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Abstract 

The theory of stochastic equations and the theory of equivalence of measures previ-
ously applied to flows in the boundary layer and in the pipe are considered to calculate 
the velocity profile of the flat jet. This theory previously made it possible to determine 
the critical Reynolds number and the critical point for the flow of the plane jet. Here 
based on these results the analytical dependence for the index of the velocity profile 
is derived. Velocity profiles are calculated for a laminar-turbulent transition in the jet. 
This formula reliably reflects an increase of the energy transferred from a deterministic 
state to a random one with an increase of the index of the velocity profile. Results show 
satisfactory agreement with the known experimental data for the velocity profile of 
the flat jet. Using obtained results it is possible to determine the location of technical 
devices for laminarization of the flow in the jet. This is important both for reducing fric-
tion in the flow around aerodynamic vehicles and for maintaining the jet profile if it is 
necessary to ensure the stability of the flow characteristics. Also the obtained relations 
can be useful for researching of the processes in combustion chambers, in the case of 
welding and in other technical devices.

Keywords:  Stochastic equations, Equivalence of measures, Turbulence, Critical point, 
Reynolds number, The velocity profile, The flat jet

1  Introduction
The ideas of the theory of the onset of turbulence [1–13] both theoretical and numerical 
[14–23], including also the statistic and DNS modeling [2, 24–32], provide the necessity 
for determination of the stochastic equations and the regularity of equivalence of meas-
ures. Investigations of the onset of turbulence based on the theories of stochastic equa-
tions and the equivalence of measures between deterministic and random motion were 
carried out mainly for flows in shear flows in a circular tube [33–43], on a flat smooth 
plate [44–55], as well as for motion near a rotating disk [56] and for motion between 
rotating coaxial cylinders [57]. The last research was done for laminar–turbulent transi-
tion on a flat plate [58, 59]. All of these publications refer to shear flows in the presence 
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of a solid surface (wall). An article related to forced shear flow in the absence of a wall 
determined the critical Reynolds number and the critical point for a plane jet flow [60]. 
In this regard, it seems important to present a procedure for deriving the velocity profile 
parameters for a plane jet flow during the transition from laminar to turbulent motion. 
The problem of the transition of laminar flow in a jet to turbulent is discussed in articles 
[60–68]. Note that in accordance to the opinions of works [61, 64], the problem of the 
transition to turbulence in the jet does not cause such a keen interest because the transi-
tion has already happened when critical Reynolds numbers equal to 30. In this case, the 
Reynolds number is made up of the entire width of a flat slit. In the case where the Reyn-
olds number is made up using half the width of a flat slit, it equals 5–10. In this article, 
the procedure of calculation of parameters velocity profile of flat jet is considered on the 
basis of the theory of stochastic equations and the theory of equivalence of measures. 
The analytical dependence for the index of the velocity profile has the right and the left 
sides. The right side of the equation includes turbulent Reynolds numbers. The left side 
of the equation, which includes the desired profile index, is determined by the param-
eters of the averaged motion values and Reynolds number. As a result, having calculated 
the left side of the formula from the averaged values of the motion at a fixed velocity 
profile index, we obtain the result and compare it with the right side of the equation, 
which is determined by the experimental turbulent Reynolds number. If both parts of 
the equation agree satisfactorily, we compare the given speed profile index with its val-
ues from the known experimental range.

2 � Conservation stochastic equations
Conservation stochastic equations were derived in [33–43]:
the equation of continuity

the momentum equation

and the energy equation

Here, E, ρ,
−→
U ,ui,uj ,ul ,µ, τ , τi,j are the energy, the density; the velocity vector; the veloc-

ity components in directions xi, xj, xl (i, j, l = 1, 2, 3); the dynamic viscosity; the time; and 
the  stress tensor τi,j = P + σi,j, σij = µ

∂ui
∂xj

+ ∂uj
∂xi

− δij ξ − 2
3
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 , τcor = L

((Est )U ,P/ρ)
1/2 , 

δij = 1 if i = j, δij = 0 for i ≠ j. Р is the pressure of liquid or gas; λ is the thermal conductivity; 
cp and cv are the specific heat at constant pressure and volume, respectively; F is the external 
force. Further, L = LU, P = LU is the scale of turbulence. Indexes (U, P) and (U) refer to the 
velocity field. Ly on x2 = y, or Lx, x1 = x. Here, x1 and x2 are coordinates along and normal to 
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the axis of the jet. Index “colst” refers to components, which are actually the deterministic. 
Index “st” refers to component, which are actually the stochastic. Then for the non-isother-
mal motion of the medium, using the definition of equivalency measures between deter-
ministic and random process in the critical point, the sets of stochastic equations of energy, 
momentum, and mass are defined for the next space-time areas: 1) the beginning of the 
generation (index 1,0 or 1); 2) generation (index 1,1); 3) diffusion (1,1,1) and 4) the dissipa-
tion of the turbulent fields. These results provide an opportunity to introduce the concept 
of the correlator, which is defined for the potential physical quantities and combinations (N, 
M). This correlator, in its structure, will determine the possible range of motion in space 
depending on the different combinations of (M, N) and the corresponding values ​​that 
determine the correlation interval of space-time. According to [2, 32–50], the correlator in 
space-time is

Subscript j denotes the parameters mcj (j = 3 means mass, momentum, and energy). For 
the case of the binary intersections, it was written that X = Y + Z + W. Here subscripts cr or 
c refer to critical point r(xcr, τcr) or rc: the space-time point of the beginning of the interac-
tion between the deterministic field and random field that leads to turbulence. In addition, 
subsets Y, Z, W are сalled extended in X. For the transfer of the substantial quantity Φ (mass 
(density ρ), momentum (ρU), energy (E)) of the deterministic (laminar) motion into a ran-
dom (turbulent) one, for domain 1 of the start of turbulence generation, pair (N, M) = (1, 0), 
with the equivalence of measures being written as ( d�colst)1,0 =  − R1,0(Φst) and 
(

d(�)colst
dτ

)

1,0
= −R1,0

(

�st
τcor

)

. Applying correlation DN,M(rc; mci; τc) = D1,1(rc; mci, τc) derived 

in [2, 32–42], the equivalence relation for pair (N,  M) = (1,  1) was defined as ( d�colst)1,1 

=  − R1,1(dΦst), 
(
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dτ

)

1,1
= −R1,1

(
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)

 , where R1,0 and R1,1 are fractal coefficients, 

�colst is the part of the field of Φ, notably, its deterministic component (subscript colst) is the 
stochastic component of the measure, which is zero; Φst is the part of Φ, notably, the proper 
stochastic component (subscript st).

3 � Critical Reynolds number and critical point
In article [58] it was shown that the critical Reynolds number and critical point for the plane 
jet were determined using the set of stochastic Eqs. (1)–(3) for the area 1), which, referring 
the pair (N, M) = (1, 0) is:
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So, the formula for critical Reynolds number was written as

and in according with data [52–57], the theoretical value for critical Reynolds number is

Um is the average velocity on the jet axis, h the width of the initial section of the jet. The 
definition of the value of the critical point is found from the equation 
+�V |2
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 , here L is the scale 

of disturbance. So using these formulas, the equation for the critical point in the plane jet 
was determined [58]:

and in according with data [52–58], the theoretical value for critical point 
(
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 is

4 � The velocity profile characteristics of the flat jet
The set of stochastic Eqs. (1)–(3) for the area 2), referring the pair (N,M) = (1,1) is:

(6)



















�

d
�

ρ
−→
U
�

colst
dτ

�

1,0

= −

��

ρ
−→
U
�

st
τcor

�

;

div
�

τi,j
�

colst0
=

�

ρ
−→
U
�

st
τcor

.







�

d(E)colst
dτ

�

1,0
= −

�

(E)st
τcor

�

1,0
;

div
�

�
∂T
∂xj

+ uiτi,j

�

colst0
=

�

(E)st
τcor

�

1,0
.

(7)(Re)cr = 21.1

(

Um√
Est/ρ

)0.568( L

x2

)0.973(h

L

)0.243

(8)(Re)cr = 7.6÷ 25.

(9)
(

x2

x1

)

cr

= (1.75)−10/9 ·
(

Um√
Est/ρ

)−4/3( L

x2

)−10/9(h

L

)−10/37

,

(10)
(

x2

x1

)

cr

= 0.025.

(

d(ρ)colst
dτ

)

1,1

= −
d(ρ)st
dτ

;



Page 5 of 12Dmitrenko and Selivanov ﻿Advances in Aerodynamics            (2022) 4:40 	

Then, taking into account the definition of the velocity u1 of laminar motion in a plane 
jet [61, 64].

Taking into account that

and introducing the relation

the derivative du1dx1
 is

In case of small values of ξ for laminar flow we have next formulas:
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So finally we have

For the flow region of the beginning of turbulence initiation, we assume the same 
dependence, but with a different degree “n”. As is known, if the velocity u1 in laminar 
motion is ~ (x1)-1/3, then for a developed turbulent region u1 ~ (x1)-1/n and “n = 2”. Thus, 
for the transition region the values of degree “n” are in the interval 2 ≤ n ≤ 3. Next, we 
write down the relation determined earlier from the equivalence of measures for the 
region (1, 1) - the generation of turbulence [33–58]:

As it was shown in the papers [33–58], the Eq. (23) determines the relative increase of 
the energy transferred from the deterministic state to the random one. Subscript “lamin” 
refers to the laminar flow, and subscript “stoch” refers to the non-laminar flow. Taking 
into account that for transition regime formula (22) may be written as 
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[56–58] and in accordance with  [61–66], 
(

h
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)

·
(

L2
x1

)

= (2.5÷ 14.5) · (0.01÷ 0.0157) = 0.025÷ 0.22765 . As can be seen, the 

experimental spread of values refers to the magnitude of the turbulence scale 
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)

 . There-

fore, the main attention will be focused on the correspondence of the calculated values of 
the right side of Eq. (24) to the left side of this equation. Then it can be written that

So for n = 2.5, the left side of the equation is

Then for n = 2.0 and the same initial data for the critical Reynolds number (Re)cr ~ 7.25 ÷ 
25, Kτ = �τstoch

�τl
≈ 0.8÷ 1.2 [54–58] and 

(

h
L2

)

·
(

L2
x1

)

= (2.5÷ 14.5) · (0.01÷ 0.0157) = 0.025÷ 0.22765 [61–67], the next equa-

tion can be written as

Substituting the numerical values, it is possible to find that

So for n = 2.0, the left side of the equation is
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|Rest-1/Rest | = |(0.5÷ 0.4)-1/(0.5÷ 0.4)| ≈ (1.5÷ 2.1) ≈ 1.7,
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and for n = 2.0 the value is

Thus, the estimate of the profile index is satisfactorily determined by the obtained 
relation n = 2.0, corresponding to the turbulent flow value of index ‘n’ in empirical for-
mula u1 ~ (x1)-1/2 [61, 64]. It should be noted that the main last studies [61–119] do not 
contain information on analytical solutions for the jet profile in the laminar-turbulent 
transition regime.

5 � Conclusions
On the basis of the theory of stochastic equations and the theory of equivalence of meas-
ures, the velocity profile of a plane jet is considered. In accordance with these theories, 
the analytical dependence of the velocity profile of flat jet is derived for the transition 
flow from the laminar flow to turbulent motion. It should be noted that the calculated 
values obtained from the formulas for the transition from laminar movement to turbu-
lent flow in a plane jet are different to the calculated values for the velocity profile in 
the boundary layer on the flat plate and in the pipe, in the case of a smooth wall [33–43, 
49–52]. This fact agrees with the well-known data [61, 64]. It is also seen that the ana-
lytical formulas (27) and (30) reliably reflect an increase of the transferred energy from 
a deterministic state to a random one with an increase of the index (1/n). It is shown 
that the new equation reflects the experimental fact of changing the dependence for the 
longitudinal velocity u1 during laminar motion from the coordinate along the axis of the 
jet u1 ~ (x1)-1/3 (n = 3) into a dependence for the developed turbulent region u1 ~ (x1)-1/2 
(n = 2). The calculations carried out using new formulas (24)–(31) showed satisfactory 
agreement with the known experimental values for parameters of the velocity profile of 
flat jet.

The practical significance of the theoretical determination of velocity profiles in a jet 
at a laminar-turbulent transition from the values of the Reynolds number and vice versa 
is essential for a number of processes taking place, in particular, in combustion cham-
bers [30] and in the case of welding [43, 120]. Also, knowing the initial parameters of 
the disturbance, it is possible, depending on the distance x1, to determine the amount of 
energy transferred into random motion. This makes it possible to determine the location 
of technical devices for reducing friction [58, 59] in the flow around aerodynamic vehi-
cles and for maintaining the jet profile if it is necessary to ensure the stability of the flow 
characteristics.
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