustrates the running times for the CS and DHS algorithm in the

case of O(m) =O(n) and shows that the running time for the CS algorithm is faster

than for the DHS algorithm for all values of n and benchmarks.

Table 1 lists data pertaining to the performance improvements of the CS algorithm in

two points of view (i) range of improvements, and (ii) mean of improvements. In the case

of a range of improvements, we fix the size of the array n and calculate the percentage of

improvement for each benchmark. Then, we record the range of improvements from the

minimum to maximum values as in the second and fourth columns in Table 1 for
Table 1 Range of improvements for the CS and DHS algorithms

n O(m) < O(n) O(m) = O(n)

Range of improvements Average improvements Range of improvements Average improvements

105 45–80% 62.5% 88.7–96.8% 91.9%

106 21.5–56.5% 34.7% 58.5–60.7% 59.9%

107 20–57% 28.3% 20–53.8% 35.4%

108 21–47% 28.1% 24.8–43.5% 33.6%
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O(m) <O(n) and O(m) =O(n), respectively. In the case of the mean of improvements, we

take the mean value for the percentage of improvements for all data distributions, as in

the third and fifth columns. The results of applying these measurements are as follows.

1. In the case of O(m) <O(n), the CS algorithm performed 45–80%, 21.5–56.5%, 20–

57%, and 21–47% faster than the DHS algorithm for n = 105, 106, 107, and 108,

respectively. For example n = 108, the percentage of improvements for CS

algorithm for data distribution: [U], [D], [S], [RS], [NS], and [G], are 21%, 27.2%,

24.4%, 23.9%, 24.9%, and 47%, respectively. Therefore, the range of improvements

for the CS algorithm is 21–47% when n = 108. Additionally, based on the

percentage of improvement calculated for each data distribution and a fixed value

of n, we can calculate the mean of improvements which are equal to 62.5%, 34.7%,

28.3%, and 28.1% for n = 105, 106, 107, and 108, respectively. For example, n = 108,

the mean of improvements is 28%.

2. In the case of O(m) =O(n), the CS algorithm performed 88.7–96.8%, 58.5–60.7%,

20–53.8%, and 24.8–43.5% faster than the DHS algorithm for n = 105, 106, 107, and

108, respectively. For example n = 107, the percentage of improvements for CS

algorithm for data distribution: [U], [D], [S], [RS], [NS], and [G], are 20.5%, 20%,

24.4%, 47.4%, 46.3%, and 53.8%, respectively. Therefore, the range of improvements

for CS algorithm is 20–53.8% when n = 107. Similarly, we can compute the mean

of improvements which are equal to 91.9%, 59.9%, 35.4%, and 33.6% for n = 105,

106, 107, and 108, respectively.

From previous results, the CS algorithm performed 38.4% and 55.2% faster than the

DHS algorithm for O(m) <O(n) and O(m) =O(n), respectively. Therefore, the percentage

of improvement for the CS algorithm was roughly 46% on the average for all cases studied.

Conclusions
The sorting problem is to rearrange the elements of a given array in increasing order.

This problem is important in a variety of computer science applications, and it is used

as a subroutine in many computer applications. In this work, we studied the complexity

analysis and measured performance of the double hashing sort (DHS) algorithm. The

results of this study are (1) the previous complexity analysis of the DHS algorithm was

not accurate; (2) we calculated the corrected analysis of this algorithm based on the re-

lation between size of the input array n and domain of the input elements m; (3) there

is a previous sorting algorithm called counting sort algorithm that is faster than the

DHS algorithm in the case of O(m) ≤O(n) from theoretical and practical points of view;

and (4) our experimental studies are based on six benchmarks; the percentage of im-

provement was roughly 46% on the average for all cases studied.
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