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1  Introduction
Scramjet is composed of inlet, isolator, combustor and nozzle. At present, there are a lot of 
research results on combustor, such as the influence of combustor cavity configuration and 
angle of attack change on combustor performance [1, 2], the influence of fuel selection on 
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Scramjet is the main power device of hypersonic vehicles. With the gradual expansion 
of wide velocity domain, shock wave/shock wave and shock wave/boundary layer are 
the main phenomena in scramjet isolator. When the leading edge of the shock train is 
pushed out from the inlet of the isolator, the engine will not start. Therefore, it is very 
important to detect the flow field structure in the isolator and the leading edge posi-
tion of the shock train. The traditional shock train detection methods have low detec-
tion accuracy and slow detection speed. This paper describes a method based on deep 
learning to reconstruct the flow field in the isolator and detect the leading edge of the 
shock train. Under various back pressure conditions, the flow field images of computa-
tional fluid dynamics (CFD) data and the corresponding upper and lower wall pres-
sure data were obtained, and a data set corresponding to pressure and flow field was 
constructed. By constructing and training convolutional neural networks, a mapping 
model with pressure information as input and flow field image as output is obtained, 
and then the leading edge position of shock train is detected on the output flow 
field image. The experimental results show that the average structure similarity (SSIM) 
between the reconstructed flow field image and the CFD flow field image is 0.902, the 
average peak signal-to-noise ratio (PSNR) is 25.289, the average correlation coefficient 
(CORR) is 0.956, and the root mean square error of shock train leading edge detection 
is 3.28 mm. Moreover, if the total pressure input is appropriately reduced, the accuracy 
of flow field reconstruction does not decline significantly, which means that the model 
has a certain robustness. Finally, in order to improve the detection accuracy of the lead-
ing edge position, we fine tuned the model and obtained another detection method, 
which reduced the root mean square error of the detection results to 1.87 mm.
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ignition delay and mixing rate [3, 4], the influence of backward-facing step on supersonic 
multi fuel jet mixing efficiency [5], and the effect of multi hydrogen jet on fuel mixing effi-
ciency and flow structure [6]. However, isolator is an important part of the scramjet, which 
forms an aerodynamic thermal buffer between the inlet and the combustor [7]. The back 
pressure can interact with the boundary layer in the isolator to produce complex shock 
waves and expansion structures, resulting in shock train [8–10]. The shock train sequence 
generated in the isolator depends on the inlet conditions. However, the structure and flow 
characteristics of the shock train are often complex, especially when the back pressure 
changes, the position of the shock train will also change. With the increase of back pres-
sure, the length of shock train will increase. If the shock train is too long, the scramjet inlet 
will not start [11, 12]. Therefore, it is of great significance to study the unstart conditions of 
the scramjet inlet [13, 14]. For example, in the X-51A flight test, both missions encountered 
the problem that they could not be started [15, 16]. In recent years, the main concern has 
been to control the leading edge of the shock train. However, in order to effectively control 
the unstart phenomenon, it is necessary to quickly and accurately detect the position of the 
leading edge of the shock train to achieve active control. At present, the detection methods 
for the leading edge position of shock train [17] mainly include the pressure rise method, 
pressure ratio method, static pressure sum method, back pressure method, standard devia-
tion or spectrum analysis method. However, each method has its own shortcomings. For 
example, considering the influence of hypersonic inlet, the conditions around the isolator 
are very complex, which makes it difficult to apply the back pressure method and the static 
pressure sum method in practical engineering scenarios. The spectral analysis method and 
the standard deviation method have a large amount of calculation, and the latter has low 
accuracy. The pressure rise method and the pressure ratio method are more practical, but 
their accuracy needs to be further improved [18, 19].

Numerical simulation provides important help for the design of scramjet. Large com-
mercial CFD software FLUENT has been applied to many engineering problems [20–26]. 
However, the computational efficiency of current numerical simulation methods hinders 
large-scale calculations. Therefore, in order to improve the speed of numerical simulation 
software, methods based on artificial intelligence have become an effective means of opti-
mization design. In recent years, deep learning technology has made great progress in the 
fields of image recognition [27–30], speech recognition [31], automatic driving [32] and 
natural language processing [33]. Researchers are gradually applying artificial intelligence 
technology to the traditional field of computational fluid dynamics (CFD). For example, 
Li et al. [34] trained an artificial neural network (ANN) to predict the cooling efficiency 
of the outer surface of turbine blades. Guo et al. [35] successfully used convolutional neu-
ral network (CNN) to predict the stable flow field around the bluff body, greatly reduc-
ing the calculation cost. Ling et al. [36] used deep neural network to simulate Reynolds 
stress anisotropy tensor in Reynolds averaged Navier Stokes simulation, which greatly 
improved the simulation accuracy. Lee et al. [37] used the generative adversarial network 
(GAN) to predict the unsteady laminar vortex shedding behind the cylinder, and found 
that this enhanced the learning of the solution of the lift equation. Liu et al. [38] intro-
duced deep learning into CFD data compression and proposed a new in-situ compression 
method based on GAN. Compared with the existing CFD data compression methods, 
this method has significant advantages in compression time, and the compression ratio 



Page 3 of 15Chen et al. Advances in Aerodynamics            (2022) 4:28 	

can be adjusted according to the acceptable reconstruction effect. Liu et  al. [39] used 
CNN to detect the position of shock wave string in the flow field, which can achieve 
very short detection time. Kong et al. [40] used the ground test data of scramjet isola-
tor to reconstruct the flow field and detect the shock train position based on CNN, and 
achieved high accuracy. Under the leadership of academician Le Jialing, Chen et al. [41] 
of China Aerodynamics Research and Development Center took the lead in carrying out 
the research on intelligent reconstruction of scramjet combustion flow field in China, 
independently designed a multi-branch fusion convolutional neural network (MBFCNN), 
established the mapping relationship between the upper and lower wall pressure data of 
the combustor and the flow field image data of the combustor, and reconstructed the tur-
bulent combustion field with high accuracy. Guo et al. [42] carried out wind tunnel tests 
under the leadership of academician Le Jialing, and independently designed a multi-path 
asymmetric residual network (MARN) for super-resolution reconstruction of combustor 
flow field. This method provides the possibility to develop a lightweight super-resolution 
model of supersonic combustor flow field; it shows great potential in revealing the physi-
cal flow of fuel and air mixture and provides accurate prediction of the spontaneous com-
bustion time. The above research shows that deep learning has great potential in CFD and 
experimental fluid dynamics.

In this paper, the rapid reconstruction of the flow field in the scramjet isolator based 
on deep learning and the high-precision detection of the leading edge of the shock train 
are studied. The main structure of the article is as follows: in Section 2, the data obtained 
are described in detail; in Section 3, the CNN model is introduced, and some basic con-
cepts in deep learning are briefly summarized; in Section  4, the training results and 
reconstruction accuracy of the model are mainly explained; in Section 5, the detection 
results of the leading edge of the shock train based on the reconstructed flow field and 
the detection results after fine-tuning the model are mainly explained; the final section 
draws a conclusion.

2 � Dataset
2.1 � Calculation model and condition parameters

CFD method was used to calculate the wall pressure and flow field of scramjet isolator. 
The commercial CFD software FLUENT is used for numerical simulation. The calcula-
tion reference [40] is the section model of the isolator of the ground direct connected 
wind tunnel of Harbin Institute of Technology. The research object is shown in Fig. 1. 
T0-T20 in Fig. 1 indicates the installation position of pressure measuring points.

When using FLUENT software for numerical simulation, the model size is 25.4 mm 
(height) × 304.8  mm long. The ideal gas is used for calculation, the Sutherland model 
is used for viscosity, and the Reynolds number is about 190,000. Relevant parameters 
indicate that the input Mach number is 2; the static pressure is 19600 Pa and the total 
temperature is 300 K. Select five back pressure conditions to obtain multiple sets of data, 
as shown in Table 1. The back pressure can be obtained from Eq. (1).

Where A is the reference value of back pressure, B is the amplitude, f is the oscil-
lation frequency, t is the time, and Pa is the calculated back pressure. In the flow, we 

(1)Pa = A+ Bsin(2π ft)
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fix the frequency and amplitude, and the back pressure changes sinusoidally. The 
frequency is 100 Hz, and each cycle is 10 ms. Five cycles are calculated, and a data 
point is calculated every 0.5 ms.

2.2 � Data preprocessing

Five hundred groups of data are obtained by using FLUENT. Each group of data is 
composed of a pressure sequence and the flow field image at its corresponding time. 
The flow field image obtained by numerical calculation is cut as shown in Fig. 2. In 
order to reduce the calculation time and parameters required for network training, 
the resolution of the flow field image is reduced to 35 × 300 pixels. In order to accel-
erate the convergence of the network, the image pixel value is normalized from 0–255 
to 0–1. Finally, the 500 data are divided into training set and test set according to 
the ratio of 7:3, that is, 350 groups of data in the training set and 150 groups of data 
in the test set. In the process of model training, the training set participates in the 
parameter update of the model, while the test set does not participate in the param-
eter update of the model, and is only used as the test part of the generalization per-
formance of the model.

Fig.1  Schematic diagram of isolated section model installed in the direct connected wind tunnel

Table 1  Back pressure conditions

Number A (Pa) B (Pa) f (Hz)

1 61,740 4410 100

2 66,150 4410 100

3 70,560 4410 100

4 74,970 4410 100

5 79,380 4410 100

Fig. 2  Flow field image after pretreatment
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3 � Flow field reconstruction model of isolator based on CNN
3.1 � Some basic concepts

3.1.1 � Up‑sampling

The flow field reconstruction model based on CNN takes multiple pressure measure-
ments as input and flow field images as output. There is a big difference between input 
and output data. Therefore, in order to establish the mapping relationship between 
pressure data and flow field images, it is necessary to use up sampling method to 
quickly expand the size of input pressure data. In the field of computer vision, there 
are three commonly used up sampling methods: interpolation, deconvolution and de 
pooling. In this paper, we use the deconvolution of learnable parameters to up sample 
the pressure information.

3.1.2 � Convolution and activation

The convolution operation is to slide the convolution kernel matrix onto the input 
image matrix with a specific step size, as shown in Fig.  3. Before each sliding, the 
product of the weight parameters in the convolution kernel matrix and the parame-
ters in the corresponding input image matrix is calculated. The sum of these products 
of each sliding position forms the output characteristic matrix.

There are many activation functions in deep learning, such as Tanh function, Sig-
moid function, Softmax function and ReLU function. This paper uses the ReLU 
activation function, which is usually applied after convolution. The introduction of 
the activation function increases the nonlinear characteristics of the network and 
enhances the fitting ability of the model.

3.1.3 � Pooling

Pooling is equivalent to down sampling the image. The overall statistical characteris-
tics of the adjacent outputs of a location are used to replace the network outputs of 
that location. Pooling effectively reduces the amount of parameters and network com-
plexity. The two commonly used pooling methods are maximum pool downsampling 
and average pool downsampling. The method used in this study is the maximum pool 
downsampling method, and its process is shown in Fig. 4.

Fig. 3  Convolution procedure
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3.1.4 � Fully connected layer

The input of the full connection layer is a one-dimensional array. Therefore, the input 
multidimensional array must be processed before being passed to the full connection 
layer. Connect each node of the fully connected layer with all nodes of the previous 
layer to synthesize all previously extracted features. Because of its fully connected 
nature, this layer usually has the most parameters. The structure of full connection is 
shown in Fig. 5.

3.2 � CNN model structure

In order to establish the mapping relationship between the pressure data in the isolator 
and the flow field image data, a multi-layer CNN model is designed, as shown in Fig. 6. 
The input of the model is the wall pressure data of the isolator, and the output is the 
pixel value of the flow field image at the corresponding time. Table 2 lists the specific 
parameter settings in the network, where "Y" and "N" respectively indicate whether the 
ReLU activation function is used or not. In Table 2, 1× 2 × 10 represents the tensor form 

Fig. 4  Maximum pooling procedure

Fig. 5  Fully connected layer
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of inputting a set of pressure data. Where 1 represents the number of channels, 2 repre-
sents the height, and 10 represents the width. This tensor is composed of the calculated 
data of 20 pressure points on the upper and lower walls of the isolator.

4 � Experiments and results
4.1 � Model training

The computing platform we use is Windows 10, the CPU is Intel Core i5-10400f, the 
memory size is 16G, the GPU is RTX3060, whose memory size is 12G, and the model 
training time is 10 min and 18 s. The open source software library PyTorch is used to 
train the model. The mean square loss function is generally used in regression problems. 
In order to evaluate the quality of the model, this paper uses the mean square loss func-
tion as the evaluation standard. This function is shown in the following Eq. (2).

Where, fn is the flow field image vector obtained through CFD calculation, f ∗n  is the 
flow field image vector obtained based on CNN reconstruction model, and N is the 
batch size used in network training, indicating the amount of data used in each round of 
training. In this study, N = 128, n is the total number of pixels in each image. Because the 
image resolution after preprocessing is 35 × 300, so n = 10,500.

(2)L =
1

N ∗n
n

(fn − f ∗n )
2.

Fig. 6  Flow field reconstruction model based on CNN

Table 2  Parameters of CNN

Layer Input size Kernel size ReLU Output size

Deconv1 1 × 2 × 10 2 × 2 Y 32 × 4 × 20

Deconv2 32 × 4 × 20 2 × 2 Y 16 × 8 × 40

Deconv3 16 × 8 × 40 2 × 2 Y 14 × 16 × 80

Deconv4 14 × 16 × 80 2 × 2 Y 10 × 32 × 160

Conv1 10 × 32 × 160 3 × 3 Y 8 × 16 × 80

Conv2 8 × 16 × 80 3 × 3 Y 20 × 8 × 40

Max pool 20 × 8 × 40 2 × 2 N 20 × 4 × 20

Conv3 20 × 4 × 20 3 × 3 Y 20 × 4 × 20

FC1 20 × 4 × 20 / Y 6000

FC2 6000 / N 10,500
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The network training adopts the Adam optimization method. As an extension of the ran-
dom gradient descent algorithm, the  Adam optimizer is widely used in CNN optimiza-
tion because of its high computational efficiency, easy implementation and low memory 
requirements.

Figure 7 shows the changes of the loss function of the training set and the loss function 
of the test set of the CNN model. After 2000 iterations, the loss converges to 0.006 and the 
training process terminates.

4.2 � Reconstruction results and index analysis of flow field in isolator

Structural similarity (SSIM) is an index to measure the similarity of two images. It is defined 
as follows:

Where µx is the average of x, µy is the average of y, σ 2
x

 is the variance of x, σ 2
y  is the var-

iance of y, and σxy is the covariance of x and y. c1 = (k1L)2, c2 = (k2L)2 are constants used 
to maintain stability, where L is the dynamic range of pixel values, k1 = 0.01, and k2 = 0.03. 
SSIM ranges from 0 to 1, and when the two images are exactly the same, SSIM = 1.

Peak signal to noise ratio (PSNR) is used to measure the quality of signal reconstruction 
in the imaging domain. The PSNR value is 30 – 40 dB, indicating that the predicted image 
is in good agreement with the real image; a value greater than 20 dB indicates that the pre-
dicted result of the model is basically consistent with the actual value; values below 20 dB 
indicate poor image reconstruction results. PSNR is defined by Eq. (4).

(3)SSIM
(

x, y
)

=
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)
.

(4)
MSE =

1
H×W

∑H
i=1

∑W
j=1

(

X
(

i, j
)

− Y (i, j)
)2
,

PSNR = 10log10(
(2n−1)2

MSE ).

Fig. 7  Log loss function
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Where, W represents the image width, H represents the image height, i and j repre-
sent the ordinate and abscissa values of the image respectively, X represents the recon-
structed image, Y represents the real flow field image, and n = 8.

Pearson correlation coefficient (CORR) measures the linear correlation. The closer the 
absolute value of the correlation coefficient is to 1, the stronger the correlation is. CORR 
is defined by:

Where xi represents the i-th pixel in the reconstructed flow field diagram and x repre-
sents the pixel mean value of the reconstructed image; yi represents the i-th pixel in the 
real flow field diagram and y represents the pixel mean value of the reconstructed image.

The pressure series in the test set data are input into the CNN model to verify the reli-
ability of the flow field reconstruction method. We randomly selected two reconstructed 
flow field results at different times to compare with CFD calculation results. The results 
are shown in Fig. 8. We give the pressure distribution of the upper and lower walls at the 
time corresponding to the prediction results in the figure, in which the blue line repre-
sents the distribution of 10 pressure values on the upper wall of the isolator, the red line 
represents the distribution of 10 pressure values on the lower wall of the isolator, and the 
values of SSIM and PSNR are shown in red font in the figure.

Figure 9 is the absolute error diagram of the reconstructed flow field. The closer the 
blue part is, the smaller the error is. The closer the red part is, the larger the error is. 
It can be seen from the figure that the main error is distributed inside the shock wave 
structure, which does not affect the observation of its overall structure.

Figure  10 shows the pixel scatter analysis and correlation coefficient of the recon-
structed flow field (marked in red). It can be seen from the figure that all pixels are con-
centrated near the red straight line, which indicates that the reconstructed flow field 
results are highly correlated with the CFD calculation results.

(5)CORR =

∑

(xi − x)(yi − y)
√

∑

(xi − x)2
√

∑

(yi − y)2
.

Fig. 8  Comparison between reconstructed flow field image based on CNN (middle) and CFD calculated flow 
field image (down)
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We studied the influence of different pressure quantities on the accuracy of model 
reconstruction, and the average SSIM, average PSNR and average CORR indexes of all 
flow field reconstruction results of the test set are shown in Table 3. It can be seen from 
the table that when the total number of upper and lower wall pressure is 14, the perfor-
mance of flow field reconstruction does not decrease significantly, and when the total 
number of pressure is 10, the reconstruction performance decreases significantly, which 
shows that the model has a certain robustness.

5 � Shock train leading edge position detection
5.1 � Indirect detection method based on reconstructed flow field

The leading edge position of the shock train is obtained by comparing the distances 
between the two shock separation points on the upper and lower walls and the inlet, 
and the smaller distance point is taken as the leading edge position of the shock train. As 
shown in Fig. 11 below, the leading edge of the shock train is marked by a red circle, and 
the distance between it and the inlet is indicated by xSTLE .

Fig. 9  Absolute error color map of flow field reconstruction

Fig. 10  All pixel scatter plots and correlation coefficients of flow field reconstruction

Table 3  Average index of reconstruction results of different pressure quantities

Number of Pressure SSIM PSNR (dB) CORR

20 0.902 25.289 0.956

14 0.893 24.402 0.950

10 0.857 21.935 0.946
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Figure  12 shows the results obtained by reconstructing the flow field image 
through CNN, detecting the leading edge position of the shock train, and compar-
ing the detected results with the leading edge position of CFD calculation data. The 
abscissa represents the horizontal pixel size of the leading edge point of the shock 
train in the isolator in the image, and the ordinate represents the 150 shock train 
image data in the test set data. The red line in the figure represents the leading edge 
position obtained from 150 CFD calculated flow field images, and the green line rep-
resents the leading edge position of 150 shock train images output by CNN flow field 
reconstruction model.

The leading-edge position of the shock train is the distance between the shock train 
and the inlet of the isolator. The leading-edge position of the shock train predicted by 
the CNN flowfield reconstruction model is represented by XDet. To verify the accu-
racy of the model, XDet is compared with the actual shock train leading-edge position 
XSch. The error is calculated as follows for i = 1, 2,…, 150:

To quantitatively verify the detection accuracy, the root mean square error is 
defined as eRMS, as shown in the following Eq. (7). Since the calculated isolator length 

(6)ei = XDet − XSch.

Fig. 11  Leading edge position of shock train

Fig. 12  Comparison of leading edge position between reconstructed flow field image and CFD leading 
edge position
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is 304.8 mm, the number of horizontal pixels of an image is 300, so one pixel is about 
1.016 mm. Therefore, the error unit can be expressed in mm.

5.2 � Direct detection method for fine tuning CNN model

The leading edge position detection method based on CNN reconstruction requires 
high accuracy of the reconstructed flow field. If the reconstructed image has blurred 
edges, it is difficult to accurately detect the front edge position. So we studied another 
direct detection method. This method is obtained by modifying the last full connec-
tion layer of the CNN model, as shown in Fig.  13. We can get the improved CNN 
model by changing the output of the last full connection layer of the model to 1. 
This change means that we no longer need to reconstruct the flow field in the isola-
tor. We use the improved CNN model to directly output the position coordinates of 
the leading edge of the shock train predicted by the model after training, which also 
avoids the error caused by the reconstructed flow field. Figure 14 shows the results of 
the comparison between the leading edge position predicted by the improved CNN 
model and the leading edge position of CFD calculated flow field data. In the figure, 

(7)eRMS = 1.016 ⋆

√

e21 + e22 . . . e
2
150

150
= 3.28 mm

Fig. 13  Fine tuned CNN model

Fig. 14  Comparison of leading edge position between direct prediction based on improved CNN and CFD
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the ordinate represents 150 test data, the abscissa represents the distance between the 
leading edge position of the shock train and the inlet port, the blue line represents 
the leading edge position of the shock train predicted from 150 test data after fine-
tuning the model, and the red line represents the leading edge position of the shock 
train obtained from CFD data. Through calculation, the root mean square error is 
only 1.87 mm.

6 � Conclusions
The main purpose of this paper is to study the intelligent method of flow field detec-
tion technology in the isolator of scramjet, which has potential application value. 
Stable and intelligent detection means can provide a strong guarantee for the active 
control of scramjet engine. A convolutional neural network is built to reconstruct the 
flow field and detect the leading edge position of the shock train in this paper. This 
work can be summarized as follows.

(1)	 Firstly, we used CFD to calculate the flow field in the isolator and the pressure on 
the upper and lower walls of the isolator under different back pressure conditions, 
and obtained 500 groups of pressure data and flow field image data at the corre-
sponding time. Then a convolutional neural network is built and trained for flow 
field reconstruction, that is, the trained network model can obtain the flow field 
image in the isolator at the corresponding time by inputting the pressure sequence 
values of the upper and lower walls of the isolator. The average SSIM, average PSNR 
and average CORR of reconstructed flow field are calculated to be 0.902, 25.289 and 
0.956 respectively. We also studied the influence of different total pressures on the 
upper and lower walls as model input on the reconstruction accuracy, and found 
that appropriately reducing the total pressure will not significantly affect the perfor-
mance of flow field reconstruction, that is, the model has a certain robustness.

(2)	 Through the reconstructed flow field image, the leading edge position of the shock 
train is detected, and the root mean square error of the detection result is 3.28 mm. 
Finally, by fine tuning the CNN model, we get a new method for detecting the lead-
ing edge of shock train (direct detection method), which reduces the root mean 
square error to 1.87 mm. Compared with reference [40], the potential advantage of 
this paper is that the proposed direct detection method of fine-tuning CNN model 
helps to make the detection of the leading edge of the shock train more accurate.
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