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Abstract

The main object of this article is the estimation of the unknown population parameters
and the reliability function for the generalized Bilal model under type-II censored data.
Both maximum likelihood and Bayesian estimates are considered. In the Bayesian
framework, although we have discussed mainly the squared error loss function, any
other loss function can easily be considered. Gibb’s sampling procedure is used to
draw Markov Chain Monte Carlo (MCMC) samples, which have been used to compute
the Bayes estimates and also to construct their corresponding credible intervals with
the help of two different importance sampling techniques. A simulation study is carried
out to examine the accuracy of the resulting Bayesian estimates and compare them
with their corresponding maximum likelihood estimates. Application to a real data set
is considered for the sake of illustration.
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Introduction
The generalized Bilal (GB) model coincides with the distribution of the median in a sam-
ple of size three from the Weibull distribution. It was first introduced by Abd-Elrahman
[1]. He showed that its failure rate function can be upside-down bathtub shaped. The fail-
ure rate can also be decreasing or increasing. Therefore, the GB model can be used for
several practical data analysis.
Suppose that n items are put on a life-testing experiment and we observe only the first r

failure times, say x1 < x2 < · · · < xr . Then, x = (x1, x2, · · · , xr)′ is called a type-II
censored sample. The remaining (n− r) items are censored and are only known to be
greater than xr . This article will be based on a type-II censored sample drawn from the
GB model. Type-II censoring have been discussed by too many authors, among them,
Ahmad et al. [2], Raqab [3], Wu et al. [4], Chana et al. [5], ElShahat and Mahmoud [6],
and Abd-Elrahman and Niazi [7].
Likewise, the Weibull distribution, the cumulative distribution function (CDF) of the

GB distribution can have any of the two following functional forms:

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42787-019-0001-5&domain=pdf
mailto: ayman275@aun.edu.eg
http://creativecommons.org/licenses/by/4.0/


Abd-Elrahman Journal of the EgyptianMathematical Society            (2019) 27:1 Page 2 of 15

FX(x; β , λ) = 1 − e−2β xλ
(
3 − 2 e−β xλ

)
,

x > 0, (β , λ > 0), (1)

FX(x; θ , λ) = 1 − e−2 (x/θ)λ
(
3 − 2 e− (x/θ)λ

)
,

x > 0, (θ , λ > 0). (2)

It is well known that, based on the maximum likelihood (ML) method, the results of
any statistical inference that may be obtained by using one of these two forms is applied
to the other functional form. This is true by using some re-parametrization techniques
together with the invariance property of the ML estimators, see, e.g., Dekking et al. [8].
In this article, formula (1) is used as the CDF of the GB distribution. The corresponding
probability density function (PDF) and reliability function are, respectively, given by:

fX(x; β , λ) = 6β λ xλ−1e−2β xλ
(
1 − e−β xλ

)
,

x > 0, (β , λ > 0) (3)

and

s(t) = e−2β tλ
(
3 − 2 e−β tλ

)
. (4)

The qth quantile, xq, is an important quantity, especially for generating random variates
using the inverse transformation method. In view of (1), following Abd-Elrahman [9], xq
of the GB distribution is given by:

xq =
[
1
β

ln
(

1
γ (q)

)]1/λ
, (5)

where

γ (q) =

⎧
⎪⎨
⎪⎩

0.5 + sin(aq + π/6) if 0 < q < 0.5,
0.5 if q = 0.5,
0.5 − cos(aq + π/3) if 0.5 < q < 1,

for aq= 1
3 arctan(

2
√

q(1−q)
2 q−1 ).

The layout of this paper is organized as follows:
In the “Maximum likelihood estimation” section, ML estimates of β and λ are obtained.

By using the missing information principle, variance-covariance matrix of the unknown
population parameters is obtained, which is used to construct the asymptotic confidence
intervals for β , λ, and the reliability function s(t). In the “Bayesian estimation” section,
two different importance sampling techniques are introduced. These techniques are used,
separately, to compute the Bayes estimates of β , λ, and s(t) and also to construct their cor-
responding credible intervals. In the “Simulation study” section, Monte Carlo simulations
are carried out to compare the performances of the proposed estimators.
Further, in the “Data analysis” section, for the sake of illustration, application to a real

life-time data set is presented.

Maximum likelihood estimation
It follows from (1) and (3) that, based on a given type-II censored sample x drawn from
the GB distribution, the joint PDF of the papulation parameters β and λ is given by:

L(β , λ|x) ∝ βrλr e−2β T1+T2 , (6)
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where

T1=(n−r) xλ
r +

r∑
j=1

xλ
j ,

T2=(n−r)ln
(
3−2 e−β xλ

r
)
+λ

r∑
j=1

ln(xj)+
r∑

j=1
ln

(
1−e−β xλ

j
)
.

When λ is known

In this case, for fixed λ, say λ = λ(0), let θ = 1/β and yi = xλ(0)
i , i = 1, 2, · · · r.

Then, y1, · · · , yr is a type-II random sample from Bilal(θ) distribution. Abd-Elrahman
and Niazi [7] established the existence and uniqueness theorem for the maximum likeli-
hood estimate (MLE) of the parameter θ , say θ̂M. The MLE for the parameter β is then by
β̂M

(
λ(0)) = 1/θ̂M. Clearly, β̂M

(
λ(0)) exists and it is unique.

Now, we provide an iterative technique for finding β̂M
(
λ(0)) as follows. Let,

W1 = β xλ(0)
r e−β xλ(0)

r

3 − 2 e−β xλ(0)
r

, W2j = β xλ(0)
j e−β xλ(0)

j

1 − e−β xλ(0)
j

,

j = 1, 2, · · · , r.
(7)

In view of (6) and (7), the likelihood equation of β is then given by:

∂ ln L(β , λ(0)|x)
∂ β

= r + 2 (n−r)W1 + ∑r
j=1W2j

β

−2

⎛
⎝(n−r) xλ(0)

r +
r∑

j=1
xλ(0)
j

⎞
⎠.

For ν = 0, 1, 2, · · · , we calculate β̂M(λ(0)) by using the following formula:

β̂
(ν+1)
M

(
λ(0)

)

= r + 2 (n−r)W1 + ∑r
j=1W2j

2
(
(n−r) xλ

r + ∑r
j=1 xλ

j

)
∣∣∣∣∣∣
β=β̂

(ν)
M (λ(0)), λ=λ(0)

,
(8)

iteratively until some level of accuracy is reached.

Remark 1 Note that, all of the functions W1 and W2j, j = 1, 2, · · · , r, which appear
in (8), need to have some initial value for β , say β̂(0). This initial value can be obtained
based on the available type-II censored sample as if it is complete, see Ng et al. [10]. We use
the moment estimator of β as a starting point in the iterations (8). That is, in view of (3),
β̂(0) is given by

β̂(0) = 5 r
6
∑r

i=1 xλ(0)
i

. (9)
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When β is known

When β is assumed to be known, say β(0), it follows from (6) that the likelihood equation
of λ is given by

∂ ln L(β(0), λ|x)
∂ λ

= r
λ

−2 (n−r) ln(xr)
(
β(0)xλ

r −W1
)

+
r∑

j=1
ln(xj)

(
1−2β(0)xλ

j +W2j
)
,

(10)

where W1 and W2j, j=1, 2, · · · , r, are as given by (7) after replacing β , λ(0) by β(0) and λ,
respectively. In order to established the existence and uniqueness of the MLE for λ, the
following theorem is needed.

Theorem 1 For a given fixed value of the parameter β =β(0), the MLE for the parameter
λ, λ̂M

(
β(0)), exists and it is unique.

Proof See Appendix.

The MLE λ̂M
(
β(0)) can be iteratively obtained by using Newton’s method, i.e.,

λ̂
(ν+1)
M

(
β(0)

)
= λ̂

(ν)
M

(
β(0)

)

−
{

λG1(β(0), λ|x)
λG2(β(0), λ|x) + G1

(
β(0), λ|x)

}∣∣∣∣∣
λ=λ̂

(ν)
M

(
β(0))

,
(11)

for ν = 0, 1, 2, · · · , where G1(·, λ|x) is as given by (10) and G2(·, λ|x) is the second
derivative of ln L(·, λ|x)with respect to (w.r.t.) λ, which is given in the “Appendix” section.

Remark 2 An initial value for λ, λ̂(0)
M , can be obtained as follows: (1) Calculate the sam-

ple coefficient of variation (CV) based on a given type-II censored sample data as if it
is complete. (2) Equating the sample CV with its corresponding CV from the population
would results in an equation of λ only. (3) λ̂(0)

M would be the solution of this equation, which
provides a good starting point for (11). This technique have been used by, e.g., Kundu and
Howlader [11] and Abd-Elrahman [1].

Here, the population CV of the GB distribution is given by

C(λ) =
√

(3m2 − 2m2) 	 (m2)

(3m1 − 2m1)2 (	 (m1))
2 − 1,

m1 = 1 + 1
λ
, m2 = 1 + 2

λ
.

(12)

When both β and λ are unknown

In this case, first an initial value for λ, λ̂(0), can be obtained as described in “When β is
known” section. Once λ̂(0) is obtained, an initial value for the parameter β , β̂(0), can be
calculated as the right hand side of (9) after replacing λ(0) by λ̂(0).
Based on the initials β̂(0) and λ̂(0), an updated value for β , β̂(1), can be obtained

by using (8). Similarly, based on the pair (β̂(1), λ̂(0)), an updated value for λ, λ̂(1), can
be obtained by using (11), and so on. As a stopping rule, the iterations will be termi-
nated after some value s < 1000 with a level of accuracy, ε ≤ 1.2 × 10−7, which is
defined as
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ε =
∣∣∣∣∣
β̂(s+1) − β̂(s)

β̂(s)

∣∣∣∣∣ +
∣∣∣∣∣
λ̂(s+1) − λ̂(s)

λ̂(s)

∣∣∣∣∣ .

Hence, the limiting pair of estimates
(
β̂(s), λ̂(s)

)
exists and it is unique, which wouldmaxi-

mizes the likelihood function (6) w.r.t., the unknown population parameters β and λ. That
is, β̂M= β̂(s) and λ̂M = λ̂(s).
Substituting the values of β and λ in (4) by their MLEs, the MLE for reliability function

s(t) at some value of t= t 0 can then be obtained.

Fisher information matrix (FIM)

In this section, by using the missing information principle, the Fisher information matrix
(FIM) about the underlying population parameters based on type-II censoring is pro-
vided. Suppose that, x = (x1, x2, . . . , xr)′ and Y = (Xr+1, Xr+2, . . . , Xn)′ denote the
ordered observed censored and the unobserved ordered data, respectively. The vector Y
can be thought of as the missing data. Combine x and Y to form the complete data setW.
It is easy to show that the amount of information about the unknown parameters β and λ,
which is provided byW is given by:

IW (β , λ)=

⎡
⎢⎢⎣

c1
β2

c2−c1 ln (β)

β λ

c2−c1 ln(β)
β λ

c3+ln (β) {c1 ln (β)−c4}
λ2

⎤
⎥⎥⎦ (13)

with c1 = 1.92468, c2 = 0.05606, c3 = 1.79061, and c4 = 0.11211.
For s = r+1, r+2, . . . , n, the conditional distribution of each Xs ∈ Y given Xs > xr

follows the truncated underlying distribution with left truncation at xr , see Ng et al. [10].
Therefore, in view of (1) and (3), the PDF of Xs ∈ Y given Xs>xr is given by

f (x|Xs > xr ; β , λ)=
6β e−2β

(
xλ−xλ

r
) (

1−e−β xλ
)

(
3−2 e−β xλ

r
) ,

x > xr , (β , λ > 0).

(14)

Hence, the expected ordered unobserved (missing) information matrix IY(β , λ), which is
related to the vector Y, is then given by

IY|x(β , λ)=−(n−r) IE

⎡
⎢⎢⎢⎢⎣

∂2 ln[ f (x|Xs >xr ; β , λ)]
∂ β2

∂2 ln[ f (x|Xs >xr ; β , λ)]
∂ β ∂ λ

∂2 ln[ f (x|Xs >xr ; β , λ)]
∂ λ ∂ β

∂2 ln[ f (x|Xs >xr ; β , λ)]
∂ λ2

⎤
⎥⎥⎥⎥⎦
. (15)

In order to evaluate of the expectations involved in (15), calculations for the following
expressions are required.
1) Part 1

I(k)(y) =
∫ ∞

y
{ln(t)}k G1(t) dt, y > 0, k = 0, 1, 2, (16)

where

G1(t) = t e−2 t [
t e−t + (

1 − e−t) (
2 − 3 e−t)]

1 − e−t .
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Denote I0 = limy→ 0+ I(0)(y) = 0.32078, I1 = limy→ 0+ I(1)(y) = 0.00934 and I2 =
limy→ 0+ I(2)(y) = 0.13177 . Then, (16) can be rewritten as

I(k)(y) = Ik −
∫ y

0
{ln(t)}k G1(t) dt, y > 0, k = 0, 1, 2. (17)

The integrals involved in (17) can be calculated by using a simple numerical integration
tool, e.g., Simpson’s rule.
2) Part 2

I(3)(y) =
∫ ∞

y

t2 e−3 t

1 − e−t d t= I3 −
∫ y

0

t2 e−3 t

1 − e−t d t, y > 0,

= I3 −
∞∑
j=0

{∫ y

0
t2 e−(j+3) t d t

}
,

= e−3 y
∞∑
j=0

(
1 + (

1 + (
3 + j

)
y
)2) e−j y

(
3 + j

)3 , (18)

where I3= limy→ 0+ I(3)(y)=− 9
4+2

∑∞
i=1 i−3=0.154114 .

Now, in view of (17) and (18), it is easy to show that the elements Ii j of IY|x(β , λ) after
division by (n−r), i, j = 1, 2, are given by

I11 = 1
β2

{
1 + 6

(
e−yI(3)(y)
3 − 2 e−y − y2e−y

(
3 − 2 e−y)2

)}
, y=β xλ

r , (19)

I12 = − 6
β λ

{
t1(xr) + [

I(0)(y) − ln (β) I(1)(y)
]
e2 y(

3 − 2 e−y)
}

= I21, (20)

I22 = 1
λ2

{
1 + 6

[
e2 y

[
(ln(β))2I(0)(y)−2 ln(β) I(1)(y)+I(2)(y)

]
−t2(xr)

]
(
3−2 e−y)

}
, (21)

where

t1(xr)=
β xλ

r ln
(
xλ
r
)[(

1−e−β xλ
r
)(
3−2 e−β xλ

r
)
+β xλ

r e−β xλ
r
]

(
3−2 e−β xλ

r
)

and

t2(xr)=
β xλ

r
(
ln

(
xλ
r
))2[

β xλ
r e−β xλ

r +
(
1−e−β xλ

r
)(
3−2 e−β xλ

r
)]

(
3−2 e−β xλ

r
) .

Note that the elements Ii j, i, j = 1, 2, constitute the Fisher information related to each
Xs, s=r + 1, r + 2, · · · , n, where Xs is distributed as in (14). Therefore, in view of (19–21),
the elements of the FIM about the parameters β and λ related to the complete data setW
can be obtained as n limy→ 0+ Ii j, i, j = 1, 2, which give as the same results as in (13).
Therefore, the FIM gains about the two unknown parameters β and λ from a given

type-II censored sample, (x1, x2, · · · xr)′, is then given by

Ix(β , λ) = IW(β , λ) − IY|x(β , λ).
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Asymptotic variances and covariance

Once Ix(β , λ) is calculated, at β = β̂M and λ = λ̂M, the asymptotic variance-covariance
matrix of the MLEs of the two unknown parameters β and λ is then given by

Var − Cov
(
β̂M, λ̂M

)
= I−1

x

(
β̂M, λ̂M

)
=

⎡
⎣ σ̂ 2

1 σ̂12

σ̂21 σ̂ 2
2

⎤
⎦ .

Again, once I−1
x

(
β̂M, λ̂M

)
is obtained, the asymptotic variance of the reliability func-

tion s(t 0) can then be calculated as the lower bound of the Cramér-Rao inequality of the
variance of any unbiased estimator for s(t 0). That is,

Var[ ŝ(t 0)] = 36 t2 λ̂M
0 e−4 β̂Mtλ̂M0

[
σ̂ 2
2 β̂2

M [ln(t 0)]2

+β̂M ln(t 0) σ̂12+σ̂ 2
1

] [
1−e−β̂Mtλ̂M0

]2
.

(22)

Consequently, the asymptotic (1−α) 100% confidence intervals, ACIs, for β̂M, λ̂M, and
ŝ(t 0)M are given by

[
β̂M ∓ Z α

2
σ̂1

]
,
[
λ̂M ∓ Z α

2
σ̂2

]
and

[
ŝ(t 0)M ∓ Z α

2

√
Var[ ŝ(t 0)]

]
,

(23)

respectively, where Z α
2
is the percentile (1− α

2 ) of the standard normal distribution.

Bayesian estimation
It is assumed that β and λ have two independent gamma priors with the hyper parameters
a1 > 0 and b1 > 0 for β ; and a2 > 0 and b2 > 0 for λ. That is,

π1(β) ∝ βa1−1e−b1β and π2(λ) ∝ λa2−1e−b2λ. (24)

Moreover, Jeffrey’s priors can be obtained as special cases of (24) by substituting a1=b1=
a2=b2=0.
The hyper parameters can be chosen to suit the prior belief of the experimenter in terms

of location and variability of the prior distribution.
Combining (6) and (24), the joint posterior density function of β and λ is then given by

π(β , λ|x) ∝ βr+a1−1e−(b1+2T1) βλr+a2−1e−b2λeT2 , (25)

where T1 and T2 are as given in (6). The Bayes estimate of any function g(β , λ) under a
squared error loss function (SEL) is given by

̂g(β , λ)B =
∫ ∞
0
∫ ∞
0 g(β , λ) π(β , λ|x) dβ dλ∫ ∞
0
∫ ∞
0 π(β , λ|x) dβ dλ

. (26)

The integrals involved in (26) are usually not obtainable in closed form, but Lindley’s
approximation [12] may be used to compute such ratio of integrals. It cannot however
be used to construct credible intervals. Therefore, following Kundu and Howlader [11],
we approximate (26) by using Gibb’s sampling procedure to drawMCMC samples, which
can be used to compute the Bayes estimates and also to construct their corresponding
credible intervals as suggested by Chen and Shao [13]. We propose the following two
different importance sampling techniques.
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First importance sampling technique (IS1)

The joint posterior density function (25) can be rewritten as

π(β , λ|x) ∝ π

1 (β|λ, x) π


2 (λ|x) h3(β , λ), (27)

where π

1 (β|λ, x) is a gamma density function given by

π

1 (β|λ, x) ∝ βr+a1−1e−(b1+2T1) β , (28)

π

2 (λ|x) is a proper density function given by

π

2 (λ|x) ∝ λr+a2−1e−b2λ ∏r

j=1 xλ
j

(b1 + 2T1)
r+a1 (29)

and

h3(β , λ) =
(
1 − 2

3
e−β Xλ

r

)n−r r∏
j=1

(
1 − e−β Xλ

j
)
. (30)

Now, since π

1 (β|λ, x) follows a gamma distribution then, it is quite simple to generate

from it. On the other hand, although the function π

2 (λ|x) is a proper density, we can use

the method developed by Devroye [14] for generating λ. This method requires to ensure
that (29) has a log-concave density function property. Therefore, the following theorem is
needed.

Theorem 2 The function π

2 (λ|x), given by (29), has a log-concave density function.

Proof. See the “Appendix” section.
Using Theorem 2, a simulation-based consistent estimate of g(β , λ) can be obtained by

using the following algorithm.
Algorithm 1.
Step 1: Generate λ from π


2 (·|x), by using the method developed by Devroye [14].
Step 2: Generate β from π


1 (·|λ, x).
Step 3: Repeat Steps 1 and 2 to obtain (βi, λi), i = 1, 2, · · · , M.
Step 4: For i = 1, 2, · · · , M, calculate gi as g(βi, λi); and ωi as h3(βi, λi)∑M

i=1 h3(βi, λi)
, where

h3(β , λ) is as given by (30).
Step 5: Under a SEL function, an approximate Bayes estimate of g(β , λ) and its

corresponding estimated variance can be, respectively, obtained as

ĝ(β , λ)IS1 =
M∑
i=1

ωi gi and

V̂
[
g(β , λ)

]
IS1

=
M∑
i=1

ωi
(
gi − ĝ(β , λ)IS1

)2.
(31)

Second importance sampling technique (IS2)

In this technique, we will start with another rewriting to the joint posterior density
function (25) as

π(β , λ|x) ∝ π

1 (β|λ, x) π


3 (λ|x) h4(β , λ), (32)



Abd-Elrahman Journal of the EgyptianMathematical Society            (2019) 27:1 Page 9 of 15

where π

1 (β|λ, x) is as given by (28), while π


3 (λ|x) is a gamma density function given by

π

3 (λ|x) ∝ λr+a2−1 exp

⎡
⎣−

⎛
⎝b2 +

r−1∑
j=1

ln
(
xr
xj

)⎞
⎠ λ

⎤
⎦ . (33)

This is true, since b2 > 0 and xr
xj > 1, j = 1, 2, · · · r − 1. Therefore,

h4(β , λ) =
xr λ
r

(
1 − 2

3 e
−β Xλ

r
)n−r ∏r

j=1

(
1 − e−β Xλ

j
)

(b1 + 2T1)
r+a1 . (34)

In this technique, since π

1 (β|λ, x) and π


3 (λ, x) follow a gamma distribution each, it is
quite simple to generate from them. Therefore, it is straight forward that a simulation-
based consistent estimate of g(β , λ) can be obtained using the following algorithm:
Algorithm 2.
Step 1: Generate λ
 from π


3 (·|x).
Step 2: Generate β
 from π


1 (·|λ
, x).
Step 3: Repeat Steps 1 and 2 to obtain (β


i , λ

i ), i = 1, 2, · · · , M.

Step 4: For i = 1, 2, · · · , M, calculate g

i as g(β


i , λ

i ); and ω


i as
h4

(
β

i , λ


i
)

∑M
i=1 h4

(
β

i , λ


i
) , where

h4(β , λ) is as given by (34).
Step 5: In this case, based on a SEL function, the approximate Bayes estimate of g(β , λ)

and its corresponding estimated variance can be, respectively, obtained as

ĝ(β , λ)IS2 =
M∑
i=1

ω

i g



i and

V̂
[
g(β , λ)

]
IS2

=
M∑
i=1

ω

i
(
g

i − ĝ(β , λ)IS2

)2.
(35)

By using the idea of Chen and Shao [13], based on (gi, ωi) (or (g

i , ω


i )), i=1, 2, · · · ,M,
the (1− α) 100% highest posterior credible interval of g(β , λ) related to IS1 (or IS2)
technique can be easily obtained.

Simulation study
This section is devoted to compare the performance of the proposed Bayes estimators
with the MLEs, we carry out a simulation study using different sample sizes (n), different
effective sample sizes (r), and for different priors (non-informative and informative). For
prior information, we have used non-informative prior, prior 1 with a1=b1=a2=b2= 0,
and informative prior, prior 2 with a1=2, b1=4, a2=3, and b2= 4.
The IMSL [15] routines DRNUN and DRNGAM are used in the generation of the

uniform and gamma random variates, respectively.
In computing the estimates, first we generate β and λ from gamma (a1, b1) and gamma

(a2, b2) distributions, respectively. These generated values are β0 = 0.5439 and λ0 =
0.7468. The corresponding value of the reliability function calculated at t 0 = 0.9 is
0.8299. Second, we generate 5000 samples from the GB distribution with β =0.5439 and
λ = 0.7468 . For the importance sampling techniques (IS1 and IS2), we set M = 15, 000,
when we apply Algorithm 1 or 2. The average estimate of ϑ
 and the associated mean
squared error (MSEs) are computed, respectively, as:
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Average = 1
5000

5000∑
k=1

ϑ

k , MSE = 1

5000

5000∑
k=1

(
ϑ

k − ϑ

)2 ,

where ϑ

k stands for an estimator (ML or Bayes) of β , λ, or s(0.9), at the kth iteration, and

ϑ stands for β0=0.5439, λ0=0.7468, or s(0.9)=0.8299.
The computational results are displayed in Tables 1, 2, and 3, where the first entry in

each cell is for the average estimate and the second entry, which is given in parentheses,
is for the corresponding MSE. It has been noticed from Tables 1, 2, and 3, that
1) As expected, the MSEs of all estimates (ML or Bayes) decrease as n or r increases.
2) The Bayes estimators under prior 1 or prior 2 by using IS2 technique are mainly better
than the corresponding estimators by using IS1 technique in terms of in terms of average
bias and MSE.
3) In all cases, the MSEs of the MLEs are less than the corresponding Bayes estimators
under prior 1 by using IS1 technique.
On the other hand, the performances in terms of average bias and the MSE of the Bayes
estimators under prior 1 by using IS2 technique and theMLE are very similar. 4) For small
and moderate sample or censoring sizes, the Bayes estimators under prior 2 by using IS2
technique clearly outperform the MLEs in terms of average bias and MSE.
5) For large sample or censoring sizes, the performances in terms of average bias and
the MSE of the Bayes estimators under prior 2 with IS2 technique and the MLE are very
similar.

Data analysis
This section concerns with illustration of the methods presented in the “Maximum
likelihood estimation” and “Bayesian estimation” sections, where a real data set is

Table 1 Average estimates of β and the associated MSEs

n n MLE
Bayes prior 1 Bayes prior 2

IS1 IS2 IS1 IS2

25 15 0.5535 0.5189 0.5381 0.5274 0.5381

0.0134 0.0144 0.0129 0.0109 0.0101

20 0.5432 0.5118 0.5411 0.5216 0.5413

0.0104 0.0122 0.0099 0.0097 0.0083

25 0.5405 0.5121 0.5478 0.5200 0.5456

0.0096 0.0115 0.0091 0.0092 0.0077

30 20 0.5476 0.4971 0.5256 0.5096 0.5291

0.0093 0.0119 0.0097 0.0093 0.0080

25 0.5427 0.4945 0.5362 0.5072 0.5362

0.0083 0.0112 0.0082 0.0088 0.0072

30 0.5412 0.4955 0.5412 0.5069 0.5397

0.0079 0.0108 0.0075 0.0087 0.0067

40 30 0.5447 0.4647 0.5117 0.4784 0.5149

0.0060 0.0125 0.0071 0.0098 0.0063

35 0.5428 0.4647 0.5236 0.4764 0.5250

0.0057 0.0121 0.0060 0.0097 0.0055

40 0.5421 0.4656 0.5294 0.4775 0.5279

0.0056 0.0116 0.0056 0.0095 0.0051
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Table 2 Average estimates of λ and the associated MSEs

n n MLE
Bayes prior 1 Bayes prior 2

IS1 IS2 IS1 IS2

25 15 0.8355 0.8570 0.8167 0.8264 0.8006

0.0499 0.0597 0.0465 0.0363 0.0300

20 0.8049 0.8248 0.7794 0.8063 0.7736

0.0274 0.0339 0.0236 0.0234 0.0180

25 0.7889 0.8056 0.7431 0.7943 0.7456

0.0172 0.0216 0.0147 0.0159 0.0122

30 20 0.8095 0.8477 0.7976 0.8223 0.7875

0.0306 0.0437 0.0298 0.0291 0.0222

25 0.7928 0.8278 0.7707 0.8093 0.7684

0.0204 0.0290 0.0183 0.0210 0.0148

30 0.7817 0.8123 0.7306 0.7995 0.7344

0.0136 0.0201 0.0128 0.0153 0.0109

40 30 0.7857 0.8543 0.7774 0.8318 0.7738

0.0165 0.0335 0.0174 0.0242 0.0143

35 0.7782 0.8400 0.7588 0.8248 0.7589

0.0128 0.0257 0.0125 0.0197 0.0107

40 0.7720 0.8272 0.7036 0.8151 0.7089

0.0094 0.0185 0.0117 0.0151 0.0102

considered. This data set is from Hinkley [16] and consists of thirty successive values of
March precipitation in Minneapolis/St. Paul. The data set points are in inches as follows:
0.32, 0.47, 0.52, 0.59, 0.77, 0.81, 0.81, 0.9, 0.96, 1.18, 1.20, 1.20, 1.31, 1.35, 1.43, 1.51, 1.62,

1.74, 1.87, 1.89, 1.95, 2.05, 2.10, 2.20, 2.48, 2.81, 3.0, 3.09, 3.37, 4.75 .
This data is used by Barreto-Souza and Cribari-Neto [17] in fitting the generalized

exponential-Poisson distribution (GEP), and by Abd-Elrahman [1, 9] in fitting the Bilal

Table 3 Average estimates of s(0.9) and the associated MSEs

n n MLE
Bayes prior 1 Bayes prior 2

IS1 IS2 IS1 IS2

25 15 0.8284 0.8570 0.8403 0.8487 0.8393

0.0079 0.0088 0.0075 0.0067 0.0060

20 0.8344 0.8601 0.8355 0.8517 0.8350

0.0067 0.0080 0.0062 0.0063 0.0052

25 0.8357 0.8590 0.8287 0.8523 0.8304

0.0064 0.0077 0.0058 0.0061 0.0049

30 20 0.8310 0.8727 0.8482 0.8618 0.8449

0.0059 0.0080 0.0062 0.0062 0.0051

25 0.8339 0.8736 0.8385 0.8629 0.8384

0.0055 0.0077 0.0053 0.0060 0.0046

30 0.8346 0.8722 0.8328 0.8627 0.8342

0.0053 0.0075 0.0049 0.0059 0.0044

40 30 0.8318 0.8985 0.8577 0.8866 0.8550

0.0040 0.0089 0.0048 0.0069 0.0043

35 0.8329 0.8978 0.8474 0.8879 0.8464

0.0038 0.0086 0.0041 0.0068 0.0037

40 0.8331 0.8966 0.8405 0.8866 0.8419

0.0038 0.0082 0.0038 0.0067 0.0034
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and GB distributions. For the complete sample case, the MLEs of β and λ, respectively,
are 0.4168 and 1.2486, which are obtained as described in the “Maximum likelihood
estimation” section with r = n. The negative of the log likelihood, Kolmogorov-Smirnov
(K-S) test statistics and its corresponding p value related to these MLEs are 38.1763,
0.0532, and 1.0, respectively. Based on this p value, it is clear that the GB distribution
is found to fit the data very well. These results agree with the results in Abd-Elrahman
[1], where in (2) the MLEs of θ and λ are equal to 0.4168−1/1.2486 = 2.016 and 1.2486,
respectively.
If only the first 20 data points are observed, the corresponding sample mean and

CV of this 20 observed sample points are 1.1225 and 0.4206, respectively. Equating the
right hand side of (12) by 0.4206 and solving for λ would results in the unique solution
λ 0 = 1.7385. Based on this value of λ, it follows from (9) that β 0 is calculated as 0.6147.
The iterative scheme, which is described in the “Maximum likelihood estimation” section,
starts with the initials λ (0) =1.7385 and β(0) =0.6147. The estimates of β and λ, converge
to β̂M = 0.41417 and λ̂M = 1.29926 with a level of accuracy less than 1.2 × 10−10 of the
absolute relative errors. From these data, we have

IW(β̂M, λ̂M) =
(
336.6004 97.7070
97.7070 60.1551

)
,

IY(β̂M, λ̂M) =
(
81.7323 53.5040
53.5040 35.9570

)
.

Hence,

Ix(β̂M, λ̂M) =
(
254.86812 44.20293
44.20293 24.19810

)
.

Therefore, the estimated variance-covariance matrix of β̂M and λ̂M is

I−1
x (β̂M, λ̂M) =

(
0.00574 −0.01049

−0.01049 0.06049

)
.

Therefore, the standard errors of the MLEs of β and λ are 0.07576 and 0.24595,
respectively.
The MLE of s(0.9) and its corresponding asymptotic standard error are 0.78002 and

0.06340, respectively. The 99% ACIs for β , λ, and s(0.9) are (0.21897, 0.60938), (0.66575,
1.93278), and (0.61672, 0.94331), respectively.
On the other hand, the simulation study given in the “Simulation study” section shows

that, the Bayes estimators by using IS2 technique is better than the corresponding estima-
tors obtained by using IS1 technique in terms of average bias and MSE. Therefore, under
non-informative prior, we compute Bayes estimate by generating an importance sample
of sizeM=15, 000 with their corresponding importance weights according to Algorithm
2. The Bayes estimates of β , λ, and s(0.9), and their corresponding standard errors (given
in parentheses), respectively, are β̂IS2 = 0.39034 (0.04907), λ̂IS2 = 1.34910 (0.19207), and
̂s(0.9)IS2 = 0.79899 (0.03866) . The 99% credible intervals for β , λ, and s(0.9) are (0.24320,
0.43781), (0.85632, 1.92996), and (0.73657, 0.91060), respectively.



Abd-Elrahman Journal of the EgyptianMathematical Society            (2019) 27:1 Page 13 of 15

Concluding remarks
(1) In this article, the ML and Bayes estimation of the parameters as well as the reliability
function of the GB distribution based on a given type-II censored sample are obtained.
(2) The existence and uniqueness theorem for theML estimator of the population param-
eter λ, when β is assumed to be known, is established. An iterative procedure for finding
the ML estimators of the two unknown population parameters is also provided. The
elements of the FIM are obtained, and they have been used in turn for calculating the
asymptotic confidence intervals of λ, β , and the reliability function.
(3) Two different importance sampling techniques have been proposed, which can be
used for further Bayesian studies.

Appendix
Proof of Theorem 1
It follows from (10) that the second of ln L(β , λ|x) w.r.t λ is given by

G2(β , λ|x) =− r
λ2

− 6 (n−r)z f1(z) (ln (xr))2

(3 ez−2)2

−
r∑

j=1

yj f2(yj)
(
ln

(
xj
))2

(eyj − 1)2
,

(36)

where z=β xλ
r ,f1(z)=ez

[
z+ez

(
1−e−z) (3−2 e−z)], yj=β xλ

j , j = 1, 2, · · · , r, and f2(yj)=
2 e2 yj −5 eyj + 3+yj eyj .
Now, in order to prove that G2(β , λ|x) < 0,
it is sufficient to show that f1(z) > 0 and f2(yj) > 0. It is clear that f1(z) > 0 . On the

other hand, by expanding the exponential functions involved in f2(yj) about z = 0, f2(yj)
can be rewritten as

f2(yj)=y2j +
∞∑
k=2

ykj
(
2k+1−5 + yj

)

k!
> 0.

Therefore, ∂2ln L(β , λ|x)
∂λ2

< 0. This implies that the ML estimate, λ̂M, for λ is unique.
To insure that λ̂M exists, following Balakrishnan et al. [18], we rewrite (10) as h1(λ) =

h2(λ), where h1(λ) = r/λ and

h2(λ) = −2 (n−r) ln (xr)
(
β xλ

r −W1
)

+
r∑

j=1
ln

(
xj
) (

1+W2j−2β xλ
j

)
,

whereW1 andW2j, j = 1, 2, · · · , r, are as given in (10).
Note that,

�1 = lim
λ→ 0+ h2(λ) = 2 (n−r) [β − η1(β)] ln (xr)

−
r∑

j=1
ln

(
xj
)
[1 − 2β + η2(β)] ,

�2 = lim
λ→ ∞ h2(λ) =

(
�∞ +

r∑
i=1

�2i

)
> 0,
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where η1(β)= β

3 eβ−2 , η2(β)= β

eβ−1 ,

�∞ =
{
0 if0 < xr ≤ 1,
∞ ifxr > 1.

, �2i=
{
2 ln

(
1
xi

)
if0 < xi ≤ 1,

∞ ifxi > 1.
.

Furthermore, it follows from (A1), that

∂h2(λ)

∂λ
= 6 (n−r)β xλ

r f1
(
β xλ

r
)

(ln (xr))2(
3 eβ xλ

r −2
)2

+
r∑

j=1

β xλ
j f2

(
β xλ

j

) (
ln

(
xj
))2

(
eβ xλ

j − 1
)2 > 0,

which implies that �1 < �2. Therefore, h2(λ) is an increasing function of λ. But h1(λ) is
a positive strictly decreasing function with right limit +∞ at 0. This insures that h1(λ)=
h2(λ) holds exactly once at some value λ = λ
. Hence, the theorem is proved.
Proof of Theorem 2
It follows from (29) that, the second derivative of the logarithm base e of π


2 (λ|x) w.r.t.
λ is given by

d2ln
{
π

2 (λ|x)}

dλ2
= − r+a2−1

λ2
− (r + a1)

∂2 ln {ξ(λ)}
∂ λ2

,

where ξ(λ)= b1
2 +(n−r) xλ

r +∑r
j=1 xλ

j . In order to show that d2ln{π

2 (λ|x)}

dλ2 < 0, it is sufficient
to show that ξ1 = ξ ′′(λ) ξ(λ)−{

ξ ′(λ)
}2

> 0. This is true, because

ξ1=
⎛
⎝ b1

2
+ (n−r) xλr +

r∑
j=1

xλj

⎞
⎠

⎛
⎝(n−r) xλr (ln (xr))2 +

r∑
j=1

xλj
(
ln

(
xj

))2
⎞
⎠

−
⎛
⎝(n−r) xλr ln (xr) +

r∑
j=1

xλj ln
(
xj

)
⎞
⎠
2

,

= b1
2

⎛
⎝(n−r) xλr (ln (xr))2 +

r∑
j=1

xλj
(
ln

(
xj

))2
⎞
⎠ + (n−r) xλr

r∑
j=1

xλj

(
ln

( xj
xr

))2

+
r∑

j=1

⎛
⎝

r∑

k=j+1
xλk x

λ
j
(
ln

(
xk

) − ln
(
xj

))2
⎞
⎠ > 0.

Hence, the theorem is proved.
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